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A B S T R A C T

Energy system pathways which are projected to deliver minimum possible deployment cost, combined
with low Greenhouse Gas (GHG) emissions, are usually considered as ‘no-regrets’ options. However, the
question remains whether such energy pathways present ‘no-regrets’ when also considering the wider
environmental resource impacts, in particular those on land and water resources. This paper aims to
determine whether the energy pathways of the UK’s Carbon Plan are environmental “no-regrets” options,
defined in this study as simultaneously exhibiting low impact on land and water services resulting from
resource appropriation for energy provision. This is accomplished by estimating the land area and water
abstraction required by 2050 under the four pathways of the Carbon Plan with different scenarios for
energy crop composition, yield, and power station locations. The outcomes are compared with defined
limits for sustainable land appropriation and water abstraction.
The results show that of the four Carbon Plan pathways, only the “Higher Renewables, more energy

efficiency” pathway is an environmental “no-regrets” option, and that is only if deployment of power
stations inland is limited. The study shows that policies for future low-carbon energy systems should be
developed with awareness of wider environmental impacts. Failing to do this could lead to a setback in
achieving GHG emission reductions goals, because of unforeseen additional competition between the
energy sector and demand for land and water services in other sectors.
ã 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

The need for low-carbon energy to curb greenhouse gas (GHG)
emissions and combat climate change, coupled with the need to
meet future demand and security of energy supply, presents a
challenge for many governments. Transition to a low-carbon
energy regime consistent with climate change mitigation aspira-
tions will require significant changes to the whole energy system
(Hoggett, 2014), including the deployment of new technologies,
expansion of power generation capacity, and significant levels of
demand-side management. However, the projected changes in the
energy system will inevitably result in changes to the appropria-
tion of other resources, and this will have wider implications for
environmental impacts, and may affect other sectors of the
economy.
* Corresponding author.
E-mail addresses: ddk24@cam.ac.uk, konadu@gmail.com (D.D. Konadu).
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Resource availability constraints do not feature significantly in
energy policy development. Instead, the debate about the
challenges to low-carbon energy transition has focussed on: the
cost of low-carbon energy, and the rate at which it can be
physically deployed (Kramer and Haigh, 2009); uncertainties
about public acceptability and perceptions (Fischer et al., 2011;
Engels et al., 2013; Butler et al., 2015); potential implications for
biodiversity and maintenance of ecosystem services (Jackson,
2011); local and international politics (Droste-Franke et al., 2015)
around issues such as emissions reduction (IPCC, EU targets). Thus,
national policies have prioritised a mix of primary energy sources
that would offer minimum cost, and feasible deployment rates
(Torvanger and Meadowcroft, 2011). Energy system trajectories
that meet these objectives are generally referred to as “no regrets”
options. However, the question of whether these “no regrets”
energy system options also present no-regrets in relation to
environmental resource appropriation is rarely considered. For
example, more land and water resources may be required if carbon
capture and storage (CCS), nuclear power and crop-based
bioenergy are deployed (McMahon and Price, 2011; Delgado
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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et al., 2015; Schreiber et al., 2015; Milner et al., 2015), and this
could trigger increased competition for these resources. This paper
therefore aims to evaluate whether trajectories that are considered
“no-regrets” options for the energy system are also “no regrets”
policies for environmental resources. The paper uses the UK
Carbon Plan (HM Government, 2011) as a case study, and considers
the whole energy system including primary energy extraction,
bioenergy crop production, refining, electricity and heat genera-
tion.

The UK Carbon Plan developed by the Department of Energy
and Climate Change (DECC) presents potential pathways to
achieving both 80% GHG emissions reduction, and energy security
by 2050. The Carbon plan includes four pathways each consisting
of a different mix of primary energy sources and technologies that
achieve the 80% GHG reduction target by 2050, relative to
1990 levels, as enshrined in the UK Climate Change Act of 2008
(HM Government, 2008). The central pathway, “Core MARKAL”,
involves a combination of technologies and resources that
minimise system cost by 2050, estimated by the UK MARKAL
energy model (AEA, 2011). The other three pathways, “Higher
Renewables, more energy efficiency”, “Higher Nuclear, less energy
efficiency” and “Higher Carbon Capture and Storage (CCS), more
bioenergy”, also achieve the GHG emissions reduction target, but
do not offer absolute minimum-cost solutions. With the exception
of the “Higher Nuclear, less energy efficiency”, all pathways rely on
decarbonisation of electricity in tandem with a range of energy
efficiency measures, substitution of fossil energy by bioenergy, and
introduction of CCS technologies. Given that around 86% of
primary UK energy consumption in 2013 relied on fossil resources
(DECC, 2015), these pathways require a significant departure from
the current energy system, and imply substantial infrastructure
replacement by 2050.

The connections of the energy system to land and water
resources include cooling water used in thermal power generation,
extraction and refining of primary fossil fuels, and land required for
energy system infrastructure and growing bioenergy feedstock.
These are water and land intensive and have the potential to trigger
increased competition for water and land resources with other
sectors of the economy, and with the need to maintain ecosystem
services. It is therefore critical to assess the environmental
resilience in determining whether a pathway has “no-regrets”.

