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� We develop a segmented regression technique to estimate historical CFL learning curves.

� CFL experience curves do not have a constant learning rate.
� CFLs exhibited a learning rate of approximately 21% from 1990 to 1997.
� The CFL learning rate significantly increased after 1998.
� Increased CFL learning rate is correlated to technology deployment programs.
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a b s t r a c t

Experience curves are useful for understanding technology development and can aid in the design and
analysis of market transformation programs. Here, we employ a novel approach to create experience
curves, to examine both global and North American compact fluorescent lamp (CFL) data for the years
1990–2007. We move away from the prevailing method of fitting a single, constant, exponential curve to
data and instead search for break points where changes in the learning rate may have occurred. Our
analysis suggests a learning rate of approximately 21% for the period of 1990–1997, and 51% and 79% in
global and North American datasets, respectively, after 1998. We use price data for this analysis;
therefore our learning rates encompass developments beyond typical “learning by doing”, including
supply chain impacts such as market competition. We examine correlations between North American
learning rates and the initiation of new programs, abrupt technological advances, and economic and
political events, and find an increased learning rate associated with design advancements and federal
standards programs. Our findings support the use of segmented experience curves for retrospective and
prospective technology analysis, and may imply that investments in technology programs have con-
tributed to an increase of the CFL learning rate.

Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

1.1. Compact fluorescent lamps background

Compact fluorescent lamps (CFLs), first invented in the 1970s,
are valued for their energy efficiency and compatibility with ex-
isting fixture designs. Early adoption of CFLs was hindered by high
product prices, low electricity prices, consumer resistance to
change, and poor product performance in areas such as color
quality, flickering, and start-up time (PNNL, 2006). But even as
product performance improved and life-cycle costs were reduced
access article under the CC BY-NC
throughout the 1990s, consumer awareness and high initial cost
limited wider scale adoption.

In this work, we examine empirical market data and program
activities in an experience curve framework in order to review
historical development and determine to what extent deployment
and other activities affected the CFL market. An underlying moti-
vation for reviewing the market development of CFLs is to improve
our understanding of the role of technological advancements,
economic incentives, and external events (such as trade sanctions
and electricity prices) for a unique technology that experienced
several technical changes and underwent several market changes.
Section 4 discusses some of the changes and influences on the CFL
market that make it a technology of interest.
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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Fig. 1. Aggregated price data from six sources. Two international sources: IEA
(Waide, 2010), Weiss et al. (2008); four US sources: PNNL (2006), CPUC (The
Cadmus Group, Inc., 2010), Southern California Edison (Itron, Inc., 2008), and EN-
ERGY STAR (Bickel at al., 2010).
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1.2. Technology learning

Learning curves and experience curves are a common frame-
work for assessing how a technology's cost reduces with increas-
ing production volume (Taylor and Fujita, 2013). Learning curves
specifically examine the relationship between cumulative pro-
duction and labor costs and are parameterized by a “learning rate”
which describes the improvement in worker efficiency that comes
with experience. More broadly, experience curves relate cumula-
tive production with total unit cost or market price and are also
parametrized by a learning rate as described below Empirically
observed price reduction may be due to a wide range of factors
such as economies of scale, improved manufacturing process
control, technological improvements such as enhanced design or
greater parts-integration, increased competition, material or
component cost reductions, etc. Therefore, the learning rate
parameter on a price-based experience curve encompasses many
improvements throughout the supply chain beyond worker effi-
ciency. These curves are empirically found to follow a power law,
as shown in Eq. (1), with the rate of cost reduction a power law
function of cumulative production volume.

( ) ( )( ) = ( ) ( ) ( )
−

C t C t V t V t/ / 1
b

2 1 2 1

where:
C(t2)¼cost or price at time t2
V(t2)¼cumulative production volume at time t2.
C(t1)¼cost or price at time t1.
V(t1)¼cumulative production volume at time t1.
b¼empirically observed parameter.
The percent by which cost decreases for every doubling of

production volume is referred to as the learning rate (LR¼1–2�b).

