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a b s t r a c t

Policy goals to transition national energy systems to meet decarbonisation and security goals must
contend with multiple overlapping uncertainties. These uncertainties are pervasive through the complex
nature of the system, the long term consequences of decisions, and in the models and analytical ap-
proaches used. These greatly increase the challenges of informing robust decision making. Energy system
studies have tended not to address uncertainty in a systematic manner, relying on simple scenario or
sensitivity analysis. This paper utilises an innovative UK energy system model, ESME, which characterises
multiple uncertainties via probability distributions and propagates these uncertainties to explore trade-
offs in cost effective energy transition scenarios. A linked global sensitivity analysis is used to explore the
uncertainties that have most impact on the transition. The analysis highlights the strong impact of un-
certainty on delivering the required emission reductions, and the need for an appropriate carbon price.
Biomass availability, gas prices and nuclear capital costs emerge as critical uncertainties in delivering
emission reductions. Further developing this approach for policy requires an iterative process to ensure a
complete understanding and representation of different uncertainties in meeting mitigation policy ob-
jectives.
& 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

1.1. Importance of systemic analysis of uncertainty in energy policy

Energy policy makers at the national government level are
wrestling with a “trilemma” of challenges relating to energy dec-
arbonisation, security of supply and rising energy prices (DECC,
2011). These policy challenges have multiple overlapping un-
certainties, which are pervasive through the complex nature of the
system, and the long term consequences of decisions (Lempert
et al., 2003). This growing focus on uncertainty analysis in com-
plex systems is mirrored at the international level for the needs of
key energy and environmental decision makers (e.g., IPCC, 2014).
r Ltd. This is an open access article
The challenge of understanding, assessing and communicating
uncertainties is magnified by the explosion in the range and so-
phistication in the models and analytical approaches used (Davies
et al., 2014). In response to policy makers' difficulties in assessing
uncertainties, modellers have repeated calls to improve the fre-
quency, sophistication and transparency of uncertainty analysis in
computational modelling of energy, environmental and economic
interactions (Morgan and Small, 1992; Kann and Weyant, 2000;
Risbey et al., 2005; Pfenninger et al., 2014; Usher and Strachan,
2012).

There is a long track record of energy models underpinning
major energy policy initiatives, producing a large and vibrant re-
search community and a broad range of energy modelling ap-
proaches (Jebaraj and Iniyan, 2006). Modelling collaborations have
been an important tool to benchmark models, addressing specific
analytical questions (van Vuuren et al., 2006) and advancing the
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state-of-the-art in modelling (Hourcade et al., 2006). Throughout
this long track record there has been a tension between policy
makers who need to make robust decisions under pervasive un-
certainties, and modellers whose analytical outputs are designed
to produce insights (Huntington et al., 1982).

The most common approach for dealing with uncertainty in
large-scale energy modelling is local sensitivity analysis on key
inputs to which a model is expected to be most sensitive (Saltelli
and Annoni, 2010). However, such approaches are limited as they
fail to capture the importance and impact of multiple un-
certainties. This paper describes a novel approach using an in-
novative UK energy system model, ESME (Pye et al., 2014b), which
characterises multiple uncertainties via probability distributions
and propagates these uncertainties to explore trade-offs in cost
effective energy transition scenarios. A global sensitivity analysis is
then undertaken to explore the uncertainties that have most im-
pact in the long term mitigation pathways.
1.2. Application to UK decarbonisation pathways

The international scientific and governance communities have
reached a consensus that climate change presents a severe barrier
to future human well-being and livelihoods (IPCC, 2014). In re-
sponse, the UK was the first G20 country to legislate GHG reduc-
tion targets, of at least �34% by 2020 and exponentially declining
to �80% by 2050, relative to a 1990 baseline (HMG, 2008). A range
of policy mechanisms (DECC, 2011) are now in place to put the UK
on a path to meeting this long-term stringent target, with the
setting of five-year carbon budgets by the independent govern-
mental advisory body (CCC, 2008).

