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A B S T R A C T

Policy makers are increasingly focused on strategies to decentralize the electricity grid. We analyze the business
model for one mode of decentralization—microgrids—and quantify the economics for self-supply of electricity
and thermal energy and explicitly resolve technological as well as policy variables. We offer a tool, based on the
Distributed Energy Resources Customer Adoption Model (DER-CAM) modeling framework, that determines the
cost-minimal capacity and operation of distributed energy resources in a microgrid, and apply it in southern
California to three “iconic” microgrid types which represent typical commercial adopters: a large commercial
building, critical infrastructure, and campus. We find that optimal investment leads to some deployment of
renewables but that natural gas technologies underpin the most robust business cases—due in part to relatively
cheap gas and high electricity rates. This finding contrasts sharply with most policy advocacy, which has focused
on the potentials for decentralization of the grid to encourage deployment of renewables. Decentralization could
radically reduce customer energy costs, but without the right policy framework it could create large numbers of
small decentralized sources of gas-based carbon emissions that will be difficult to control if policy makers want
to achieve deep cuts in greenhouse gas emissions.

1. Introduction

The electric power grid may be in the midst of a transformation.
Following decades of deregulatory efforts (Wilson, 2002), it may now
be heading toward a more decentralized system of supply and response.
We focus on grid-connected microgrids, which are widely thought to be
one of the most attractive options for decentralized power networks.
Indeed, forecasted growth is substantial. When compared with 2014
levels of investment, all major segments of the microgrid market are
expected to grow by 2020, for example small microgrids at commercial
buildings (94%), medium sized microgrids such as those in commu-
nities (199%) or in public institutions (228%) that have special
requirements for reliability, and large microgrids at military installa-
tions (142%) and universities (115%). All told, one credible study
forecasts the total US microgrid capacity to reach 2854 MW in 2020
(142% percent growth over the 2014 installed capacity of 1181 MW)

(Saadeh, 2015).
Three factors are primarily driving this shift from the traditional

centralized grid structure to one with perhaps a larger role for
microgrids. Through technological innovation, the cost of solar photo-
voltaics (PV) (Kann et al., 2016) and electric storage (Nykvist and
Nilsson, 2015) have fallen precipitously. A second factor is rising rates
for grid-service electricity—for decades US retail rates have risen at
near the general rate of inflation, typically at 2–3% annually (Short-
Term Energy Outlook (STEO), 2016). Third, and perhaps most
decisively, are concerted policy efforts to reduce global greenhouse
gas emissions while also promoting decentralization of the grid through
more autonomous production from distributed energy resources
(DERs). These policy interventions have taken many forms, such as
renewable energy mandates (some designed to favor distributed
renewables), deployment quotas for distributed generation (in
California nearly 2000 MW of distributed solar through the California
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Solar Initiative program, 4000 MW of combined heat and power (CHP)
per AB-32, and 1325 MW of storage through AB-2514), and an array of
subsidy schemes such as California's Self-Generation Incentive
Program (SGIP). In addition, some jurisdictions have adopted whole
visions for a more decentralized and reliable electric power system—
notably New York's Reforming the Energy Vision (REV).

While there is support for microgrid deployment in some jurisdic-
tions, in many settings the situation is quite different. Large inter-
connection fees, lengthy wait times, and outright bans on self-gener-
ated networks prevail in many places. Where the policy environment is
attractive, the logic for support points to the many potential public
benefits microgrids can provide, such as improved power quality
through voltage and frequency support, improved macro grid relia-
bility, deferred costs for grid capacity expansions, improved blackstart
capability after macro grid failure, and possibly lower emissions from
the energy system overall. Whether those public benefits are realized,
however, will hinge on whether potential investors see private benefits
from building microgrids—what we call the “business model” or
“business case” through which real investors can save money by
shifting from standard grid service to microgrids. Within industry
and policy circles there is intense discussion about business models but
relatively little systematic quantification (Reitenbach, 2016). We aim to
show ways to add quantitative methods to that important commercial
and policy debate.

In the real world, business models for microgrids depend on many
factors, including the potential for energy cost savings, improved
reliability, and perhaps other factors such as the amenity value of
self-supply. Here we focus on economic costs and benefits of self-
supply as they lie at the core of any commercial proposition, and point
to subsequent work that can be done to add reliability to the analysis.
We model the business case for local energy provision—which we
define as the case in which a utility customer adopts a microgrid to self-
generate (partially or fully) electricity and possibly thermal energy (i.e.,
heating and cooling) loads. This business case, in our analysis, stems
solely from the ability to supply these loads with the microgrid at a total
cost lower than standard utility service. We adopt the definition of the
US Department of Energy (DOE), which defines a microgrid as “a
group of interconnected loads and distributed energy resources within
clearly defined electrical boundaries that acts as a single controllable
entity with respect to the grid and that connects and disconnects from
such grid to enable it to operate in both grid-connected or’island’
mode.”

The present work makes two new contributions to the modeling
literature. First, we build internally consistent load data sets for three
“iconic” types of microgrids based on real world electric and thermal
loads—large systems sized for campuses or military bases; medium-
sized systems for critical assets such as hospitals; and smaller systems
for commercial buildings such as box stores, hotels, and office
buildings. We build these three iconic microgrid types to align with
forecasted market growth per (Saadeh, 2015) and suggest that a
consistent, reality-based set of iconic microgrids can help introduce
some consistency and comparability in published academic work in this
field, as well as promote more systematic microgrid analysis.

Second, we calibrate these systems using real market and policy
conditions in southern California—one of the most promising locations
for microgrids—and perform several types of analysis to examine how
the interplay between energy prices, technology and policy affect
investment decision-making for specific technology types in micro-
grids—what we call the “investment case” underpinning microgrid
adoption. Through sensitivity analysis we identify four variables—the
price of natural gas, cost of emitting carbon dioxide (CO2), the cost of
electricity and demand in the electric tariff, and the cost of energy
storage—that are most important for the future of microgrid deploy-
ment, and quantify their impacts on investment and business cases.
Analyses such as these are crucial, as these systems may face highly
volatile electricity, gas, and technology prices. Other work on DERs has

addressed this type of uncertainty directly; for example, (Karl Magnus
Maribu, 2008) and (Maurovich-Horvat et al., 2016) explore electricity
and gas prices while (Rocha et al., 2016) looks at energy and
technology costs. While we have configured our analysis for conditions
in southern California, we publish our parameters and assumptions
(see the Supplementary information to this work) to allow ready
modification for other jurisdictions. In addition to our focus on the
business case for investment, we give attention to important policy-
relevant outcomes from that investment, such as emissions of CO2

from small gas generators that may prove very difficult to control as
policy makers aim to achieve deep decarbonization of the whole energy
system.

The remainder of the paper is as follows. In Section 2 we present
our model formulation and data sets for the three iconic microgrids; in
Section 3 we report results for baseline and sensitivity analyses; and
Section 4 addresses policy implications and concludes.

2. Methodology: building a tool for assessing business
models

We provide an overview of the DER-CAM model (Distributed
Energy Resources Customer Adoption Model) in Section 2.1 and
present the formulation for our configured version of the model in
Section 2.2, with explicit modifications noted in Section 2.2.2. The
basis for our formulation is the source code for DER-CAM version 4-
4.1.1, which we term the standard model formulation. We then
present end-use load profiles for three iconic microgrids in Section
2.3.1 and policy-relevant model calibrations for present-day market
settings in Section 2.3.2.

2.1. The DER-CAM optimization model

DER-CAM is an investment support tool for DER and microgrid
systems. It computes DER investment and operation to supply load
over the first year of operation, and with operating and maintenance
(O &M) costs and standard amortization of capital costs allows for
analysis of the net present cost and benefit of microgrid configurations.
DER-CAM can be configured to minimize either an economic (total
cost) or environmental (CO2 emissions) objective, or a weighted
combination of these two (i.e. Pareto optimization). For our purposes,
the adaptability along with extensive published record1 and open-
source2 nature of the source code are attractive features of the DER-
CAM platform for academic research.