1.3. Prior CFL learning and experience curve literature

Existing CFL learning rate literature contains many issues with
transparency, methodology, and comparability. Iwafune (2000)
estimated CFL learning rates from 1992 to 1998 to be approxi-
mately 22% for price per thousand lumens of delivered lighting
output. Disaggregating into specific product types, the study re-
ported learning rates of 41–16%. These curves were constructed
using four years of data with a three-year gap before the final year
('92, '93, '94, '98), a small number of years relative to the history of
CFLs in the marketplace. The missing years force data interpola-
tion, particularly when assuming a constant learning rate. For
example, excluding the last year of data as shown in Fig. 1 of this
report gives a learning rate of 37% as opposed to the reported
value of 21%, with a much higher correlation coefficient. In addi-
tion, the mixed units on the learning curve plot (price per thou-
sand lumens versus price per cumulative unit production), are not
consistent with other works' methods of using consistent units on
both axes. Ellis (2007) created an experience curve with an often-
cited learning rate of 10%, using data obtained from the Australian
Greenhouse Office (AGO, 2006) and an unreferenced source cited
as “Du Pont, 2005″. Unfortunately we found the creation and re-
porting of this learning rate unsatisfactory, due to issues such as
data misinterpretation (annual sales used as cumulative sales) and
possible calculation errors (a recreated curve using their data
yields a drastically different rate than what is reported). Weiss
et al. (2008) developed a global CFL experience curve for 1988–
2006 and found a learning rate of 16–21% for price per watt-
equivalent, while Gerke et al. (2014) found a learning rate of 14%
for 1992–1994, using US-only production and cost data.

From this study of historically reported data, we therefore see
the need for new development of the CFL experience curve. In
addition, we desire a curve that is not constrained to a constant
learning rate, as informed by past works relating changes in pro-
duct learning rates to public programs (Grübler et al., 1998; Van
Buskirk et al., 2014; Wei et al., in press). In this work, we hope to
reconcile the many differences in the reported CFL learning rates
and present defensible and more easily interpretable learning
rates.
2. Challenges with experience curve development

2.1. Data discrepancies

Experience curves require two datasets for a given timeframe:
cost or price and cumulative production. Often, information must
be collected from multiple sources and processed, distilled, and
combined into useful sets. Details such as product types, pur-
chasing scale, distribution channel, and geographical region, are
often unreported with the data and can vary widely for a given
technology. Cost data is further challenged by price versus cost
confusion, prices normalized to varying performance metrics (e.g.,
$/thousand lumens) and whether the currency-year units are re-
ported (e.g., 2010 US dollars). Often-available annual production
data cannot be converted to the needed cumulative production
without an initial point, i.e., the cumulative production prior to the
first year of data. There is therefore enormous difficulty in de-
termining a definitive or canonical experience curve for a tech-
nology, since many learning rates may be derived depending on
one's interpretation of the data.

All of these difficulties are in force when deriving an experience
curve for CFLs, as many gaps and inconsistencies are present in
existing data. Moreover, several reported learning rates do not
explicitly reference the source of data, units, or details about
specific product and sales conditions. We manage these challenges
by collecting readily available price and production data that is not
meant to be representative of any specific product or bulb type,
but the market as a whole. By analyzing the market on a per-unit
basis, where a “unit” represents a single bulb (often referred to as a
“lamp”), we are able to capitalize on a larger database of price and
production data. Other metrics such as lumens or wattage of the
units are not readily available to normalize the units of data. This
distinction is important when comparing results to other studies
of CFLs or other lighting products that may be normalized by
service level (lumen) or energy use (watt). Details about the
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datasets used any known characteristics of the products re-
presented are discussed in Sections 3.1 and 3.2.

2.2. System boundary selection

Boundaries of the technology development system are a key
factor in what data is collected, how the data are interpreted, and
how to conduct the experience curve analysis. Local prices and
adoption patterns often vary and therefore neither can be assumed
to be consistent across regions. In this work we develop an ex-
perience curve for both the global and North American CFL mar-
kets. This boundary decision is motivated by the vastly different
adoption curves for the two areas and the many social, economic,
and political programs which contributed to development of CFLs
and their market adoption. We present both curves for comparison
and discussion.