Although the UK is one of the few countries on track to meet its
GHG targets, the remit of UK energy and environmental policy has
been substantially aided by long term structural reform e.g., the
dismantling of the nationalised and unionised power sector, the
continued restructuring of the economy from industry to services
and the impact of the financial crisis and subsequent recession. As
the UK (similarly to other OECD economies) recovers from reces-
sion and hence pressures on emissions continue to grow, the de-
bate over strategies and costs of long term decarbonisation under
a range of national and global uncertainties is becoming ever more
heated (Ekins et al., 2011).

In its recent review of the 4th Carbon Budget (CCC, 2013), the
Committee on Climate Change (CCC) reiterated the need for early
action to reduce emissions out to 2030, to ensure the UK was on a
pathway to meeting the longer term 2050 target. It concluded that
the budget should be kept at the level provided in its original
advice to Government (CCC, 2010), rather than tightened, but that
the aim should still be to achieve early decarbonisation of the
power sector, in addition to strong action across other sectors. The
CCC deem this critical if the UK is to follow a cost-effective path
towards decarbonisation, and avoid the additional costs associated
with delayed action.

However, key uncertainties exist around the delivery and cost
of the 4th Carbon Budget and 2050 target, such as economic
growth and structural change, delivery capacity (including finan-
cing), technology costs and behavioural change. The uncertainties
are of fundamental importance, given the large investments re-
quired to fund this transition, and because these investment de-
cisions will result in long term consequences around the direction
of the transition. The CCC (2013) estimate that total capital costs of
scenarios to decarbonise the power sector to an intensity of 50 g
CO2/kWh by 2030 could be of the order of d200 billion
cumulatively.
1.3. Research aims and layout of the paper

The objective of this paper is to explore the impact of techno-
logical and economic uncertainties critical to delivery of a lower
carbon energy system. The task is performed using an energy
systems model (ESME) which provides a framework for the sys-
tematic analysis of multiple uncertainties on target delivery and
technology pathways out to 2050 (see Section 2). This assessment
of the complex and interacting energy system is strengthened by a
linked global sensitivity analysis which identifies key and non-
influential uncertainties affecting the cost-effective pathway. Sec-
tion 3 discusses selected results focusing on how uncertainties
impact on achieving emission reduction targets, the importance of
technologies and fuels in delivering targets, and the uncertainties
that are revealed as most critical in the transition to a low-carbon
energy system. In Section 4, we discuss the key insights, and in
Section 5, how understanding the impact of uncertainty on the
system is critical for policymaking, and on the opportunities for
improved modelling in the structuring, assessment and commu-
nication of key uncertainties.
2. Methods

2.1. Uncertainty in energy systems models

Since 2003, many energy system modelling studies have been
undertaken to support UK energy and climate strategy develop-
ment. Most studies have been deterministic in approach, capturing
the range of uncertainty using simple scenario sensitivity analysis
on parameters (DTI, 2003; Strachan et al., 2009; AEA, 2011). While
arguably playing a critical role in supporting the development of
UK long term strategy, many of these studies have not addressed
the uncertainties surrounding the transition to a low carbon sys-
tem in an integrated and systematic manner. Usher and Strachan
(2012) argue that applying a deterministic methodology to a
complex and multi-faceted area of strategy development that is
inherently uncertain is problematic. They highlight three key
problems with simple sensitivity analysis – (i) the probability of an
input value cannot be quantified, (ii) disparate sensitivity scenar-
ios make policy insights more difficult to determine and (iii) the
cost of uncertainty is unknown.

The strategies informed by such modelling have to consider
uncertainties that fall into questions of ‘post-normal science’
(Funtowicz and Ravetz, 1990), where both decision stakes and
uncertainty levels are high (Keirstead and Shah, 2013). The deci-
sions made about energy systems have significant consequences
(stakes are high) while the complexity of the system makes it
difficult to determine the outcomes of different decisions (un-
certainty is high). While the strategic decision has been taken to
transition to a low carbon economy in the UK, there remain a
multitude of decisions relating to investment that need to be
considered, and the policies to incentivise these investments.