DER-CAM selects, sizes, and schedules DERs via several decision
variables. Selection is binary (technologies are either selected or not),
sizing decisions are made by individual technology and may be discrete
(available in select sizes only) or continuous (available in all sizes)
depending on the technology, and scheduling is determined for
dispatchable DERs and for purchases of electricity and natural gas
from the utility. The model outputs DER capacities and operating
schedules for the first year of adoption, capital and operating costs,
energy flows from source to end-use, fuel consumption, and CO2

1 Development of DER-CAM by the Lawrence Berkeley National Laboratory (LBNL) is
well documented. Publications include initial development in (Marnay et al., 2000;
Siddiqui et al., 2003) as well as later enhancements, including the addition of a carbon
tax (Siddiqui et al., 2005), heat recovery (Siddiqui et al., 2007), electric and thermal
storage (Marnay et al., 2008), power quality and reliability considerations (Stadler et al.,
2009a), CO2 emission minimization (Stadler et al., 2009b), zero-net-energy building
constraints (Stadler et al., 2011), electric vehicles (Stadler et al., 2013), and building
retrofits (Stadler et al., 2014). Other groups have used DER-CAM to systematically
analyze model parameters that affect microgrid economics, for example tariff structures
(Firestone et al., 2006), energy storage (Stadler et al., 2013), and climate zones (Maribu
et al., 2007). More recently, it has been adapted to study electric vehicle integration in
microgrids (Momber et al., 2010), ancillary service provision using electric storage in
microgrids (Beer et al., 2012), and reactive power provision (von Appen et al., 2011).

2 The source code is in certain cases made available by LBNL for non-commercial
collaboration after signing a collaboration license agreement.

R. Hanna et al. Energy Policy 103 (2017) 47–61

48



emissions from purchased and self-generated electric and thermal
energy. See (Siddiqui et al., 2007) for a more detailed discussion of
inputs and outputs.

For the purpose of policy oriented analysis later in this work, we
classify four sets of DER technologies in DER-CAM:

1. Fossil fuel generators. Micro turbines, gas turbines, reciprocating
engines, fuel cells—all units have discrete capacity, may or may not
have heat recovery, and combust natural gas in our models.

2. Renewable generators. Solar PV.
3. Thermal energy generators. Natural gas direct-fired chillers, ab-

sorption chillers, electric central chiller, solar thermal heating, heat
pumps—all units supply heating or cooling loads directly.

4. Flexible technologies. Electric energy storage, heat storage, cold
storage, EVs, demand response, schedulable load (i.e., load that
must be met at some time during each 24-h period).

Databases in DER-CAM are highly detailed and thus can be
unwieldy to configure, but they are particularly useful in studies such
as reported here because they can be adjusted to many real world
conditions that are often changing quickly.

Though DER-CAM does have a simplistic demand response mod-
ule, we do not consider it. It is unclear at present how to connect the
real-world demand response characteristics of buildings to the generic
building data modeled in this work. While including demand response
may shift baseline results, we focus first on the core economic logic for
microgrids considering generation and storage assets, before looking at
demand-side flexibilities (which our team is planning for future work).

2.2. Problem formulation

Mathematically, DER-CAM is formulated as a mixed integer linear
program and is coded in GAMS. (Siddiqui et al., 2005) and (Stadler
et al., 2009a) provide a complete mathematical formulation. Though
here we provide key highlights—decision variables, objectives, con-
straints, inputs and outputs, and model databases—to provide context
for our modeling and analysis, and present only those elements (loads,
DERs, costs, energy flows, emissions) present in our models, we give
sufficient information to formulate the model and run our analyses.

Following the topology in Fig. 1, the microgrid is interconnected to
the utility distribution system, which we call the “macro grid”. In line

with common regulatory rules for electric utilities, the DERs that
comprise the microgrid are installed behind a single billing meter at the
point of common coupling, lie within the boundaries of a single
customer, and serve only the load of that customer.3

2.2.1. Standard model formulation and assumptions
The modeling approach is described by Eqs. (1)–(4), with nomen-

clature summarized in Table 1, which we adapt from (Ghatikar et al.,
2016) and (Stadler et al., 2008). The annual modeling period is defined
across three time periods: month mεM, day-type tεT and hour hεH,
where a chosen number Nm,t of two day-types (week-days and week-
end-days) define each month. Load, supply, costs, etc. are defined or
determined over these time periods. Tariff periods pεP and demand
types dεD are further defined across M, T, and H.

We configure DER-CAM to select, size, and schedule DERs to
minimize the year-one total cost of microgrid adoption. Selection and
sizing is made for three technology sets—gas generators iεI, direct-fired
gas chillers kεK, and DERs qεQ, in addition to switchgear.4 DERs in I
and K are discrete (i.e. they have a set nameplate capacity that must be
purchased), whereas those in Q are continuous (i.e. any capacity may
be purchased). To enable islanding, switchgear is always selected (with
Binarys and PurchCaps). Scheduling is determined by month m and
hour h for electricity provision πe,m,t,h, cooling provision ξc,m,t,h, and
heating provision χg,m,t,h, where eεE, cεC, and gεG are the sources of
electricity, cooling, and heating provision, respectively.

DER-CAM computes the year-one total cost c, Eq. (1). The total cost
includes the full year-one operating cost, which includes electricity and
natural gas purchases, DER fuel and maintenance, and the cost of
emissions, as well as the year-one annualized capital cost for invest-
ment. Energy flows are subject to common constraints such as supply-
demand balance in Eqs. (2)–(4), which we show here because they
depend on technology selection in our models, as well as energy storage
balance, energy conversion efficiencies, and heat recovery, which we do
not show because they are unmodified from the standard model
formulation.

c c c c cmin ∶= + + +tariff fuel der carbon (1)

subject to

∑L π m t h′ ′ + ′ ′ = π ∀ , ,el m t d ec m t d
e E

e m t d, , , , , ,
∈

, , ,
(2)

∑L m t h′ ′ = ξ ∀ , ,cl m t d
c C

c m t d, , ,
∈

, , ,
(3)

∑L L χ χ m t h′ ′ + ′ ′ +
′ ′

= ∀ , ,sh m t d wh m t d ac m t h
g G

g m t d, , , , , , , , ,
∈

, , ,
(4)

We decompose c into four components: tariff costs ctariff in Eq. (5)
include a volumetric, demand, service fee, and standby component;
natural gas fuel costs cfuel in Eq. (6) include a volumetric and service
fee component; DER costs cder in Eq. (7) include capital costs as well
as fixed and variable operating and maintenance costs; and carbon
costs ccarbon in Eq. (8) are taxes on CO2 emissions from on-site
natural gas combustion.

Fig. 1. The microgrid network topology shows sources of energy demand and supply, as
well as points of energy conversion, in the model. Energy balances for electricity, cooling,
and heating are given by Eqs. (2)–(4). The gas load is supplied trivially so the gas balance
equation is omitted.

3 While some regulators envision futures in which unrelated customers are inter-
connected, we focus here on single customers because regulatory rules that constrain
adoption to this framework are common to many jurisdictions (New York State Energy
Research and Development Authority, 2014), and in some settings the constraints on
microgrids are even more severe—for example, through public franchise laws that make
it illegal for a developer to lay wires that cross public roadways.

4 Note that the technology sets I, K, and Q do not align with the four technology sets in
Section 2.1. The distinction between I, K, and Q is a mathematical one—discrete and
continuous variables are fundamentally different in the optimization formulation—while
the distinction made previously is done to facilitate discussion of policy implications.