Recent studies including Konadu et al. (2015),HM Government
(2010), Byers et al. (2014), Schoonbaert (2012) and EA (2010) have
analysed individual natural resource (land or water) requirements
Table 1
Description of land impact criteria for “no-regrets” assessment.

Land impact Criteria description/assumption

Low: Lower than or up to 2010 level of unused arable
land area

Area of land used for energy cro
quality arable land is put to bioe
Additionally, this would not requ
bioenergy occupied only 0.4% o

Medium: Above total 2010 unused arable land area
and up to 10% UK land area

In addition to unused arable land
equivalent to the medium ambi
appropriation for bioenergy nea
grassland would have to be conv
cropping and other land services
involved, this may require some 

for example.
High: Above 10% of UK land Above 10% land appropriation fo

for livestock grazing, feed and fi

deployment due to the unprece
bioenergy cropping in addition 

undesignated high biodiversity a
low quality and for some energy
irrigation in some regions of the 

to ensure that there is no net lo
of potential future energy system trajectories of the UK. These
studies report significant changes in the water and land require-
ments by 2050 for all the UK Carbon Plan pathways, which points
to the need for an integrated analysis of land, water and energy in
order to identify potential environmental constraints to the
development of future energy systems. Thus the aim of this paper
is to simultaneously analyse the land and water impacts of the UK
Carbon Plan under different scenarios of crop yield and composi-
tion, and future power plant locations.

A “no-regrets” low-carbon energy pathway is defined in this
study as one that simultaneously exhibits low impact on land and
water services resulting from resource appropriation for energy
provision. Three broad analytical procedures are employed: (1)
criteria are established for measuring environmental “no-regrets”
based on the assumptions of sustainable limits of land and water
resource appropriation in the UK; (2) the water and land
requirements for each of the Carbon Plan pathways to 2050 are
estimated; (3) the land and water requirements for each pathway
are compared to the environmental “no-regrets” criteria.

2. Criteria for environmentally “no-regrets” low-carbon
pathway assessment

Three categories of impact—Low, Medium and High—are
defined to characterise the appropriation of land and the
abstraction of water. These categories are related to sustainable
resource appropriation and are described below.

2.1. Land use criterion

The criterion for assessing the land use impact of the carbon
pathways is based the levels of land use change to bioenergy by
2050 according to the DECC Calculator (DECC, 2012), which sets
17% as the maximum limit of total UK land area that can be
allocated for bioenergy crop production. The criteria for Low,
Medium and High land use impact are described in Table 1.

2.2. Water use criterion

The criterion for assessing water use is based on the current UK
abstraction licensing regime, in particular abstraction by the
energy industry from surface water. This study considers only
inland water resources, i.e. fresh and tidal water abstraction, which
require licensing. Licences for water abstraction and impoundment
s

ps is lower than the available unused arable land in 2010. As only unused high
nergy cropping, a minimal amount of fertiliser would be required for cultivation.
ire significant changes in agricultural land use and management policy. Moreover,
f UK agricultural land in 2010, which is comparatively very low.
, some improved grassland would also be converted to bioenergy cropping. This is
tions of the 2050 Pathways Analysis report (HM Government, 2010). As land
rs the 10% limit, all the unused arable land, and a significant share of improved
erted to bioenergy crops, leading to some level of competition between bioenergy
, particularly livestock grazing/feed production. Due to the scale of land use change
land use/agricultural policy changes to incentivise adoption of bioenergy cropping,

r bioenergy production effectively competes with other land services, such as land
bre production. This would present a highly challenging situation for bioenergy
dented level of land use change. Semi-natural grasslands could be allocated for
to improved grasslands and unused arable land, with the potential loss of
reas. Moreover, a significant amount of the land used beyond this level would be of

 crops, there would be a requirement for significant application of fertiliser and
UK. Significant land/agricultural policy changes are required, including regulations
ss of high biodiversity areas.
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in the UK, as defined in the Water Act 2003 (HM Government,
2003), are issued with the intention of maintaining an efficient and
sustainable use of water; of particular importance is the
preservation of the ecological quality of aquatic environments
(Poff and Zimmerman, 2010). However, not all licensed abstrac-
tions are actually withdrawn. For example in England and Wales,
actual abstraction levels average 45% of all permitted abstractions,
and 40% of all electricity-related permits (SI Fig. 3, SI Table 8) (EA,
2013a; DEFRA, 2013a,b). Therefore, although some catchments in
the UK are already either over-licensed or over-abstracted,
according to the Environment Agency (EA) (EA, 2008), the current
average national-scale abstraction for electricity is largely within
the overall regulated abstraction levels.