2.3. Time dependence

The original empirical observations that led to the study of
learning curves showed a single power law relationship between a
cost and production variable (Wright, 1936), implying that the
learning rate stays constant over time. This assumption remains
the prevailing approach for deriving learning curves. Grübler et al.
(1998) proposes that for long time-scales of analysis that span
multiple technological “stages” of a product, a different learning
rate exists in each stage. They suggest that in general, learning
rates decrease as a technology moves through phases of innova-
tion, niche-market commercialization, and diffusion, and then
become effectively zero during market saturation. Alternatively,
recent work by Van Buskirk et al. (2014) allows for the possibility
of a time-varying learning rate over an undefined time scale. They
compute learning rates for various appliances that increase,
markedly, after adoption of product standards. In either case, a
non-constant learning rate allows for the ability to observe distinct
changes in a technology's development, pointing to time-varying
factors that affect the learning rate such as research break-
throughs, government policies, and market expansion.
Table 1
Summary of CFL production data gathered from three sources.

Source Type Region Years

Iwafune (2000) Cumulative production Global 1990–1998
Iwafune (2000) Annual sales North America 1990–1997
AGO (2006) Annual sales Global 1990–2004
IEA (Waide, 2010) Annual production Global 1990–2007
IEA (Waide, 2010) Annual production North America 2000–2007
3. Methods for experience curve creation

3.1. Price data collection

Data collected for this analysis is meant to be representative of
average CFLs, inclusive of all brands, product types, and power
levels. We collected price data from a variety of academic journal
articles and industry reports, and converted the data to 2004 US
dollars (USD) units using Bureau of Labor Statistics Consumer Price
Index and currency conversion records reported by the U.S. Federal
Reserve System. Data from six sources are shown in Fig. 1, and are
described as follows:

� A 2006 IEA report reviewing global appliance standards and
codes presents global price and sales data for screw-based CFL
bulbs from 1990 to 2004 in the form of a learning curve (Ellis,
2007).

� We derive national average CFL prices for 1998–2007 from re-
gional price data reported in a 2008 study for Southern Cali-
fornia Edison (SCE) (Itron, 2008). This data represents typical
medium-size screw-based CFLs, the majority of which are spiral
(or “twister”) shape.

� A report for the California Public Utilities Commission (CPUC)
reported 1999–2007 average retail prices for the U.S., primarily
using data from a SCE report (The Cadmus Group, Inc., 2010).

� In 2006, a Pacific Northwest National Laboratory (PNNL) report
discussed broadly the CFL market, mentioning the price of CFLs
over occasional years from 1996 to 2003 (PNNL, 2006). This
report, and the prices noted, was not specific to any region or
CFL type.

� ENERGY STAR's CFL Market Profile references price points in
their discussion on CFLs, without pointing to specific products
that those prices represented (Bickel et al., 2010).

� Price data from Weiss et al. (2008) represents CFL bulbs that are
equivalent to a 75-Watt incandescent. Weiss's data is sourced
from Dutch sales information, along with a 2007 report that
lists CFL price data for intermittent years, for various countries
across Europe (Oosterhuis, 2007).

The rate of change between the datasets and across regions
generally appear to be similar, suggesting that price trends may
not vary significantly between regional and global markets. For the
US, data prior to 1995 is sparse, and therefore it is difficult to
conclude the extent of differences between US and global data.
Overall, we see that the price of CFL bulbs have declined sig-
nificantly for two decades. The exception is the data from Weiss
et al., which shows essentially no price decline from 1990 to 1994,
and a price increase from 2002 to 2006. This price behavior is
difficult to explain and is not seen in the other datasets, but could
possibly be a result of the multiple currency and inflation-related
adjustments that were applied to create the final dataset. There-
fore, we include the Weiss et al. data in our analysis with caution.