R. Hanna et al. Energy Policy 103 (2017) 47–61

49



⎡
⎣
⎢⎢

⎤
⎦
⎥⎥

∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑

c π N VChg

DChg π ElecFee

PurchNum R PurchCap SChg

∶= ′ ′ ⋅ ⋅

+ ⋅ max { ′ ′ } +

+ ⋅ +
′ ′

⋅

tariff
m M p P t T h H

ds m t h m t m p

m M d D
m d t T h d

ds m t h
m M

m M
i I

i i pv

ϵ ϵ ϵ ϵ
, , , , ,

ϵ ϵ
, ϵ , ϵ

, , ,
ϵ

ϵ
ϵ (5)

∑ ∑ ∑ ∑c NGFee γ N NGPrice∶= + ⋅ ⋅fuel
m M m M t T h H

m t h m t m
ϵ ϵ ϵ ∈

, , ,
(6)

⎛
⎝⎜

⎞
⎠⎟

∑

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑ ∑

∑

∑ ∑

c Binary Cfcap Cvcap PurchCap A PurchNum R Cvcap A

PurchNum R
Cfom

π N Cvom

PurchNum R Cvcap A PurchNum R
Cfom

ξ N Cvom

Binary Cfcap PurchCap Cvcap A

PurchCap Cfom

∶= ⋅( + ⋅ )⋅ + ⋅ ⋅ ⋅

+ ⋅ ⋅
12

+ ⋅ ⋅

+ ⋅ ⋅ ⋅ + ⋅ ⋅
12

+ ⋅ ⋅

+ ⋅ + ⋅ ⋅

+ ⋅

der s s s s s
i I

i i i i

i I m M
i i

i

i I m M t T h H
i m t h m t i

k K
k k k k

k K m M
k k

k

k K m M t T h H
k m t h m t k

q Q
q q q q q

q Q m M
q q

ϵ

ϵ ϵ ϵ ϵ ϵ ϵ
, , , ,

ϵ ϵ ϵ

ϵ ϵ ϵ ϵ
, , , ,

ϵ

ϵ ϵ (7)

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟∑ ∑ ∑ ∑ ∑c γ γ N EF CTax:= + ⋅ ⋅ ⋅carbon

m M t T h H i I
i m t h

k K
k m t h m t

ϵ ϵ ∈ ∈
, , ,

∈
, , , ,

(8)

Two constraints in particular affect DER investment in our work.
The first limits the area available for solar PV installations, which we
term the solar PV space constraint. This constraint is often the
factor that caps investment in solar PV. We include it nevertheless,
and for comparison quantify the effect of removing it in Section 3.
This is an important variable to consider for urban microgrids in
compact areas, such as office buildings and urban campuses and
where other siting constraints (e.g., aesthetic considerations, sha-
dows, or building codes) limit potential utilization of low power
density renewables options.

The second, which we term the resource adequacy constraint,
concerns the supply-demand balance of electric energy during
islanded operation. This constraint requires that the model invest
in sufficient generator capacity to operate in islanded mode indefi-
nitely (assuming unaffected fuel supply), where “sufficient capacity”
supplies at a minimum the maximum critical electric load, assuming
one battery charge/discharge cycle per day and an average annual
solar irradiance received each day. This constraint does not guar-
antee perfect adequacy, nor does it guarantee the ability to island
during all hours of the day or days of the year. Rather, it approx-
imates the investment required to island generally—an outcome
designed to approximate the estimated microgrid configuration with
reasonable DER capacities but with full appreciation that further
analysis and modeling refinement would be needed when designing
any particular system. Though we require resource adequacy, we do
not monetize improvement to reliability—such as from reduced

Table 1
Nomenclature.

Sets and indices

m Month, M = {1,2,…,12}
t Day-type, T = {week, weekend}
h Hour, H = {1,2,…,24}
p Electric tariff period, P = {on-peak, mid-peak, off-

peak}
d Electric tariff demand type, D = {non-coincident,

on-peak, mid-peak, off-peak}
u End-use load, U = {electricity 'el', cooling 'cl', space

heating 'sh', water heating 'wh', natural gas 'ng'}
s Index for switchgear
i Discrete gas generator, I = {ICE, MT, ICE-HX,

MT-HX}a

k Direct-fired gas chiller, K = {DFChiller-HX}
q Continuous DER, Q = {solar PV ‘pv’, electric

storage ‘es’, absorption chiller ‘ac’, cold storage
‘cs’}b

v All microgrid technologies, V = {I, K, Q,
switchgear}

e Source of electricity provision, E = {I, ‘pv’, 'es',
distribution system 'ds'}

c Source of cooling provision, C = {K, absorption
chiller 'ac', electric chiller 'ec', cold storage 'cs'}

g Source of heating provision, G = {I, direct fuel 'di'}

Customer load
Nm,t Number of days of day-type t in month m
Lu,m,t,h Load profile for end-use load u, monthm, day-type

t and hour h, kW

Tariff parameters
ElecFee Fee for electric service, $/mo
VChgm,p Volumetric charge for monthm and tariff period p,

$/kWh
DChgm,d Demand charge for month m and demand type d,

$/kW
SChg DER standby charge, $/kW/mo
NGFee Fee for natural gas service, $/mo
NGPricem Natural gas price in month m, $/kWh

Technology data
Rv Nameplate capacity of technology v, kW
Cfcapv Fixed capital cost of technology v, $
Cvcapv Variable capital cost for technology v, $/kW or

$/kWh
Cfomv Fixed O&M cost for technology v, $/kW/yr for I,

K and $/kW/mo or $/kWh/mo for Q
Cvomv Variable O &M cost for technology v, $/kWh
Av Annuity factor for technology vc

CO2 parameters
EF Natural gas CO2 emission factor, tCO2/kWh
CTax Tax on CO2 emissions, $/tCO2

Selection and sizing
decision variables

PurchNumi, PurchNumk Number of purchased gas generators i, direct-fired
chillers k

Binaryq, Binarys Binary decision variable to invest in DER q,
switchgear

PurchCapq, PurchCaps Capacity of installed DER q, switchgear, kW

Scheduling decision
variablesd

πe,m,t,h Electricity provision from source e, kW
ξc,m,t,h Cooling provision from source c, kW
χg,m,t,h Heating provision from source g, kW

Secondary variablese

πe,m,t,h Electricity supplied by solar PV, kW
π’ec’,m,t,h Electricity input to the central electric chiller, kW
χ’ac’,m,t,h Heat consumed by the absorption chiller, kW
γm,t,h Total natural gas purchased, kW
γi,m,t,h, γk,m,t,h Natural gas purchased for gas generator i, direct-

fired chiller k, kW

a Notation: ICE – internal combustion engine, MT – microturbine, -HX – with heat
recovery.

b Q does not include the electric central chiller (which consumes electricity to supply
the cooling load) because it is installed in every model run and hence does not affect
comparison of results.

c Equations for annuity factors are given in the Supplementary information.
d Subscript “m,t,h” denotes in month m, day-type t and hour h.
e Secondary variables are derived from decision variables and not decision variables

themselves. For example, electricity supplied by solar PV π’pv’,m,t,h is a function of
sizing PurchCap’pv’ and solar irradiance. The same principle applies for the other
secondary variables.
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interruption costs.5

Our model runs are built on several notable assumptions. We
explicitly neglect other potential revenue streams by considering only
the economic benefit derived from local energy provision (i.e., avoided
utility costs). We further neglect potentially important demand-side
flexibilities, such as demand response and load scheduling, which could
improve microgrid economics substantially. These limitations add
conservatism to our results that report the viability of business cases.

There are, conversely, two model features that likely overestimate
the benefit of microgrid adoption. One, the model is deterministic. All
parameters (e.g., those that are in reality stochastic such as load, solar
irradiance, and DER availability) are prescribed and known. In effect
this implies that operating forecasts are perfectly accurate—an advan-
tage that likely lessens the need for and value of electric storage.
Operation with real forecasts—which are imperfect—would likely
require more investment in storage capacity to match results with
perfect forecasts. Alternatively the same storage capacity would likely
achieve less savings through reduction in demand charges—charges
paid by most utility customers for their maximum power draw, which
we explain in Section 2.3.2.