However, water availability in the UK is a regional problem. For
example, power stations providing about 70% of total UK inland
generation capacity in 2010 were clustered within a few major
river basins – the Severn, Humber, Trent, Mersey and Thames – as
shown in Fig. 1. Some of these river basins are already experiencing
some degree of water stress (e.g. the Thames catchment). Thus, any
incremental water demand for the energy infrastructure on the
national level is likely to translate into additional demand within
these regional clusters. Future changes such as population growth;
and future demand for irrigation and additional non-energy
industrial infrastructure within these river basins could exacerbate
the pressure on available water resources. Thus, to provide a
method for assessing water stress related to the national energy
pathways, this study aggregates national abstraction for thermal
generation to define thresholds of stress. Three criteria—Low,
Medium and High, as for land stress—are defined in Table 2.
Fig. 1. Inland electricity generation capacity along major UK river basins in 2010 and th
2011), Environment Agency (EA) areas of water stress: final classification (EA, 2007), E
3. Estimation of land and water requirement for the Carbon
Plan pathways

The pathways of the Carbon Plan project changes to the current
UK energy system that deliver 80% GHG emissions reductions by
2050. To analyse their land and water requirements, material flow
analysis (MFA) was used to predict resource reserves or deficits
(Rowse, 1986). The analysis is based on scenarios of land use
associated with different compositions and yields of second-
generation (2Gen) energy crops, and water abstraction levels
predicated on power plant locations.

The analysis starts by establishing the connections between the
national energy system and the land and water systems. The
projected technologies of each of the Carbon Plan pathways to
2050 are then related to land and water resource use. The analysis
of the land—energy connections cover the entire UK land use
system using different scenarios for crop yield and energy crop
composition. The analysis of the water system focuses only on
water used in the energy system for primary extraction (e.g. coal,
oil, gas extraction) and transformation processes (e.g. electricity
generation, oil refining), using scenarios to assess the impact of
different technologies and locations for future energy infrastruc-
ture (see Fig. 2). The predicted land and water requirements are
compared with sustainable use limits based on the criteria defined
in Section 2, to assess the environmental “no-regrets”. Details of
the data and methods used to analyse the connections of the
energy, land and water systems are covered in the following
subsections.
e potential water stress risk. Source: Digest of UK Energy Statistics (DUKES) (DECC,
A CAMS dataset (2010).



Table 2
Description of tidal and fresh water abstraction impact criteria.

Water impact Criteria description

Low: Lower than or up to current actual abstraction
level

Water abstraction reduces or remains at current levels. No need for change in current licensing regime for the
energy industry, as current abstraction averages 40% of licensed volumes. It is assumed that this would leave
ecologically acceptable headroom for abstraction.

Medium: Up to 100% increase in current abstraction
levels for thermal generation

Up to 100% increase in future abstractions for thermal generation relative to current actual abstraction levels.
Actual abstraction would still remain within current licensed volumes, as current actual abstraction for thermal
generation averages 40% of the licensed volumes (SI Fig. 3 and SI Table 8)

High: More than
100% increase in current abstraction levels for
thermal generation

More than 100% increase relative to current actual abstractions for thermal generation could be considered
environmentally unsustainable, as this would be nearing or surpassing the licenced volumes which are based on
sustainable ecological limits. This level of abstraction could lead to competition with other essential water
services, and could necessitate significant changes to the licensing regime.

Fig. 2. Illustration of the UK energy system with the connections to land and water systems analysed in this study, highlighted in green and blue rectangles respectively for
2010 (Allwood et al., 2014).
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3.1. Land and water connections to the UK energy system to 2050

The current (2010) connections of land and water to the UK
energy system are shown as a Sankey diagram in Fig. 2. This
diagram maps the flow of energy from primary sources through
transformations involving conversion devices and passive systems
to final energy consumption in 2010 in different sectors (transport,
buildings, industry and agriculture), using statistical data from the
Digest of UK Energy Statistics (DUKES) 2013 (DECC, 2014) and the
Energy Consumption in the UK (ECUK) dataset (DECC, 2013).

The main connections of the energy system to land and water
systems are highlighted in the green and blue rectangles
respectively in Fig. 2. The primary resources were grouped into
imported and indigenous sources. Onshore oil and gas and coal
exploration mainly influence water use, while bioenergy crop
production affects land use. The transformation of primary
resources into final energy vectors, such as electricity and liquid
fuels, affects the water system. The main processes that require
water are coal washing, biofuel and crude oil refining, and thermal
electricity generation. Since crop production in the UK is
predominantly rainfed (Richter et al., 2008), this study does not
consider water abstraction for bioenergy crop production.
However, bioenergy production may have significant impact on
water resources in other regions of the world where crops are
mainly irrigated (Gerbens-Leenes et al., 2009, 2012). Additionally,
this study does not consider land use for ground mounted PV,
Onshore wind and other energy infrastructure such as power
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plants and oil refineries, as these are insignificant (see DECC
Calculator—DECC, 2012) compared to the scale of land use change
required for bioenergy crop production for the energy pathways
analysed in this study.

According to the Carbon Plan the primary energy mix is
projected to change significantly to 2050, with a significant
decrease in the share of fossil fuel resources and increase in the
share of bioenergy and nuclear resources. Additionally ambitious
energy efficiency and demand reduction measures are deployed
across all pathways, leading to a reduction in the overall primary
energy demand compared to current levels. Fig. 3 shows the
projected changes in primary energy mix for each pathway by
2050. This also highlights the different impact of energy efficiency
measures on the overall primary energy demand, with the highest
and lowest levels of demand reduction for the “Higher renewables,
more energy efficiency”, and the “Higher nuclear, less energy
efficiency” pathways respectively.