3.2. Production data collection and processing

Production data was compiled from three main sources of sales
estimates. Table 1 summarizes the collected data set's type, region,
and timescale. Data from Iwafune includes an estimate for total
sales prior to 1990, which allows cumulative totals to be computed
for the North America case. To compute a learning rate, we com-
bine the resulting data into two consistent datasets: global and
North America.

Global cumulative production data was very consistent across
our three datasets, so a simple averaging was done to create a
single experience curve. The North America cumulative produc-
tion data, however, required more extensive manipulation. To
determine the consistency of data from Iwafune and IEA for dif-
ferent time periods, we examined the percentage of global sales
credited to North America. These values, including data inter-
polation for 1998–1999, are shown in Fig. 2 and the resulting trend
appears reasonable. The final cumulative sales curve was then
constructed using data from Iwafune for 1990–1997, interpolated
data for 1998–1999 (North American percentage times annual
global sales), and IEA data for 2000–2007. Results for both global
and North America production curves are shown in Fig. 3.

3.3. Segmented regression analysis

Various methods can be used to determine the change, or lack
of change, in a power law regression parameter. For our analysis,
we employ a segmented regression model, also referred to as
multiple-phase regression, piecewise regression, or broken-line
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Fig. 3. Global and North America cumulative CFL production curves.

Fig. 4. Flowchart for computing one- and multiple- change point models.
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Fig. 5. Global CFL experience curves generated from segmented regression
analysis.
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regression. Such an analysis is straightforward to compute and
interpret. Examples of its use are presented by Toms and Les-
perance (2003) in the context of ecological thresholds and by
Walter et al. (2014) in energy analysis.

The general regression equation used is as follows:

( ) ( )= β + β + β – ( )
+

X XY C 20 1 2

where:
β0¼constant.
β1¼slope prior to change point.
β2¼slope change at change point.
C¼change point.
(X�C)þ¼{0 for XrC, X-C for X4C}.
For a given change point, C, the term (X-C)þ is derived, and the

regression problem is solved using ordinary least squares fit. A
significance test on the variable β2 dictates the validity of a change
in slope. To determine the most suitable change point(s), the re-
gression problem is solved iteratively for a range of points in one-
change and two-change scenarios. For two change points, an ad-
ditional beta term is added to Eq. (2). The model with the lowest
mean squared error (MSE) is chosen for each one-change, two-
change, or no-change categories, then those models are compared
based upon the Akaike Information Criterion (AIC) (Akaike, 1974).
The MSE is not sufficient to compare across the three model types,
as error will clearly be reduced as more change points are added.
Therefore, the AIC is used to determine if the improvement in the
model that occurs from adding a constraint (in this case, a second
change point) justifies the loss of that degree of freedom. Fig. 4
shows the overall procedure for fitting a model to the experience
curve data.

3.4. Results

Figs. 5 and 6 show the results for both the global and North
America experience curves, respectively, along with the informa-
tion used to select the best model. AIC is a relative metric, meaning
that it is the difference between models that is indicative of which
one is “better,” while the number for one model alone does not say
anything about its absolute goodness of fit. A more negative
number for AIC indicates a better model, and therefore the models
chosen are a one-change model for the global experience curve,
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and a two-change model for the North America curve.
The final, best-fit experience curves, shown in Fig. 7, suggest

interesting, while not surprising, behavior. The global experience
curve shows a 21% learning rate from 1990 to 1998, followed by a
51% learning rate from 1998 to 2007. We also tested the curve
including the Weiss et al. dataset, and while the learning rates
differ (decreases of 2% and 7%, respectively), the key trend of a
significant increase in 1998 persists. The North America market
showed this trend as well, with a learning rate of 22% prior to, and
79% after, 1998. The North America market also appears to suggest
a substantial learning rate change after 2005, where the curve
essentially flattens out. One may note that the two-change global
curve also showed this behavior, but the model was not more
“suitable” than the one-change model, as in the case of North
America. Calculated learning rates for 1990–1998 agree with re-
ported learning rates in both Iwafune (2000) and Weiss et al.
(2008), who reports a 21% learning rate for CFL units for the years
1988–2006. Weiss et al.'s resulting experience curve has a much
better fit to the first half of the data compared to the more recent
years, and we suspect that if a segmented regression had been
used an increase in LR would have occurred during that time
frame.