Two, irradiance profiles, as is typical in planning models, are based
on clear weather days—that is, they do not include diminished and/or
variable solar PV output. The model captures seasonal variability
across months but not day-to-day or hourly variability due to clouds.
The model has a 1 h timestep and thus cannot capture sub-hourly
variability either, which can be important as demand charges are based
on 15 min intervals and some are calling for finer-resolution market-
based tariffs. As with the deterministic assumption, this lack of
variability likely overestimates demand charge savings or decreases
the need for storage (depending on one's perspective), and hence the
value of storage to the microgrid as well as investment cost.

We make these assumptions, which are standard in such modeling,
highly transparent to help aid interpretation of results and to identify
areas where future work can refine such models.

2.2.2. Modifications to the standard model formulation
We modify the standard model formulation in three ways to make it

particularly suited for evaluating business cases. One, we remove the
carbon cost CTax associated with electricity purchases π’ds’,m,t,h—a
$/tCO2 (metric ton carbon dioxide) measure based on the marketplace
generation CO2 emission factor. Instead, we imbed CTax in volumetric
rates VChgm,p—noting that, ceteris paribus, wholesale electricity rates
increase when the carbon cost increases. We also remove the carbon
cost associated with natural gas purchases γm,t,h and instead tax only
the CO2 emitted by gas-fired DERs (the sum of γi,m,t,h and γk,m,t,h).

Second, to enable a more robust policy analysis, we remove
financial parameters that cap the payback period for capital costs—as
might exist, for example, for those with difficulty accessing capital—
which can restrict investment in capital intensive microgrids.

Third, we neglect all revenue streams beyond those derived from
local energy provision. Other revenue could come from participation in
electricity markets, utility service agreements, improving reliability via
islanding (i.e., reducing interruption costs), and incentives (investment
incentives such as tax credits, production credits such as net energy
metering and feed-in tariffs, and those with elements of both like the
California SGIP). Incentives are applicable to select settings and
technologies; we neglect them to build a more widely applicable
analysis. Lastly, we neglect several modules within the code (e.g., zero
net energy constraints, building retrofits for energy efficiency, and

electric vehicles) that are not directly relevant to evaluating the
business case and the particular policy aspects of interest. Our interest
in neglecting these other revenue streams is to focus on one core
business case for microgrids—beyond systems that might be built
under special conditions such as with large subsidy or other explicit
policy support.

2.2.3. Solution algorithm
The optimization is solved using the IBM ILOG CPLEX

Optimization Studio. We vary the relative optimality gap (the gap
between the best known solution and optimal solution) depending on
the iconic microgrid being modeled—from 0.01 (1%) for the large
commercial microgrid to 0.00001 (0.001%) for the campus microgrid.
Model runtimes vary depending on this criterion—baseline and green-
field sensitivity analyses (Sections 3.1, 3.4) require selection, sizing and
scheduling and range from 10 min to 10 h, while simple sensitivity
analyses (Section 3.3) require only scheduling and terminate in a few
minutes. All model runs used a 3.40 GHz Intel Core i7-2600 processor
and 16 GB of installed RAM.

2.3. Data

2.3.1. Load data for three iconic microgrids
We create data sets for three iconic microgrids—which we term the

large commercial, critical asset, and campus. We construct data sets to
align with forecasted market growth for the largest grid-tied microgrid
segments (see Section 1).6

In our view commercial systems supply a single building (or a small
cluster of perhaps 2-3), for example large box stores such as Walmart
and Costco or office buildings. Critical assets are those facilities with a
particularly great need for reliability (a large portion of the load is
critical and must be maintained during outages) and may include
hospital complexes, community centers, critical public infrastructure,
and data centers. Lastly, campus systems may include military bases,
university and government campuses, and corporate parks. These are
geographically large systems covering many buildings (residential,
commercial, and/or industrial) but within a single ownership boundary
that does not cross public rights of way.

We generate annual data sets at a 1-h timestep for five types of
load—electricity L’el’, cooling L’cl’, space heating L'sh’, water heating
L’wh’, and natural gas L’ng’—using the US DOE data set of commercial
reference buildings (Deru et al., 2011; Office of Energy Efficiency and
Renewable Energy, 2015)—a set of 1-h resolution annual profiles for 16
building types representative of approximately 70% of all US commer-
cial buildings, such as offices, schools, restaurants, hotels, and a
hospital, among others. Thermal loads (L’cl’, L'sh’, and L’wh’) are
available for 16 climate zones. We use climate zone 3B-coast for
southern California. Fig. 2 shows representative daily profiles for a
weekday along with annual energy consumption; full profiles are
reported in the Supplementary information. By combining the DOE
data into three types of building clusters—each served by a microgrid—
we hope to promote more systematic microgrid analysis.7

We model the three iconic microgrids as an office building, hospital
complex (a hospital with ancillary facilities) and university campus,
and map them to the DOE commercial reference buildings as follows:

5 We report in the Supplementary information baseline results with the resource
adequacy constraint removed. In short, for the critical asset, which has high demand for
reliability, including the constraint pushes investment toward gas generators and away
from solar PV and electric storage, but does not change the total cost. Results for the
large commercial and campus microgrids are essentially affected because they have less
demand for reliability.

6 (Saadeh, 2015) distinguishes between five microgrid segments: military, university,
city/community, public institution, and commercial. Each of those finer resolution
categories falls into 1-2 of the three main segments in the present study: in our view, our
“large commercial” category covers the commercial segment; “critical asset” includes
city/community and public institution segments; and “campus” includes the military and
university segments.

7 The Grid Integration Group at LBNL has used DER-CAM with the DOE reference
building data set, which has been available since 2011, to study varying tariff structures
and climate conditions (Mendes et al., 2014, 2013; DeForest et al., 2014). Systematic
studies such as these are valuable because they provide insight into adoption trends for
specific DERs across a range of important parameters.
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the large commercial as the medium office; the critical asset as the sum
of the hospital, quick-serve restaurant, and outpatient facility; and the
campus as the sum of the small office, medium office, two large offices,
three stand-alone retail centers, three supermarkets, four midrise
apartments, two primary schools, two secondary schools, one strip
mall, and one quick- and one full-serve restaurant.

Several features distinguish the three load profiles:

• Large commercial. Consists primarily of electric load, but also
includes variable demand for heating and cooling (i.e., it has a large
ratio of maximum to minimum thermal load), so CHP investments
are not optimal. This class consumes the least energy of the three.

• Critical asset. Distinct from the other microgrids, the heating and
cooling loads are relatively constant throughout the day. It has the
highest electric load factor (the ratio of average to maximum load),
which, with thermal loads, favors CHP investment. The peak critical
electric load is large relative to the base electric load, so higher
capital costs for generators are needed to reliably supply peak
critical load.

• Campus. Of the three it has the largest demand and volumetric
consumption, and in particular has large thermal demand.

2.3.2. Important parameters for policy analysis
We provide in Table 2 our parameterizations relevant to policy and

that most affect investment outcomes, and leave full detail on the
empirical calibration (i.e., the larger set of model parameterizations)
for the supplementary information.

The business case for local energy provision rests on avoiding utility
service costs. To quantify those costs we consider the costs of
interconnection to the San Diego Gas & Electric (SDG&E) distribu-
tion system. Applicable electric tariffs are from 2015 and include the
SDG&E commercial Schedule AL-TOU and Schedule S.8

Three other parameters (the discount rate, gas price, and carbon
cost), as we will show, are also of particular importance. We assume
that the cost of capital is 7%—based on the lower medium grade
corporate bond rate—and use the same rate for discounting calcula-
tions. The gas price varies by region and time of year, among other
factors. We use a single price of 8 $/mmbtu based on retail sales to
commercial customers in California (US Energy Information
Administration, 2015). We use the California Carbon Allowance futures
carbon price of 12 $/tCO2e (metric ton carbon dioxide equivalent),
which is essentially the floor price in the carbon market (“California
Carbon Dashboard,” 2015). To explore the potential for future low-
carbon microgrids based around solar PV and electric storage we use
current costs for non-residential rooftop PV systems (Kann et al., 2016)
and a projected cost estimate for electric storage that aligns with
estimates of current and projected costs (Bronski et al., 2015;
Christiansen and Murray, 2015; Nykvist and Nilsson, 2015). This
projected electric storage cost is the only calibration based outside of
the “present day.”