The contribution of bioenergy to the primary energy mix
increases significantly by 2050, ranging from 17% to 40% for the
“Higher Renewables, more energy efficiency” and the “Higher
Nuclear, less energy efficiency” pathways, respectively (Fig. 3).
Land use change related to bioenergy depends on the level of
primary energy demand met by indigenous crops. The “Higher
Renewables, more energy efficiency” pathway has the lowest
contribution from indigenous crops, while the “Higher Nuclear,
less energy efficiency” has the highest. This is mainly due to a
combination of ambitious energy demand reduction and higher
share of wind and PV resources in the “Higher Renewables, more
energy efficiency” pathway, as shown in Fig. 3. Additionally
Konadu et al. (2015) have shown that the decarbonisation of the
transport sector via use of bioenergy in the “Higher Nuclear, less
energy efficiency” pathway in lieu of mainly using these resources
in electricity and heat generation is directly linked to the high use
of bioenergy in this pathway.

In all four pathways, the use of fossil resources is projected to
decrease, so the extraction sector should have a relatively low
requirement for tidal and freshwater. The main water demands are
thus from refining liquid fuels and from electricity generation. The
Fig. 3. Primary Energy mix to meet UK energy demand in 2010, based on national energ
HRen—“Higher Renewables, more energy efficiency”, HNuc—“Higher Nuclear, less ener
impact of electricity generation is particularly critical for pathways
that include new thermal centralized electricity generation and
CCS technologies, since electricity demand increases for all the
trajectories to 2050. All pathways show an initial decrease in
thermal generation as legacy power plants (mainly coal and
nuclear) are shut down and are substituted by new wind capacity
(both onshore and offshore). The pathways then diverge from
2025 onward: with the “Higher Renewables, more energy
efficiency” pathway deploying mostly new wind capacity (with
a focus on offshore wind); the “Higher Nuclear, less energy
efficiency” deploying mostly new thermal nuclear capacity; the
“Higher CCS, more bioenergy” pathway deploying mostly new
thermal with CCS, with a mix of fossil and bioenergy, and some
increase in nuclear; and the “Core MARKAL” pathway with similar
growth rates for new wind, nuclear and CCS capacity, and a higher
share of new wave and tidal capacity than the remaining pathways
in 2050. Further details of the energy system configuration for each
of the pathways to 2050 are presented in the supplementary
information (Appendix 1–SI), and also in the UK ForeseerTM tool
(Allwood et al., 2014). The land and water requirements associated
with the UK energy system to 2050 are presented in the following
subsections.

3.2. Estimation of current and 2050 land requirements for bioenergy

The connections of the energy system to the land resource are
mainly associated with crop-based bioenergy feedstock produc-
tion, and are constrained by the availability of suitable agricultural
land. Currently an estimated 0.4% of UK agricultural land is used for
bioenergy crops (DEFRA, 2014), which provides �10% of the total
feedstock (DECC, 2014). Even though imports form �70% of the
current and up to 50% in 2050 bioenergy feedstock (excluding
feedstock from waste) (DECC, 2014), the study focuses only on
indigenously produced feedstock. The energy crops considered in
this study are Miscanthus (grassy) and Short Rotation Coppice
(SRC) (woody).

The 2010 analysis used a similar approach to that by Konadu
et al. (2015), based on crop production data for UK agriculture, and
y statistics, and projections to 2050 under each of the Carbon Plan pathways (with
gy efficiency”, HCCS—“Higher CCS, more bioenergy”, “CMar”—Core MARKAL).
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energy statistics (DECC, 2014; DEFRA 2013a,b). The land area
required in 2050 was estimated based on different scenarios of
both energy crop mix and crop yield projections. This study
considers the two predominantly grown second generation energy
crops in the UK—Miscanthus (grassy) and Short Rotation Coppice
(SRC). Two energy crop mix options were considered: Business-As-
Usual (BAU), which assumes that the composition of indigenously-
produced energy crops remains as in 2010; a ‘50-50’ scenario
which assumes a mix of 50% of Miscanthus and 50% Short Rotation
Coppice (SRC). Two scenarios of crop yield were also analysed:
“Business-As-Usual (BAU) yield”, which assumes no yield improve-
ments after 2010; and “High Yield” which assumes a very
ambitious and challenging yield improvements of 30% by 2050,
based on DECC projections (DECC, 2012). The area of land required
under each of the Carbon Plan pathways for indigenously sourced
bioenergy were estimated based on these yield and crop
composition scenarios, the amount of projected bioenergy, and
the energy density (heating value) factors of the energy crops
considered (based on US DOE/ORNL, 2011).

Projections for future non-energy cropland demand were also
estimated based on assumptions that diet composition and food
import would not change from 2010, and on UK population
projections (ONA, 2014), and crop yield changes (as for the yield
scenarios described above). Other land demand projections
including for forestry and settlement were based on DECC’s
2050 Pathways Analysis (HM Government, 2010). Details of the
analysis and data sources and outputs can be accessed online
(www.foreseer.group.cam.ac.uk/foreseer-tool/) (Allwood et al.,
2014).