In this paper, a probabilistic approach is used, combined with
an integrated systematic sensitivity analysis to explore the effects
of parametric uncertainty on the model outputs. Keirstead and
Shah (2013) argue that global sensitivity analysis techniques
should be used in conjunction with uncertainty analysis, to help
decision-makers gain a robust understanding of system behaviour.
Saltelli et al. (2008) define sensitivity analysis as the study of how
uncertainty on a model output can be apportioned to different
sources of uncertainty in the model input, whereas uncertainty
analysis is concerned with quantifying uncertainty in the model
output. In effect, global sensitivity analysis seeks to answer ques-
tions around what are the most important uncertainties in the
system.
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2.2. Uncertainty analysis using ESME model

Energy Systems Modelling Environment (ESME), developed by
the Energy Technologies Institute (ETI), is a fully integrated energy
systems model (ESM), used to inform the ETI's technology strategy
about the types and levels of investment to make in low carbon
technologies, to help achieve the UK's long term carbon reduction
targets (Heaton, 2014; Pye et al., 2014a). Built in the AIMMS en-
vironment, the model uses linear programming to assess cost-
optimal technology portfolios. The mathematical programme is
similar to that used in other bottom-up, optimisation models, such
as MARKAL-TIMES (Loulou et al., 2005), where the objective
function is to maximise total economic surplus, subject to pre-
defined technology capacity and activity constraints, as well as
policy constraints (e.g., Renewable Energy target). The total eco-
nomic surplus is calculated as the sum of the discounted system
wide costs, including the change in consumer surplus and costs
associated with technology investment and operation, and re-
source commodities.
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where Y are the years defined per time period t, DF is the discount
factor applied, IC, FC and VC are the investment, fixed and variable
costs of the production k, retrofit l, storage g and transmission x
technologies. RC refers to the set defining resources, the x group
are the system energy commodities and ElastC is the variable de-
fining the consumer surplus (reflecting demand response).

A key feature of the model is that uncertainty around cost and
performance of different technologies and resource prices is cap-
tured via a probabilistic methodology, using Monte Carlo sampling
techniques. A four step approach is used in the analysis; firstly, a
set of carbon prices are derived via a deterministic model run that
approximates the reductions required under a given target cap.
Secondly, a range of uncertainties are defined and introduced into
the model. Thirdly, the model is run in probabilistic mode using
the deterministically derived carbon prices to assess target deliv-
ery under uncertainty. Finally, sensitivity analysis is used to ex-
plore the impact of different uncertainties.
Table 1
Input assumptions characterised using probability distributions.

Input parameter Description Sourc

Investment costs – power generation Includes all power generation
technologies

Initial
to 20

Build rates – power generation For key technologies including CCS,
nuclear and wind

Own

Investment costs – hydrogen
production

Included all hydrogen production
technologies

ETI (a

Investment costs – cars For both small (A/B) and large (C/D)
cars

AEA (

Investment costs – heat pumps (HP),
district heating (DH)

HP fro

Resource availability – biomass Max annual availability of biomass
(incl. imports)

CCC (

Resource prices Including fossil fuels and biomass DECC
2.3. Approach to sensitivity analysis

Following the guidance and setting types described by Saltelli
et al. (2008), the goal of our sensitivity analysis is first defined, to
identify key uncertainties that impact on the likelihood of meeting
UK emission reduction targets. The following sensitivity analysis
settings are relevant – (1) Factor prioritisation, used to identify the
variables that after being fixed to their ‘true’ values would lead to
the greatest reduction in variance of the output, and (2) Factor
fixing, used to identify the factors of the model that, if left free to
vary within their specified ranges, would have no significant
contribution in the variance of the output.

The sensitivity analysis performed in this work is comprised of
two main steps; firstly, the correlation of each uncertain input
with the output variables of interest, namely total system cost and
total emissions, are investigated using scatterplots. Although
scatterplots provide a useful starting point, marginal differences
between factors can be difficult to differentiate. Secondly, a mul-
tivariate linear regression of the output variables is performed and
a sub-model of the original model for each output variable of in-
terest is derived. By means of the standardised regression coeffi-
cients (SRCs), ranking of uncertain input factors in each model
output is obtained, whose precision is subject to the accuracy of
the linear fit of the sub-model to the original model and to the
degree of correlation between the variables.