3. Results and discussion

3.1. Definitions and scenarios

We term the optimal selection and sizing of DERs the optimal
configuration and year-one operation of DERs the optimal dispatch.
Together they comprise the optimal system. We model two types of
customers for each iconic microgrid, as is typical with DER-CAM—(1) a
microgrid customer, who adopts a microgrid to supply load with some
combination of self-generated electric and thermal energy and/or
purchased electricity and natural gas; and (2) a macro grid customer,
who supplies the same set of loads by purchasing electricity and natural
gas services from the utility. We term the cost savings derived from
microgrid adoption (i.e., the difference in total cost between the two
customers) the economic benefit (which can be negative).

We perform three sets of analyses for each iconic microgrid and
customer type (Fig. 3). First is a baseline analysis (Section 3.2). Second
is a simple sensitivity analysis (Section 3.3), in which we hold constant
the optimal configuration from the baseline analysis while varying
individual parameters and then re-optimize the dispatch of generation
technologies. These analyses explore the robustness of business cases
for microgrids that might be “locked in” economically due to invest-
ment in a configuration of technologies. They also help to identify areas
where more in-depth (and computationally difficult) sensitivity analy-
sis would be needed. Third, for the four factors identified in the simple
sensitivity as most important we perform a greenfield sensitivity
analysis (Section 3.4), in which we vary individual parameters before
re-optimizing configuration as well as dispatch. This latter type of
sensitivity analysis is most useful for unbuilt microgrid systems that
might be in the planning phase.

3.2. Baseline analysis

In the baseline optimal configurations (Table 3) we distinguish
between investments in the four technology sets noted in Section 2.1—
conventional gas generators, renewables, thermal energy generators,
and flexible technologies. We further distinguish generators with
CHP—which supply both power and thermal energy within the micro-
grid—because they can greatly improve energy efficiency and thus can
prove pivotal to establishing the business case. Detailed investment by
individual unit and technology is provided in the Supplementary
information.

Operationally, the DERs that comprise the microgrids supply peak
and base electric load (Fig. 4), and hence target reduction in both
demand and volumetric charges—the largest costs to the macro grid
customer. The optimal configurations are sized to supply peak electric
load for three reasons: to facilitate islanding per the resource adequacy
constraint, to shave on-peak load (which has the highest demand
charges), and to supplant electricity and fuel purchases with less costly
self-generated electricity. Purchases do supply a small amount of base
load in some configurations and months.

The key difference across the optimal configurations for the three
iconic microgrids is not DER capacity relative to peak load, but rather
the combination of DER types (gas generators, gas generators with
CHP, solar PV, and electric storage) that comprise the configuration.
Those combinations we observe—and especially the variation in them
when compared across sensitivity in policy variables—has the biggest
implications for policy, as we will discuss in Sections 3.4 and 4.

While the details of each optimal system are complex, the broad
patterns are as follows:

• Large commercial. Gas generators supply base load and solar PV
supplies peak load. Electric storage complements solar PV by
supplying peak load when solar output is unavailable, as observed
during winter evenings. Cold storage (i.e. chilled water) is produced
during off-peak hours. The thermal demand is relatively small so the

8 Schedule AL-TOU imposes volumetric charges ($/kWh) and demand charges ($/kW)
that vary by season and tariff period—the former are based on energy consumption and
the latter on monthly maximum power draw. Schedule S codifies a standby charge, a
$/kW charge on the installed generator capacity that is designed to reflect the increased
load the microgrid might draw from the utility if microgrid generators were to fail. The
charge can be substantial and has been debated (Darrow and Hampson, 2013) but, as we
will show, is not a driving parameter of optimal configurations. In addition to these two,
another schedule, Schedule E-DEPART, codifies a departing load charge—a charge on the
portion of load no longer supplied by utility service (and instead supplied via self-
generation). Because it is very small (approximately 0.005–0.015$/kWh) relative to
other tariff charges, and moreover specific to the three investor-owned utilities in
California (Darrow and Hampson, 2013), we neglect it.
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model foregoes CHP.

• Critical asset. Gas generators supply base load, two-thirds of which
have CHP to meet the relatively large thermal load. An absorption
chiller further supplies cooling. Solar PV supplies peak load and
electric storage supplies an indistinguishable amount of shoulder
load (i.e., load between the on- and off-peak periods, 1600–1700
LST in winter).

• Campus. Gas generators supply the base load, 60% of which have
CHP to meet thermal demand. An absorption chiller further supplies
cooling and cold storage is produced during off-peak hours. Solar PV
supplies peak load and electric storage again complements when
solar output is small or unavailable.

Fig. 2. (top) Load profiles presented for a February weekday are representative of the load shape on weekdays throughout the year. (Weekend-days have a similar base load but do not
peak so significantly during the day.) (bottom) Annual energy consumption for all end-use loads shows the disparity in size between the three. Note variable y-axis scaling at top and
constant y-axis scaling at bottom.

Table 2
Model calibrations important for policy analysis—costs of electricity, gas, carbon, and
DERs.

Parameter Value Units

Tariff parameters
Volumetric charges $/kWh

Summer on-peak 0.12331
Summer mid-peak 0.11362
Summer off-peak 0.08287
Winter on-peak 0.11157
Winter mid-peak 0.09602
Winter off-peak 0.07460

Demand charges $/kW
Non-coincident 23.83
Summer on-peak 20.93
Winter on-peak 7.62

Standby charge 13.76 $/kW

Exogenous Parameters
Interest rate 7 %
Natural gas price 8 $/mmbtu
Carbon cost 12 $/tCO2

DER Parameters
Solar PV capital cost 2390 $/kWac
Electric storage capital cost 350 $/kWh

Fig. 3. We run two types of sensitivity analysis after the baseline analysis: simple and
greenfield sensitivities.

Table 3
Optimal microgrid configuration for the baseline model runs.

Large commercial Critical asset Campus

Gas generators
without CHP 150 kW 750 kW 4000 kW
with CHP – 1650 kW 6250 kW

Renewable generators
Solar PV 200 kW 1240 kW 3100 kW

Thermal energy generators
Direct-fired chiller with CHP – 200 kW 200 kW
Absorption chiller – 340 kW 1420 kW

Flexible technologies
Electric storage 230 kWh 20 kWh 1479 kWh
Cold storage 220 kWh – 3340 kWh
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The primary driver of these investment trends is the potential to utilize
natural gas to supply electricity and thermal loads at high efficiency and
low cost. The models largely supplant electricity purchases with self-
generated electricity, using gas generators to supply a huge fraction of
the base load. The model is driven to this result because gas prices are
low, the microgrid CO2 emission factor is comparable to that of the
wholesale marketplace, and California retail electricity rates are
relatively expensive. Further, the critical asset and campus integrate
electric and thermal loads via CHP, thereby increasing consumption
efficiencies and obviating much of the electricity and fuel purchases
otherwise needed for direct heating and cooling.

All configurations include solar PV—driven in part by the coincidence
of peak load and peak solar irradiance, as well as the assumption of clear
weather days. The critical asset and campus invest in a maximum capacity
of solar PV—that is, the solar PV space constraint caps investment.9 The

large commercial uses 33% of available space. Such large installations are
cost effective because of the large daily load peak and the coincidence of
peak load with peak solar.

The macro grid and microgrid customers are subject to competing
costs (Fig. 5) per Eqs. (1)–(8). The former pays only for utility electric
and gas service per applicable tariffs (“tariff costs” and “fuel costs”),
while the latter pays the same tariff charges in addition to “DER costs”
and “carbon taxes”. The total cost is the sum of these four per Eq. (1).
We find that, for the baseline case, microgrid adoption reduces the total
cost relative to the macro grid customer—that is, the economic benefit
is positive.