A significant shift to a faster learning rate similar to the
downward bend seen in Fig. 7 has been seen in appliances during
steady implementation of standards and programs, as previously
discussed in Van Buskirk et al., 2014. Van Buskirk et al. (2014)
found that the increase in learning rate was generally stronger for
a learning curve with life-cycle cost as the y-axis, as opposed to
purchase price. This implies that improvements in product effi-
ciency, and therefore reductions in life-cycle cost, generally ac-
companied the price reductions seen after the implementation of
standards. Efficiency data were not available for the products re-
presented in the price data sets used in this report, and therefore
life-cycle experience curves could not be constructed. Assuming
that CFL efficiency has improved over time, a life-cycle cost ex-
perience curve may exhibit higher learning rates than those seen
in this report.

The underlying theory of the experience curve is that sustained
production creates a knowledge base that increases efficiency and
reduces cost. By using consumer prices as opposed to true man-
ufacturing costs, our experience curves include these efficiencies
throughout the distribution and marketing processes. To what
extent differences in the North America and global learning rates
represent manufacturing learning as opposed to improved
distribution and business management depends on the nature of
the supply chain and market competition. Potential influences to
these behaviors are discussed further in Section 4.
4. CFL learning rate influences

4.1. Public programs

Public deployment programs can influence a technology's cost
through two primary mechanisms. Firstly, by increasing adoption,
programs can move a technology “down” the experience curve in a
shorter amount of time, potentially by inducing price savings
through learning, economies of scale, and increased competition.
Secondly, programs that increase a technology's market adoption
can induce greater private research and development, either di-
rectly (through design competitions and product standards), or
indirectly (through reinvestment of increased profits). This in-
creased investment can lead to design breakthroughs that improve
product performance and reduce costs. Some efforts have been
made to link deployment programs with changes in price decline
(Spurlock, 2013) and learning rate (Van Buskirk et al., 2014) of
energy efficient technologies. Here we outline some of the most
influential US programs and in Section 5 we discuss how these
impacts are likely to have resulted in the learning rates seen in this
work.

Early on in CFL development, utilities began incorporating the
technology into energy efficiency programs. Beginning in the late
1980s, and continuing throughout the 1990s, these programs al-
lowed utilities to generate revenue and meet policy goals. Utilities
aimed to boost the CFL market through giveaways to consumers,
retail rebate and coupon programs, manufacturer rebates, in-store
and mail promotions, and education of both consumers and re-
tailers (PNNL, 2006). These programs were largely scaled back in
the mid-1990s as part of large utility budget cuts.

In 1998, the primary market barriers in integral CFL adoption
were identified as price and size, which led the U.S. Department of
Energy and Pacific Northwest National Laboratory to create a de-
sign and procurement program for new “sub-CFLs” (Ledbetter
et al., 1999). Through this program, DOE aggregated buying power
to increase demand and sold successful designs through a dedi-
cated online retail channel. Successful designs met a variety of
performance and energy criteria and, most importantly, size re-
quirements that enabled them to fit in standard incandescent
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fixtures. Sales greatly exceeded expectations and 16 new models
entered the market from the three participating manufacturers. In
addition, similar products were introduced by non-participating
manufacturers and sold through multiple retail channels.

ENERGY STAR's 1999 CFL specification set the first national
standards for CFL energy efficiency, light quality, product perfor-
mance, and testing procedures. The program qualified almost 200
models and 10 different manufacturers in its first year, growing to
1600 models and 100 manufacturers by 2010 (Bickel et al., 2010).
These standards brought higher-quality products on the market
increasing consumer satisfaction and therefore adoption (EPA,
2012). Shortly following the creation of ENERGY STAR require-
ments, the 2001 nationally coordinated lighting promotion
“Change a Light, Change the World” educated consumers and
promoted CFL technology, which further increased consumer
awareness.