3.3. Estimation of current and future water requirements in the energy
sector

Water demand was estimated for each stage of energy
transformation, from primary fuel extraction, through refining
processes, to electricity and heat generation. Water abstraction for
bioenergy crop irrigation was not considered in this study, as most
of UK agriculture is rainfed. Currently water abstraction for
irrigation of crops in England and Wales constitutes less than 1% of
all water abstractions (DEFRA, 2015). Even though second
generation energy crops could have potential hydrological impacts
on catchments where they are grown (Rowe et al., 2007), irrigation
may only be required under drought conditions, in the relatively
drier regions of the UK (e.g. the Southeast of England) (see Richter
et al., 2008), and favorable market price for feedstocks (Biomass
Energy Centre, 2007). However, the analysis of water requirements
and abstractions under these conditions is beyond the scope of this
study.

Water use was tracked from source of water (tidal or
freshwater), through abstraction and consumption to discharge
stages, with abstracted volumes dependent on location, the type of
primary fuel, and/or the technology deployed. For primary fuel
Table 3
Description of the power station location scenarios.

Scenario Narrative/assumptions

PAU Progress-As-Usual; no significant change to cooling technology composition
location of power stations remains as today.

HC High Coastal—predicated on widespread over-licensing and abstraction of fre
generation due to over-licensing/abstraction within major catchments af

HI High Inland; increased coastal and marine protection - Driven by increased p
term consequences of extreme coastal flooding and tidal/storm surges on 

soft engineering approaches to coastal and sea level rise management a
Int-CCS Integrated electricity and industrial Carbon Capture and Storage—Assumes 

infrastructure planned and built to accommodate both sectors after 202
technologies without CCS, and these would be clustered together with i
extraction, water used in indigenous coal mining and onshore oil
and gas extraction was considered. It was assumed that offshore oil
and gas extraction require no demand for freshwater or tidal water.
Water demands in fossil fuel treatment and refining include coal
washing and preparation, as well as petroleum and biofuel
refineries. Water used in electricity generation is mainly associated
with thermal cooling, with volume dependent on fuel type and the
generation and cooling technology used (e.g. once-through, wet
cooling, dry cooling). The next sub-sections describe the method-
ology and data sources used in the estimation of water demand for
the extraction and refining processes, and thermal electricity and
heat generation.

3.3.1. Water for primary energy extraction and refining processes
Water abstraction and consumption factors for each process are

presented in SI Tables 4 and 5. For the base year, data for
indigenously mined coal (categorised into surface and deep mines)
and onshore oil and gas extraction were combined with the
associated water abstraction and consumption factors to estimate
the overall water use. The water required for each energy pathway
in the future was estimated similarly by combining the projected
indigenous coal, oil and gas extraction with the water abstraction
and consumption factors.

Two categories of water use in refining were estimated—for coal
washing and for oil refining. In the absence of published data, it
was assumed that all indigenously deep-mined coal requires
washing. Thus, data for indigenously mined coal (DECC, 2011) were
combined with water abstraction and consumption factors for coal
washing (from US DOE, 2006), to estimate water required in
2010 and beyond. Water use for crude oil and biofuels refining
were estimated using the abstraction and consumption factors for
once-through cooling technology for refineries (Williams and
Simmons, 2013).

3.3.2. Water for electricity generation
Water use for electricity generation is the largest component of

industrial water demand in England and Wales (EA, 2013b).
Abstractions for hydropower and pumped storage generation
account for over 90% of this use (EA, 2011), but this water is
returned immediately to the source at almost the same level of
quality. This study therefore excludes these applications to focus
on thermal generation, which constituted up to 90% of UK
electricity generation capacity in 2013 (DECC, 2014). The analysis
begins with estimation of the base year abstraction and
consumption volumes for different generation and cooling
technologies involved in the energy system. This follows similar
approaches adapted by Schoonbaert (2012), Byers et al. (2014) and
the Environment Agency (EA, 2013c), and is based on the primary
fuel used, cooling technology and cooling water sources.

Analysis of future water demand for electricity generation is
complex because neither the location of future power stations nor
the cooling technologies to be deployed are known. Therefore, this
 and location of plants—Assumes the composition of cooling technologies and

shwater—Driven by future reduced freshwater abstraction licensing for electricity
ter 2030.
rotection of marine and coastal environments and the need to avoid potential long
power generation. Additionally, in consonance with marine protection objectives,
re adopted.
the deployment of CCS technology in power generation and industry, with CCS
5. As power stations with CCS are more water intensive compared to similar
ndustrial CCS, this could have significant impacts on the inland water resources

http://www.foreseer.group.cam.ac.uk/foreseer-tool/
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study uses four scenarios of power plant location and cooling
technology, using the same estimation approach as noted above
(Schoonbaert, 2012; Byers et al., 2014; EA, 2013c). The four
scenarios considered are: “Progress-As-Usual (PAU)”; “High
Coastal (HC)”; “Higher Inland (HI)” and “Integrated electricity
and industrial carbon capture and storage (Int-CCS)”. These
scenarios are presented in Table 3. The assumed composition of
cooling technologies and the mean water abstraction and
consumption factors associated with each technology, are pre-
sented in the SI Tables 6 and 7, respectively.