Fig. 4. The optimal dispatch for a representative weekday in winter (left) and summer (right) for the large commercial (a, b), critical asset (c, d) and campus (e, f) microgrids shows how
the microgrid supplies electric load with a combination of purchased and self-generated electricity. The microgrid electric load is denoted in solid black; for reference, the electric load for
utility service is shown in dashed black. The two are different because some DERs consume electricity—see for example (a) and (b). Electric storage is shown as energy provision when
discharging (green) and added to the load curve when charging. Dispatch for all 12 months of the year is in the Supplementary information. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

9 When unconstrained by available space, the critical asset and campus see investment

(footnote continued)
of an additional 40% (1750kW constrained, 1250kW baseline) and 177% (8600kW
unconstrained, 3100kW baseline) respectively. These results are detailed in the
Supplementary information.
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3.3. Simple sensitivity analysis

Now we turn to sensitivity analysis. In this section we vary all 13 of
the significant parameters in the model within ranges detailed in
Table 4. For this “simple sensitivity” we leave the configuration of
installed DERs on each iconic microgrid unchanged from the baseline.
In the next section we look at a subset of the most important factors
and offer full blown re-optimizations around those variables to show
the deeper implications for investment decision-making.

The 13 sensitivities span the major clusters of factors that vary in
ways that affect the viability of microgrid investment: technological
advance, which generally lowers costs; utility tariff costs, which
generally rise and vary widely with geography and regulation; carbon
costs, which vary jurisdictionally; and financing and fuel costs, which
reflect market conditions. We also vary the magnitude of electric and
thermal loads to reflect the uncertainties omnipresent in energy service
that affect load—factors such as climate zone, energy efficiency
measures, and load growth.

Fig. 6 shows results for the simple sensitivity analysis. While results
are nuanced, several trends are common across the three microgrids:

• In general, sensitivity is greatest to four factors: gas price, carbon
cost, DER costs, and tariff costs.

• Sensitivities to volumetric and demand charges are small because
the microgrids primarily self-generate electricity. Put differently,
once a customer invests in a microgrid, the optimal configuration
reduces the cost of grid service (demand charges, volumetric
charges) massively.

• Sensitivities to the carbon cost and gas price are high and exceed
those to DER costs. In other words, opex can impact the total cost to
a greater degree than capex (cf. the relative magnitude of DER and
fuel costs in Fig. 5).

• The sensitivity to the electric load is large. The systems have reserve
generation (gas generators are sized to meet the peak critical load
and do not run at 100% output during non-peak hours). Hence the
systems can supply the majority of load growth without additional
capex, thereby increasing the economic benefit.

Regarding the last bullet, the means to supply load growth is highly
dependent on the volumetric charge and gas price—if volumetric
charges are sufficiently low and/or gas prices high, the models instead
revert to purchasing electricity. Note that variation (positive vs.
negative) is reversed in Fig. 6 for the electrical and thermal load
sensitivities—once investment is fixed, less load decreases the econom-
ic benefit.

The range of cost deviations shows that the business case for all
microgrids is very robust—that is, only extraordinarily high values for
the carbon cost and gas price (approaching 100-120 $/tCO2 and 12-16
$/mmbtu) make microgrid adoption uneconomical. Yet high carbon
taxes and gas prices would likely increase retail electricity rates
commensurately and move the parity point to the right.

3.4. Strategically important variables: markets, technology, policy

Four variables have a large strategic effect on the business case for
microgrid adoption: natural gas price, electric tariff charges, carbon
cost, and electric storage cost. Gas prices are inherently variable and
important because of the dominance of gas generators in the baseline
optimal configurations. Carbon costs are expected to increase, while
storage costs are declining rapidly. Tariff charges ultimately make it
economical (or not) to invest in technologies that peak shave and/or
supply base load in place of utility service; it other words, investment
decisions must balance avoided costs from volumetric and demand
charges while considering standby charges and fuel costs. Moreover,
tariff charges and structures vary widely by utility and region. Each is a
policy variable and possible pathway for policy intervention. Gas and

carbon prices may push investment toward gas or renewable genera-
tors, while the magnitude of tariff charges may impose a “barrier to
entry” if too low, and high storage costs may impose an analogous
barrier for low-carbon configurations.

Electric storage in particular is widely seen as an important tool for
integrating renewables and facilitating deployment of low-carbon
microgrids. Storage costs are decreasing rapidly, though the point at
which deployment becomes cost-effective varies and is an open
question, which others have investigated (Nottrott et al., 2013).

In what follows we run greenfield analyses for varying gas price,
tariff charges, carbon cost, and electric storage cost (with justification
for parameter variation as in Section 3.3). For each variable, we re-
determine the optimal system. We compare the total cost for the two
customer types and distinguish electricity provision by resource. We
present emission totals for the microgrid customer, which includes
direct emissions from on-site generation as well as indirect emissions—
the result of purchased electricity derived from generators in the
wholesale market.

3.4.1. Natural gas price
We vary the gas price from 4 to 16 $/mmbtu (Fig. 7). Here we

perform a “scenario analysis”—so-called because we vary multiple
parameters to capture feedback.10 The total cost for both microgrid
and macro grid service increases with gas price because both customer
types must purchase gas to meet the gas load L’ng’. Across the full
range of prices microgrids incur a smaller total cost when compared
with utility service—with the largest differences occurring when prices
are low (here the microgrids have the most flexibility to reduce costs).

Low prices drive investment in gas generators; as prices increase
those are replaced with renewable sources as well as purchased
electricity—a transition that decreases the economic benefit. Beyond
9 $/mmbtu the large commercial system adopts a low-carbon config-
uration, and thereby maintains a positive (and increasing) economic
benefit (i.e., it insulates itself from further gas price increases). The
critical asset and campus systems, on the other hand, see a persistently
diminishing economic benefit as prices increase—they do not transition
to low-carbon configurations, but rather revert to purchasing electri-
city. Higher gas prices make it harder for these microgrids to utilize one
of the chief advantages of local production: the on-site use and storage
of thermal energy via CHP.

Across all three optimal systems there is a sharp transition in the
source of electricity provision from gas-fired self-generation to pur-
chased electricity. The transition points—at 7–9, 11–13, and 9–11
$/mmbtu for the large commercial, critical asset, and campus sys-
tems—have significant implications for the optimal configuration,
business case, and policy decision-making if low-carbon systems are
preferred. More research is needed to investigate whether these knife-
edge transitions—particularly prominent in the smaller microgrids—
reflect real-world conditions or are a standard discontinuity that often
arises with optimization models.

3.4.2. Electric tariff charges
Volumetric rates are varied fractionally from 0.4 to 1.4 in incre-

ments of 0.1 (Fig. 8), where unity is the rate in the baseline analysis.
Rather than varying each element of the tariff separately, which would
yield a highly complex sensitivity analysis, we vary the whole cluster of
related volumetric charges so that potential investors and policy
makers can understand better the fundamental impact of such charges
on microgrid configuration and viability.

We find that volumetric rates greatly affect the total cost and

10We increase the volumetric charge with the gas price to account for a corresponding
increase in natural gas-generated wholesale electricity. Marginal generators are typically
gas-fired in the California wholesale market. We increase only the generation portion of
the volumetric rate and scale the increase by the fraction of wholesale electricity
generated from natural gas plants in California (45% at the time of this work).
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optimal configuration. As with the gas price, sharp transition points
exist in which gas-based self-generation and purchased electricity are
substituted. When rates are low ( < 0.5), the microgrid total cost
exceeds that to the macro grid customer; that is, the economic benefit
is negative.

Microgrids realize an economic benefit beginning with rates > 0.5
that increases with rising rates. We observe scenarios with near 100%
self-generation. Notably, these occur under present-day electricity rates
in southern California. Purchasing electricity is the dominant mode of
supply for rates near 0.6–0.9 (depending on the microgrid).

Fig. 5. The disaggregation of the year-one total cost shows how microgrid adoption shifts the source of cost from tariff-based to DER- and fuel-based. In doing so adoption reduces the
total cost—by 14%, 17%, and 21% for the large commercial, critical asset, and campus, respectively. Costs are normalized to the macro grid customer's total cost.