4.2. Component development

Previous work on experience curves has aimed to examine the
relationship between a technology's cost reduction and that of its
underlying components. Nemet (2006) modeled factors influen-
cing the cost of photovoltaics and found module efficiency and
cost of silicon to be significant explanatory variables. Ferioli et al.
(2009) examined to what extent the learning of a technology could
result entirely from learning in one or two components and found
that products can often be described in the experience curve
context as the sum of a component that experiences learning and
has cost reductions and a component that does not. This argument
is supported with a study of gas turbines, which shows that re-
presenting a product as the sum of two components with different
learning rates (one of which may be zero), yields a better fit then
considering the technology as one indivisible entity.

This is a particularly interesting concept in the case of CFLs,
whose cost is largely made up by the ballast, which has undergone
significant cost reductions of its own. Electronic ballasts began to
replace magnetic ones in 1984 and accounted for 90% of CFL
manufacturing costs throughout the late 1980s (Weiss et al.,
2008). These ballasts demonstrated learning rates of 8% from 1986
to 1991 and 23% from 1992 to 2005 (Wei et al., in press) and
therefore likely contributed to decreasing CFL costs during this
time.

4.3. External events

Many other factors likely influenced CFL's development
Fig. 8. North America CFL experience curv
pattern. Electricity prices are often a driver for adoption of energy-
efficient technologies as increasing prices make them more fi-
nancially viable to consumers and generally raise awareness of
energy consumption. Similarly, discrete events such as the Wes-
tern US electricity crisis of 2001 can spark product development
by creating demand for efficient products, increasing market
competition, and triggering deployment programs. Although these
events do not necessarily have a direct causal effect on the
learning rate, the relationship to overall development is important
to consider for analyzing the effect of deployment programs and
forecasting future adoption and development.

CFL market competition was also driven by a production shift
to low-income regions such as China (Weiss et al., 2008). In the
mid- to late-1990s, Chinese companies increasingly entered the
European CFL market flooding the market with low-cost (and of-
ten low-quality) products. This ultimately led to the European
Union imposing steep tariffs in 2001 on Asian manufacturers, who
then largely shifted their marketing efforts to North America
(PNNL, 2006). This resulted in an increased supply of low-cost
products, driving further price competition, and reducing profit
margins (Weiss et al., 2008).
5. Discussion

5.1. Program correlation

Many of the programs and events discussed in Section 4 cor-
relate to the sustained downturn seen in the North America ex-
perience curve, as shown in Fig. 8. The increased slope occurs after
substantial technology developments had occurred in the sub-CFL
procurement program, and during the time that ENERGY STAR
standards are active. These programs, along with the external
events happening at that time, created an environment for ac-
celerated development. The relationship between these programs
and the experience curve is important for both historical analysis
and future technology projections. In the historical context, un-
derstanding the impact programs had on the technology's adop-
tion and cost reductions can improve benefit analyses and help to
inform future program designs. For technology projections, un-
derstanding events that are likely to occur (or end) during the time
frame of interest can help inform how the experience curve will
behave.

Causal relationships between specific deployment efforts and
changes in the learning rate were outside the scope of this re-
search. However, we believe this research is a critical first step in
e and influencing factors 1990–2007.
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exploring causality in the years that indicate a change in the
learning rates.

5.2. Global vs. North America Comparison

Although the global and North America experience curves
generally show the same patterns, there are substantial differ-
ences, particularly after 1998 when North America shows a sig-
nificantly higher learning rate (�80%) than the global rate (�50%).
It is possible that significant differences exist between these two
markets, and that the North American market's influences de-
scribed in Chapter 4 caused an accelerated learning rate that was
not realized globally. Another possibility is that CFLs exist in a truly
global market, where prices change consistently over time in all
regions, and the act of creating a learning curve with only a subset
of global production (i.e. North America) gives the illusion of a
much higher learning rate due to the lower production levels (i.e.
the denominator of the learning rate). If it were the case, the North
America-specific learning curve would not necessarily represent
the full CFL market. However, our results would nonetheless draw
attention to trends such as the flattening out of the curve from
2005 to 2007 which is present in the global market to a slightly
lesser extent. This underlying trend could signal stagnation in
learning and would have a significant effect on price predictions
after 2007. Future work should further explore indicative market
factors for selecting an experience curve boundary and assess the
applicability of global versus regional experience curves.