4. Results

Results of this study are presented as tables and Sankey
diagrams showing the percentage of UK land required for
bioenergy in 2050 and the volume of water abstraction (million
cubic meters) required for both primary energy extraction and
thermal electricity generation. The outcomes of the environmental
“no-regrets” assessment are presented as a color matrix of
resource use impacts of the different Carbon Plan pathways
(see Fig. 5).

4.1. Current and 2050 land use and energy connections

The land use changes associated with each of the Carbon Plan
pathways resulting from the different yield and crop composition
scenarios to 2050 have been developed in the UK ForeseerTM online
tool as dynamic Sankey diagrams (Allwood et al., 2014). In 2010
(the base year), the total area of land used for energy crop
production was estimated at 108kha, �0.4% of the total UK land
area. Table 4 shows the land area required for indigenous
bioenergy crop production under the different scenarios for crop
yield and composition, as a percentage of total UK land. The “Core
MARKAL” and “Higher CCS, more bioenergy” pathways have the
same land requirements, as they require the same volumes of
second-generation indigenous energy crops. The “Higher Nuclear,
less energy efficiency” and “Higher Renewables, more energy
efficiency” pathways have the highest and lowest projected land
demand for bioenergy crop production respectively, across all yield
and crop composition scenarios. The highest demand—41% of the
total UK land area—is required if yields and energy crop
composition remain the same as today, and the “Higher Nuclear,
less energy efficiency” path is pursued. The lowest demand (5% of
total UK land area) occurs under the “Higher Renewables, more
energy efficiency” pathway, assuming a significant improvement
in energy crop yields and a diversified energy crop composition.
However, this combination of scenarios i.e. “50/50 composition &
Increased yield” is rather ambitious, and may be difficult to
achieve. This is because in order to avoid increased competition for
high quality arable land for food production, large-scale bioenergy
deployment would have to rely on marginally productive
agricultural land (Wilson et al., 2014; Lovett et al., 2014). Thus,
achieving high yield increase could be very challenging without
extensive application of fertilisers and irrigation in some regions of
the UK. Additionally, the diversification of second-generation
Table 4
Percentage of UK land required by 2050 for bioenergy as a percentage of UK land area
pathways derived from the UK ForeseerTM analysis (Allwood et al., 2014; Konadu et al

Pathway 2010 BAU composition & BAU yield BAU composition & increa

Core MARKAL 0.4% 19% 10% 

Higher
Renewables

0.4% 7% 6% 

Higher CCS 0.4% 19% 10% 

Higher Nuclear 0.4% 41% 23% 
energy crop production is predicated on the emergence of a
competitive and profitable market for indigenous bioenergy
(Wilson et al., 2014).

Overall, the results show that future improvement in energy
crop yields and a diversification of energy crop composition would
significantly reduce the overall land requirement for delivering the
bioenergy component required in all the Carbon Plan pathways.
The actual projected land areas required under each of the
pathways for the scenarios are presented in SI Tables 3a–d.

4.2. Current and 2050 water abstraction for energy

The water demands of the UK energy system in 2010 are
presented in Fig. 4 as Sankey diagrams illustrating the different
sources, uses and final sinks of water use in the (a) extraction, and
(b) refinery and electricity generation sectors. This excludes water
used in hydropower and pumped storage electricity generation.
The output results show that �90% of all abstraction for the energy
industry is from tidal sources with �75% used for energy
transformation, mainly in electricity generation and crude oil
refining. Overall, �80% of all abstracted water is returned to surface
water systems, �6% is recycled and �14% is evaporated (con-
sumed). Also, all the accompanying discharged water of onshore oil
and gas extraction is assumed to be re-injected into exploration
wells.

Future water abstraction by the UK energy sector is mainly
associated with oil refining and electricity generation. This is as a
result of the projected decline in on-shore fossil fuel extraction in
the UK. The evolution of water abstraction and consumption levels
in this analysis is presented in the Foreseer UK online model
(Allwood et al., 2014) and in SI Fig. 4, SI Tables 8 (abstraction) and 9
(consumption).

Table 5shows projected water abstraction requirements for
electricity generation as analysed in this study. In 2010, abstraction
from tidal and fresh water sources is estimated at �5.6 � 109m3.
The results show that if the current spatial distribution of power
generation is maintained (i.e. PAU scenario), only the “Higher
Nuclear, less energy efficiency” or “Higher Renewables, more
energy efficiency” pathways would avoid significant impact on
fresh and tidal water systems. However, changing the spatial
distribution has mixed impacts: water abstraction generally
decreases under the “Higher Nuclear, less energy efficiency” and
“Higher Renewables, more energy efficiency” pathways; however,
the “Higher Inland” scenario leads to increased abstraction for all
pathways (SI Fig. 4c), far above the maximum projected abstraction
for the other scenarios.