In a multivariate regression analysis, the regression coefficients
are a measure of the linear sensitivity of the outputs y to the in-
puts zj, with SRCs obtained by multiplying the original regression
coefficients by the ratio of the estimated standard deviations of zj
and y, to provide a useful measure of uncertainty importance for
the input factors (Morgan and Small, 1992). The main advantages
of using SRC as an uncertainty metric are both the lack of com-
plexity of their calculation and their independency of the units or
scale of the inputs and outputs being analysed.

It is common practice in other scientific fields to produce meta-
models of a more complex original model in order to reduce the
computational and analytical burden of producing a useful inter-
pretation of the results. In research focused on simulation mod-
elling of the built environment, Hygh et al. (2012) present multi-
variate regression as an energy assessment tool for early building
design. In their work the original model was a non-linear building
design model, and SRCs were used as a sensitivity measure to
determine the importance of the design parameters in building
energy consumption.

Although useful, SRC only captures first order interactions
within the model, not quadratic or higher order effects. In this
sense, Saltelli and Annoni (2010) highlight the fact that although
linear regression is in principle predicated on model linearity, it
can be taken further by being a good estimator of the degree of
e of uncertainty data

uncertainties based on 2020 ranges in DECC (2013a). Uncertainties extrapolated
50 based on different growth rates, according to maturity of technology.
assumptions. Annual build rates varied by 50%

s used in ESME v3.2)

2012) and Element Energy (2013)

m University of Cardiff Chaudry et al. 2014), DH from ETI (as used in ESME v3.2)

2011). Bioenergy review.

(2013b) for fossil fuels. E4tec (2012) and Redpoint (2012) for biomass.



Fig. 1. Probability of % deviation from targets across model years under Reference carbon prices.

Fig. 2. Impact of change in carbon price on probability of meeting targets in 2030
and 2050.

1 These carbon prices differ significantly from those used in the CCC analysis,
and for government policy appraisal (DECC 2009). However, CCC’s cost effective
pathway is not determined solely by investments only incentivised by a carbon
price, recognising earlier deployment of technologies that are not cost-effective is
necessary to ensure timely development and to reduce long term risk concerning
their deployment.
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non-linearity of the model by means of the model coefficient of
determination R2. It is important to make clear that each of the
regression models are unique for a given Monte Carlo run, and
therefore the results of this exercise are specific to a given model
run. Following this logic, the regression sub-models obtained for
the total cost and emissions outputs in the form of Eq. (3) are not
intended to be used for forecasting or other prediction purposes
other than ranking the importance of the uncertain input variables
for that specific Monte Carlo run.

The regression model obtained for each of the output variables
under analysis follows a generic linear form as expressed below:
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where i represent the 500 Monte Carlo samples obtained for each
of the zj uncertain parameters, b0 is the constant of the regression
model and bZj are the regression coefficients. Each sub-model has a
specific value of R2 which informs of the linearity of the original
model. Eq. (3) shows in a matrix form the structure of the data
obtained in the analysis, where Zr,N are the points obtained by the
Monte Carlo sampling, BN are the original model coefficients and
yN are the output obtained with the ESME model.
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2.4. Model set-up and selection of uncertainties

2.4.1. Determining reference carbon prices
The first step in the analysis is to align the model to assump-

tions underpinning the 4th Carbon Budget review (CCC, 2013).
This provides the basis for deriving reference carbon prices which,
in the deterministically run model, deliver the carbon budgets and
long term target. Alignment means that the emission target is
consistent with national policy, includes known policies such as
the renewable energy target, and uses a set of input assumptions
consistent with government for those technologies and com-
modities which are of most interest in respect of system un-
certainties. An overview of the assumptions is provided in Ap-
pendix A.

The derived carbon prices from this run are d13/tCO2 in 2020,
and d133, d226 and d421/tCO2 for each 10 year time step out to
2050. They reflect the marginal costs of domestic mitigation, given
the representation of the energy system, and the different tech-
nology and resource constraints. They are broadly within the range
of estimates observed in other energy system modelling studies
(AEA, 2011).1