Table 4
Variation of 13 parameters in the simple sensitivity analysis.

Parameter Varied −/+ variation (nominal,
range)

Justification Reference

Interest rate -/+25% (7, 5.25–8.75%) Reflects a typical discount rate for lower medium grade (BBB- to BBB+) corporate
bonds at the time of this work; the sensitivity range further covers high-yield and
upper medium grade bonds.

Carbon cost −100/+1000% (12, 0-
132 $/tCO2)

Captures the 95th-percentile cost for the out-year 2020 (129 $/tCO2). At the time of
this work the price of California Carbon Allowance futures is trading at 12–13 $/
tCO2e.

(Interagency Working Group on
Social Cost of Carbon, 2013)

Natural gas price −50/+100% (8, 4–16 $/
mmbtu)

Captures the full range of AEO2015 projected Henry Hub spot pricesa while further
allowing for a range of retail prices which vary according to local natural gas
infrastructure spending.

(Conti et al., 2015)

Volumetric charge −45/+15% (multiple,
varies)

Captures the wide range of US average retail electricity rates for commercial
customers.b

(Conti et al., 2015)

Demand charge −45/+15% (multiple,
varies)

For simplicity, we vary the demand charge −45/+15% to align with the variation in
volumetric charge.c

Standby charge −45/+15% (13.76,
7.57–15.82 $/kW)

As noted for the demand charge.

Gas generator capital
cost

−20/+10% (varies, see
SI)

Captures cost projections for 2010–2030 for small ( < 1 MW) generators while
allowing for emissions treatment equipment costs for compliance with potential
future stringent emissions regulations. Though both capital and emissions
treatment equipment costs vary by generator type and capacity, for generality we
apply the sensitivity range across all generator types.

(Hedman et al., 2012)

Gas generator O &M
cost

−20/+10% (varies, see
SI)

As noted for the gas generator capital cost.

Electric storage capital
cost

−50/+300% (350, 175–
1050 $/kWh)

Captures existing and projected costs over the next 5–10 years.d (Shah and Booream-Phelps, 2015)

Thermal storage
capital cost

-/+20% (50, 40–60 $/
kWh)

Considers potential technology advances or unforeseen policy changes affecting
thermal storage.

Solar PV capital cost -/+50% (2390, 1195–
3585 $/kW)

The sensitivity decrease nears the DOE SunShot Initiative goal of 1 $/W installed
cost; the increase nears the cost of smaller rooftop solar PV systems (5–10 kW,
3740 $/kW). The nominal cost assumes large (~200 kW) rooftop installations.

(Kann et al., 2016)

Electrical load -/+20% (varies) Captures potential load growth and energy efficiency measures implemented over
the microgrid lifetime. Growth assumes a 1% annual rate (per EIA forecasts) and
loss a −1% annual rate.

Thermal loads -/+50% (varies) Captures other climate zones outside of the nominal climate zone 3B-coast.e

a Annual Energy Outlook 2015 (AEO2015) forecasts for 2030 range from 4 $/mmbtu in the “High Oil and Gas Resource” scenario to 8 $/mmbtu in the “High Oil Price” scenario.
b Captures the 5th- and 95th-percentile for the average retail electricity rate for commercial customers across all 50 states and the District of Columbia over the period 2013–2033,

assuming the 2013 average retail price for commercial customers in California as the baseline and an annual increase of 0.6% per the AEO2015 “Reference case” scenario. We project the
price to 2033 to capture variation over the 20-year plausible lifetime of the microgrid. See the Supplementary information for detailed treatment.

c The EIA frequently publishes data on monthly average retail electricity prices (through the AEO) based on collected utility revenues and sales—a metric that amalgamates all utility
charges—but does not report demand charges or standby charges separately. Surveying the range of demand and standby changes across utilities to generate a sensitivity range is not
straightforward because those charges are closely tied to volumetric charges in the ratemaking process, and, further, it is unclear how to normalize utility charges against the volumetric
charge.

d Today's hardware cost for battery storage ranges widely across manufacturers (and chemistries)—from 350 to > 2000 $/kWh (lead-acid may be as low as 200 $/kWh while lithium-
ion may be 500 $/kWh)—but are forecasted to fall sharply over the next 5–10 years. For reference, as of 2015 T Motors sells its Powerwall stationary battery storage product for 350 $/
kWh (the offering excludes inverter and soft costs).

e The climate of coastal southern California is moderate and requires relatively little building heating and cooling. Climate zones in the US range from 1 A (hot and humid, e.g. Miami,
Florida) to 8 (cold, e.g. Fairbanks, Alaska).
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Optimal configurations fit broadly within two domains—low-carbon
and gas-based configurations—separated by a transition point. The
large commercial system is low-carbon for rates < 0.9 and gas-based
for rates ≥0.9, with gas dominant with increasing rates. Similar
transitions occur for the critical asset and campus microgrids—for
rates 0.6–0.8 and 0.7–0.9 respectively. For these two systems, how-
ever, gas generators remain the dominant microgrid resource over the
range of rates. They are the bedrock of investment and business case
for larger systems.

Demand charges are varied fractionally from 0.4 to 1.4 in incre-
ments of 0.1 (Fig. 9). As before, unity is the nominal demand charge in

the baseline analysis. All demand charges are varied concurrently.
We observe that peak shaving is key to the business case over the

wide range of demand charges. For charges < 0.6, the economic benefit
is negative, while for charges > 0.6 the total cost increases slightly and
soon plateaus. Here the microgrids self-generate nearly 100% of
electric load, and hence mitigate the demand charge to zero (or close
to zero).

For present day charges (unity), it is economical to peak shave and,
further, to self-generate nearly all electric load. The critical asset
invests in gas generators to supply its large fraction of critical load in
the event of outages independent of the demand charge, and hence sees

Fig. 6. Change in total cost due to variation in the 13 simple sensitivities. The red dashed line denotes the “parity point”—the cost increase that reaches the total cost to the macro grid
customer. For some market parameters (gas price, carbon cost) the parity point shifts because variation affects electricity rates for the macro grid customer, though such shifts are not
noted. The models do not converge in two instances (marked in purple); in these cases the magnitude of electric and thermal load for the critical asset do not meet the resource adequacy
constraint because the fixed configuration does not have sufficient capacity to supply the increase in critical load. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 7. (a)–(c) The total cost and total CO2 emissions are normalized by the total cost to and total emissions of the macro grid customer, respectively, for the nominal gas price (8
$/mmbtu; bolded); and (d)–(f) the fraction of electricity supplied by microgrid resource across variation in gas price. Each bar shows results from a single model run. The uncolored
portion above a bar represents purchased electricity. A dot in the solar PV bar denotes that the solar PV space constraint has capped installations.
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a business case for peak shaving for demand charges 0.4–1.4. The large
commercial and campus have a smaller fraction of critical load—they
revert to purchasing electricity when demand charges are small. For
these two microgrids, we observe a sharp transition (0.8–1.0 and 0.7–
0.9 respectively) separating two modes of electricity provision—pur-
chased electricity when demand charges are small and gas generation
when large. Present-day demand charges thus lie near this inflection
point that separates two distinct investment cases—one based on
renewables and partial self-generation, and another on gas generators
and near 100% self-generation.

3.4.3. Carbon cost
We vary the carbon cost from 0 to 132 $/tCO2 (Fig. 10) and, as with

the gas price, run a scenario analysis.11 We find that increasing carbon
cost can shift investment from gas generators to renewables and that
the onset of that shift arises at lower carbon costs for smaller
microgrids (i.e. the large commercial). This is because such transitions
are constrained by available space for PV in the two larger microgrids.
These two, as well, make efficient use of gas with CHP—an efficiency
advantage that is not offset until higher carbon prices.

The large commercial system supplies nearly 80% of electric load
with gas generators at a carbon cost of 0 $/tCO2 and only 15% at 30
$/tCO2. For costs > 36 $/tCO2, a low-carbon configuration with
electricity purchases replaces gas generators. The critical asset and
campus systems also divest in gas generators with rising carbon cost;
however, they purchase additional electricity rather than transition to a
low-carbon configuration. This is due in part to the solar PV space

constraint.12 This result suggests that for such configurations, decar-
bonizing the electricity system may best be achieved with centralized
grids.