4.3. Environmental “no-regrets” assessment

The output of the environmental “no-regrets” assessment is
presented as a color-coded matrix of impacts in Fig. 5. The impacts
on land and water are assessed against limits to sustainable land
appropriation and water use. The “Higher Renewables, more
energy efficiency” pathway presents the only environmentally
“no-regrets” option, as long as high deployment of inland power
 under different crop composition and yield scenarios for each of the carbon plan
., (2015)), compared to 2010 levels.

sed yield 50/50 Composition & BAU yield 50/50 Composition & increased yield

15% 8%
5% 5%

15% 8%
32% 18%



Fig. 4. Illustration of fresh and tidal water use in the UK energy industry in 2010: (a) for extraction of primary fossil resources; (b) for refining and electricity generation. These
are exclusive of hydropower generation. The water abstraction and consumption factors by technology for electricity generation are based on: Macknick et al. (2011, 2012);
Electric Power Research Institute Inc. EPRI (2002); National Energy Technology Laboratory NETL (2009); Tzimas (2011); and Williams and Simmons (2013) (Appendix C—SI
Table 6).
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stations is avoided. This pathway leads to low resource use in all
the land appropriation and water abstraction scenarios. The “Core
MARKAL” pathway exhibits a low to high impact on both water and
land. A high impact is only avoided provided there is a high yield
increase with crop composition diversification, and inland power
generation is limited. The “Higher CCS, more bioenergy” pathway
has higher impact unless high yield improvement is combined
with diversification of energy cropping, and a preference for
coastal power stations. The “Higher Nuclear, less energy efficiency”
pathway never meets the “no-regrets” criteria although it
generally has the least impact on fresh and tidal water resources
(provided inland power station siting is limited).

5. Discussion and conclusions

The results of this study show that the environmental impacts
of the low-carbon pathways of the Carbon Plan are not always
“no-regrets”. Even though most of the pathways avoid significant



Fig. 5. Environmental no-regrets matrix. The categories of impacts on land and water presented here are independently assessed based on different metrics of identifiable
limits of sustainable land appropriation and water use.

Table 5
Comparison between 2010 and projected total water (tidal and freshwater)
abstraction requirements for electricity generation for each of the Carbon Plan
pathways in 2050 under the different scenarios of power station infrastructure
location (units in 109m3).

Pathway 2010 PAU High Coastal Int CCS High Inland

Core MARKAL 5.6 6.8 2.9 2.8 31
Higher CCS 5.6 7.9 4.6 5.7 19
Higher Renewables 5.6 3.1 2.1 2.4 15
Higher Nuclear 5.6 0.9 0.9 0.9 77

D.D. Konadu et al. / Global Environmental Change 35 (2015) 379–390 387
potential impacts on fresh and tidal water resources, the impacts
on land use can be significant. An example is the “Higher Nuclear,
less energy efficiency” pathway, which has a high impact on land
use, because bioenergy plays a major role in substituting fossil
fuels in transport and industry. Compared to previous studies
including HM Government (2010), and Byers et al. (2014),
Schoonbaert (2012), EA (2010), the land and water requirements
for the Carbon Plan pathways estimated in this study are shown to
be in the same order of magnitude. However, there are significant
differences in the absolute values due to differences in
assumptions regarding water cooling technologies, cooling water
sources, future location of power plants and crop composition
and yields.

The study shows that energy system policies should be
evaluated across all environmental resource systems. As well as
environmental stress, the impact on other environmental resour-
ces could hinder attainment of GHG emission reduction targets.
For example, restrictions placed on the water system could lead to
deployment of thermal generation technologies with low water
intensity, such as air-cooling. This can affect the efficiency of
generation, and require more primary fuel consumption and thus
increase emissions. Moreover, restrictions in water abstraction for
electricity generation could delay the construction and deploy-
ment of some low-carbon, water-intensive electricity generation
infrastructure. This could result in a prolonged life span of
unabated fossil generation, and thus delay the timelines of GHG
emissions reduction targets.

The results are subject to uncertainties, mainly related to the
underlying assumptions. The availability of land for indigenous
energy crop production has been shown to be a strong determining
factor for bioenergy deployment which suggests that, unless crop
yields significantly improve, land demand for bioenergy produc-
tion could compete with food production—in particular livestock
production.

The results also depend on the assumption that dietary
characteristics and food import levels will be similar in the future.
Any deviation from “Business-As-Usual” for the projections of diet
and food imports might result in changed land use competition.
For example, increases in future food imports could release more
high quality land for bioenergy production although this is likely to
increase GHG emissions associated with transport. On the
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contrary, a reduction in food imports would result in increased
indigenous food production, which could result in greater land
competition associated with bioenergy. Moreover, changes in diet
have implications for land use (Kastner et al., 2012; Haberl et al.,
2011; Gerbens-Leenes and Nonhebel, 2002; Bajželj et al., 2014), but
the degree of dietary change and its implications for UK land use
change remains uncertain.

The study also assumes that second generation perennial crops
(Miscanthus and SRC) will dominate future bioenergy supply.
However, with current conversion efficiencies of energy crops to
liquid fuels (Tyner and Taheripour, 2014), it could be more efficient
to use bioenergy for heat and electricity generation, than for liquid
fuel use in transport. This is shown in the contrasting land use of
the “Higher CCS, more bioenergy” and the “Higher Nuclear, less
energy efficiency” pathways (Table 5), which are, respectively,
dominated by high levels of bioenergy crops for heat and electricity
and liquid fuels for transport. Future advances in second-
generation energy crop conversion to liquid fuels could therefore
reduce competition for land-use. However, other changes such as
increases in anaerobic digestion systems that use first generation
energy crops, could further increase competition for agricultural
land.