5.3. Implications for historical analysis and forecasting

Historical CFL experience curves provide valuable insights for
understanding the development of the technology. As shown
above, CFLs experienced a steady sustained learning rate of �20%
through the 1990s and a sharply increased learning rate from 1998
to 2005. This information may be used to assess the impacts of
various programs occurring during that time by considering the
virtuous cycle of increasing adoption, subsequent cost reductions,
and further adoption. The experience curve can also be used as a
starting point to disaggregate cost reductions over time and
identify key contributing factors. For example, price reductions
throughout the 1990s may have been driven by economies of scale
and manufacturing improvements, while later reductions in the
2000s may have resulted from decreased profit margin in the face
of increasing competition. Methods to disaggregate these price
reductions are further explored in another report (Wei et al., in
press).

The experience curve methodology shown here also has po-
tential to aid in technology forecasting efforts. If the two-segment
curve is followed (as in the global case) one may expect further
sustained reduction of costs, while the three-segment curve (as in
the North America case) suggests a price floor has been reached.
These different trajectories from 2005 to 2007 would result in
vastly different results if projected forward. Further data collection
beyond 2007 would be needed to determine if this flattening of
the experience curve is a sustained change. Such behavior, where
the learning rate reaches zero, is expected under assumptions seen
in Grübler at al. (1998), which suggests that a product's learning
rate reaches zero during market saturation and senescence stages.
CFL market share peaked at �23% in 2007, declining to �18% by
2009, and has likely continued to decrease due to competition
from LEDs (Bickel et al., 2010).

Beyond choosing which regression model to project into the
future, the suite of possible future trajectories must also include
additional changes in the learning rate. The changes in learning
rate observed in this report, and others, indicate that reliance on
historical learning rates to predict future development should be
met with caution. While this may increase uncertainty in projec-
tions, it can more comprehensively capture the range of likely
scenarios. Additional steps to understand causation between
specific activities and changes in learning rate can help to reduce
uncertainty within the realm of possible future trajectories.
6. Conclusions and policy implications

Segmented experience curves for CFLs both globally and in the
North American market show learning rates of approximately 21%
prior to 1998 with a substantially increased learning rate after
1998. The increased learning rate is likely due to a combination of
factors: technology improvements, increased competition, and
changing trade environment, along with public deployment pro-
grams. Data from 2005 to 2007 shows a reduction in learning rate
which would have a substantial impact on future cost projections
if sustained.

The CFL experience curve and methodology demonstrated in
this work can be used to forecast future technology development
and inform policy and program planning. Program planning often
considers future technology adoption, and therefore cost reduc-
tion, when estimating program benefits. Use of all possible
learning or experience curve scenarios is useful in policy planning
to account for the many uncertainties surrounding technology
development.

In addition, this work can inform future decision-making re-
garding new technologies for which a similar or adjacent tech-
nology's historical learning curve is available. For example, other
lighting technologies such as LED will need substantial cost re-
ductions before they are competitive with incumbent technolo-
gies. Knowledge about the learning rate demonstrated by CFLs and
other lighting technologies, what contributed to those learning
rates, and how they changed over time, is useful in projecting
what range of learning rates LEDs may experience. This knowledge
can also inform policy-makers what programs and policies appear
to be correlated with an increased learning rate such as the DOE
sub-CFL procurement program and ENERGY STAR national
standards.

Future work should further examine the relationship between
regional and sub-regional markets of a given technology, how
component learning rates, particularly electronic ballasts, im-
pacted overall product learning rate, and how CFL adoption over
this time has saved energy and reduced greenhouse gases. In ad-
dition, application of the segmented regression method to other
technologies with less mature markets can provide insights to how
they are developing and how they may change in the future.
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