3.4.4. Electric storage cost
We use as the nominal turnkey electric storage cost a forecasted

estimate (350 $/kWh) that aligns with estimates of current and
projected costs over the next 5–10 years, and vary the electric storage
cost 0–1150 $/kWh (Fig. 11) in increments of 50 $/kWh.

The large commercial system adopts additional storage as costs fall.
Two transitions are salient. The first occurs when storage is first
adopted, at 350 $/kWh, and the second when the microgrid reaches a
low-carbon configuration, at 200 $/kWh. With these transitions the
microgrid also purchases additional electricity, eventually supplying
over 30% of load. At costs < 100 $/kWh, further storage does not
provide a benefit (i.e., energy shifting is not needed) because the
microgrid has already plateaued demand and achieved perfect on-
peak/off-peak energy arbitrage.

The critical asset and campus also purchase additional storage as
costs fall, but never adopt low-carbon configurations. Gas generators
remain the dominant resource throughout. Even at 0 $/kWh, storage is
used only to facilitate peak shaving, as observed in the baseline results.
The solar PV space constraint caps installations, thereby restricting
potential low-carbon transitions, in which storage might store signifi-
cant excess solar PV generation for discharging at night.

4. Conclusion and policy implications

Under the right conditions, the supply of electric and thermal

Fig. 8. (a)–(c) The total cost and total CO2 emissions are normalized by the total cost to and total emissions of the macro grid customer, respectively, for the nominal volumetric charge
(unity; bolded); and (d)–(f) the fraction of electricity supplied by microgrid resource across variation in volumetric charges. Each bar shows results from a single model run. The
uncolored portion above a bar represents purchased electricity. A dot in the solar PV bar denotes that the solar PV space constraint has capped installations.

11 We increase the volumetric charge with the carbon cost to account for a
corresponding increase in generation costs from fossil fuel power plants and subse-
quently the clearing price in the CAISO wholesale market and retail rates. We use AEO
2014 projections and compare the percent difference in economy-wide electricity
generation costs between the “Reference case” and “Greenhouse gas $10” scenarios.
We apply that difference as a percent increase to the generation portion of the volumetric
charge (taken to be 7/16 in SDG&E's service territory).

12 We run the same greenfield analysis without the space constraint. Results show that
high carbon costs do cause a shift in investment—from gas generators to solar PV and
electric storage—in the larger two microgrids. Consequently, it seems a lack of space in
which to install an optimal low-carbon configuration may inhibit efforts to decarbonize
the grid through single-owner, single-property microgrids.
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Fig. 9. (a)–(c) The total cost and total CO2 emissions are normalized by the total cost to and total emissions of the macro grid customer, respectively, for the nominal demand charge
(unity; bolded); and (d)–(f) the fraction of electricity supplied by microgrid resource across variation in demand charges. Each bar shows results from a single model run. The uncolored
portion above a bar represents purchased electricity. A dot in the solar PV bar denotes that the solar PV space constraint has capped installations.

Fig. 10. (a)–(c) The total cost and total CO2 emissions are normalized by the total cost to and total emissions of the macro grid customer, respectively, for the nominal carbon cost (12
$/tCO2; bolded); and (d)–(f) the fraction of electricity supplied by microgrid resource across variation in the carbon cost. Each bar shows results from a single model run. The uncolored
portion above a bar represents purchased electricity. A dot in the solar PV bar denotes that the solar PV space constraint has capped installations.
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services from a microgrid can be cost-effective when compared with
complete reliance upon macro grid utility service. Some of those
conditions reflect changes in technology and market conditions; some
are rooted in policy choices; and many reflect the interplay of
technology, policy and markets.

We have focused here on the business case for investing in microgrids
by focusing on the total cost of energy service for three different types of
likely microgrid customers. Under prevailing conditions in southern
California we find that the case for cost-effective shifts from pure utility
service to microgrids is robust, and especially so for large customers who
can utilize the intrinsic advantage that local production offers in managing
electric and thermal loads in tandem. Centrally, the case for microgrids is a
case for natural gas fired locally that also generates significant thermal
energy. Though smaller microgrids by contrast rely relatively less on gas
and more on renewables, across all microgrids gas generators supply the
majority of on-site electric and thermal energy. While the work presented
here looks only at the economics for energy provision, future work—
including that planned by our team—can enhance this analysis by adding
value streams derived from increasing reliability and resiliency. We are
interested, as well, in exploring these new value streams in different climate
and regulatory environments, as was done in (Maribu et al., 2007).

Through analyses of uncertainty we find that business cases are
robust across a wide variation in parameters—costs of critical technol-
ogies, tariff rates, natural gas prices, and the price charged for carbon
emissions—over which policy makers have some influence. Of parti-
cular importance for large microgrid systems is the price of natural gas,
which regulators can influence only indirectly. Renewables and utility
service are more attractive in a world with high gas prices, but gas
remains an important player for larger systems even at 16 $/mmbtu.
Preference for gas generators holds when carbon prices are indepen-
dently high. In worlds where utility service costs are high and where
DER technologies improve rapidly—plausibly, a world that California
and other jurisdictions are now entering—the case for microgrids of all
sizes is even more robust. This finding aligns with results in (Firestone

et al., 2006), who similarly looked at the effect of tariff charge
sensitivities on DER adoption.

For policy makers, there are at least two major implications of this
work. The first concerns how policy makers might guide a nascent
microgrid landscape by scaling up deployment. It is one thing for a
scattered number of customers to switch to grid-tied microgrids for
self-supply, but another for grid operations to be structured on a new
topography of widespread distributed microgrids. Though more in-
vestigation is needed to explore how adoption may become widespread,
our results indicate that microgrid deployment will likely resemble the
former if left alone. Policy makers interested in the latter have the
opportunity to shape deployment to align with larger social goals like
reducing greenhouse gas emissions.

To this end policy makers have control over several important
parameters—in particular, interconnection tariffs (which respond to
regulatory decisions) and the cost of carbon (which is a policy choice).
Policy makers also have the capacity to alter the cost of DER
technologies—either directly with subsidies or indirectly through
procurement mandates. We have been able to model some of these
but the work presented here suggests the need for modelers to develop
more sophisticated methods that capture both the full set of policy
options available as well as of value streams policy makers might
invoke to shape widespread deployment—for example as is happening
in the northeast US states with resiliency-based systems. In jurisdic-
tions such as California and New York that are actively pushing
adoption of DERs it is that full set of policy options that will determine
how markets could be developed.

The second implication for policy is perhaps more profound.
Because the case for gas-based microgrids is so robust, policy makers
may find that adoption of DER-friendly policy reforms leads to even
more ubiquitous adoption of gas-based microgrids. Emissions from
those systems are smaller when compared with some grids (those
dominated by coal and gas generators) but they are not zero, and in
many jurisdictions policy makers are setting goals for cutting emissions

Fig. 11. (a)–(c) The total cost and total CO2 emissions are normalized by the total cost to and total emissions of the macro grid customer, respectively, for the nominal electric storage
cost (350 $/kWh; bolded); and (d)–(f) the fraction of electricity supplied by microgrid resource across variation in the electric storage cost. Each bar shows results from a single model
run. The uncolored portion above a bar represents purchased electricity. A dot in the solar PV bar denotes that the solar PV space constraint has capped installations.
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that probably require zero or negative emissions from electric power.
California, for example, has a goal of 80% cuts in CO2 emissions below
1990 levels by 2050. Assuming some emissions will continue to be
needed from transportation, that economy-wide goal implies zero for
the rest of the energy system. Policy makers who push DER and
microgrids without simultaneously adopting a carbon price (or reg-
ulatory substitute) may unwittingly encourage the creation of a long-
lived microgrid infrastructure that is incompatible with zero carbon.
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