The impact of the energy system on fresh and tidal water use is
limited, unless there is an increase in the number of inland power
stations. However, extreme weather conditions witnessed along
parts of the UK coastline in the last decade suggest that future
power station siting decisions must consider tidal surges and
flooding as well as sea level rise. Additionally, future siting of
power stations on the coast should take into account the potential
adverse effect on marine ecosystems. This is especially critical for
scenarios with high nuclear capacity, such as in the case of the
“Higher Nuclear, less energy efficiency” pathway, which projects
approximately a seven-fold increase in nuclear capacity (Fig. 3),
since the current eligible sites are located on the coast.

The study also shows that locating new generation infrastruc-
ture further inland (high inland water scenario), possibly in
tidal reaches, would have a high impact on fresh and tidal
water resources, particularly if nuclear and CCS technologies are
used.

The study has mainly focussed on water abstraction, but not all
water withdrawn by the energy industry is consumed at the point
of use. Most water withdrawn for electricity generation is
returned to source, but at a different quality (usually at a higher
temperature). The amount of water consumed (evaporated)
depends on the type of cooling technology and the primary fuel
used (Fig. 4). Additionally, the Future Flows and Groundwater
Levels dataset developed for Great Britain by Prudhomme et al.
(2012) based on UKCP09 projections (Murphy et al., 2009)
suggests increased hydrological variability, increased summer-
time air temperature and decreased summer rainfall by 2050.
This is likely to exacerbate the potential pressure from the
energy sector on water resources (and vice versa). For example,
increased air temperatures reduce the thermal efficiency
and cooling of closed-loop, hybrid and air-cooled power genera-
tion systems (Byers et al., 2014). Moreover, increased air
temperatures would inevitably increase the temperature of
surface water (van Vliet et al., 2012), which would further reduce
the cooling efficiency of power generation systems, and
potentially lead to increased GHG emissions. In extreme cases,
and in particular for air-cooled and once-through cooling, this
could even result in power-station shut down, as has occurred in
several recent cases in France, Germany and Spain (Förster and
Lilliestam, 2010).

This study has not considered reciprocal relationships
between water and the energy systems (that is, estimation of
the energy requirements of the water system, in pumping water
transport, and in water treatment); or between the land and
energy systems (e.g. energy to produce fertilisers when land use
is changed from grassland to energy crops), since these
contributions are typically small in the UK. However, potential
future increases in water demand from increased population and
reduced river flow levels, could also lead to significant changes in
the water industry, including trans-regional bulk water transfers
from the North to the drier and more populated South-East/East,
and deployment of more desalination plants. These changes are
energy intensive and could therefore result in additional
environmental impacts from the energy system, as well as
increased competition for water services between industries.
Other potential wider environmental consequences of future
energy systems trajectories that have not been considered in this
study include impacts on water, land and air quality, eco-toxicity
and biodiversity. These impacts have been analysed by Stamford
and Azapagic (2012, 2014) for other energy system scenarios
using life cycle analysis (LCA). The authors concluded that future
changes in the UK energy system could pose significant
environmental impacts in this regard.

In conclusion, this study shows that analysis of changes in the
energy system to meet GHG emissions targets should consider
the wider impacts of energy supply on land and water system.
Different low-carbon energy pathways have significantly differ-
ent impacts on environmental systems. Failing to consider these
inputs could lead to a setback in achieving GHG emission
reductions goals, because of additional land use change and
increased competition for resources between the different land
and water services. It could also lead to “lock-in” of long term
energy infrastructures which may not be able to cope with future
changes in the land and water systems. For example, energy
system pathways with high proportions of large-scale thermal
electricity and heat generation, CCS technologies, and allocation
of bioenergy resources (if indigenous) to biofuels for transport
have been shown in this study to have the highest impacts on land
and water systems. Low-carbon pathways, with high proportions
of renewable primary electricity in combination with ambitious
targets for energy demand reduction across all sectors, have been
shown to have the lowest impacts on water and land resources in
the UK.

Whist the analyses in this study have primarily focused on the
UK, the approach used is applicable to other countries—both
developed and developing. In countries where energy demand is
expected to increase significantly along with increased demand
for land and water resources for other services, for example China
and Southeast Asia regions (Qin et al., 2015; Rasul, 2014),
integrated analysis of energy, land and water resources is critical.
This would prevent the development of conflicting energy and
resource use policies, and ensure the protection of biodiversity
and maintenance of ecosystem services. Also given the need for
global GHG emissions reduction, with several countries commit-
ting to ambitious reduction targets by 2050, low carbon
technologies including bioenergy, nuclear and CCS have been
projected to form a significant part of the future mix (IEA, 2014).
As has been shown in this study, these technologies could be land
and water intensive. In countries with other services competing
for and policies limiting resource use, this change in the energy
system could constrain the deployment rate and overall capacity
of these technologies, and lead to high impact on the wider
environmental system. Thus, an integrated analysis, such as the
approach presented in this study and the ForeseerTM tool
(Allwood et al., 2014), would highlight the potential conflicts
and trade-offs in resource allocation. This would help decision
makers to narrow down options that meet different development
objectives in a robust and sustainable manner while minimizing
the impacts across the land and water systems.
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