The deterministic pathway can be characterised by changes to
key sectors. The 2030 power generation profile has a carbon in-
tensity of 89 gCO2/kWh and delivers an 80% reduction on 2010
levels, compared to 88% in the CCC (2013) analysis. Out to 2050,
the role of gas continues due to increased build of CCGT w/CCS
(40 GW installed by 2050), while nuclear capacity grows sig-
nificantly, to 32 GW by 2050. The use of IGCC biomass generation
with CCS means that carbon intensity of generation is negative by
2040. Transport sector emissions are 34% lower in 2030 relative to
the 2010 level, compared to the CCC reduction level of 42% (re-
lative to 2012). This is due to slower penetration of electric ve-
hicles in the ESME run; take-up only occurs at very high volumes
in the 2030s, while in the CCC analysis, 60% of new car purchases
are electric vehicles by 2030. Buildings sector emissions fall by
37%, relative to 2010 levels, a larger reduction than in the CCC
analysis, reflecting a more optimistic view concerning the pene-
tration of district heating. A 39% reduction in industry sector
emissions is in line with the CCC analysis.

2.4.2. Model uncertainties
The model input uncertainties were identified both through

expert consultation with the UKERC uncertainties project team
(Watson et al., 2014) and based on the CCC (2013) analysis, which
identifies key uncertainties based on the emergence of critical
technologies and fuels underpinning the pathway. Given the lack



Fig. 3. Scatterplots of nuclear power plant costs, gas prices and biomass resource availability versus total system costs.

Table 2
Statistical tests for the multivariate regression analysis.

Statistic Description Benchmark value

R-square Goodness of the model fit-Line-
arity evaluation parameter

�0.9

Β-Partial Correlation
coefficient

Ranking of variables by their
impact on the variance of the
output

Rank

p-Value Relevance of the parameter in
the model

o0.05

Variance inflation
factor

Measure of collinearity 410

Pearson correlation Correlations between variables 40.8
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of available data on future uncertainties, a compromise was made
to take a more simplistic but systematic approach, consulting with
expert colleagues, focusing on key delivery technologies and re-
viewing range estimates from the literature (Table 1). From this,
probability distributions were constructed, relying on triangular
distributions. As argued in Biegler et al. (2011), and Emhjellen et al.
(2002), in view of a lack of data, triangular distributions are valid
for representing preferences over a certain value with symmetric
or asymmetric variations around it. Appendix A contains further
details of the modelling set-up and key assumptions.

Monte Carlo simulations were used to propagate the prob-
ability distributions on input assumptions through the model. The
number of model runs that adequately cover the uncertainty space
were estimated based on Eq. (4), introduced by Morgan and Small
(1992) for a 95% confidence interval. The precision of the interval
selected was based on estimating the true mean of the sample
with less than 1% error. The number of model runs required to
obtain less than 1% error in the mean estimation was 475.

⎜ ⎟⎛
⎝

⎞
⎠n

cs
w
2

£ 4

2
>

( )

where c is the deviation enclosing 95% of the probability, s is the
standard deviation of the sample (d7.41�109) and w is the width
of the interval desired (d2.63�109).

The model is then run for 500 simulations,2 propagating the
sampled values through each simulation. As demand response is
also being characterised in this analysis, each simulation requires a
calibration run to estimate demand curves, increasing the model
run number to 1000. The model is run in 10 year periods, for a
time horizon of 2010–2050. A discount factor of 3.5% is used, as
per UK Government policy appraisal guidance in The Green Book
(HMT, 2003), to discount system wide costs back to 2010 (as per
standard NPV calculation). Three sets of simulations have been
run. The first uses the set of carbon prices from the deterministic
reference pathway, to assess how uncertainty impacts on meeting
mid to long term carbon targets. Two additional sets of simula-
tions are run, under lower and higher carbon prices (þ/�25%) to
investigate how changes in carbon prices impact on the probability
of target delivery.
3. Results

3.1. Meeting targets under uncertainty

By running the model under a set of carbon prices, in effect
2 For computational reasons, a sample size of 500 was used.
placing a carbon tax on each tonne of CO2, we can assess whether
or not future emission reduction targets are achieved. Carbon
prices are being used as a proxy target, having been derived from
running the model deterministically under an emission cap (Sec-
tion 2.4.1), representing the 4th Carbon Budget and longer term
2050 target. Technology and resource uncertainties mean that
these carbon prices may not deliver the necessary reduction, or
may over-deliver.

Fig. 1 shows the probability of meeting the targets in a given
year. The probability of missing increases later in the time period
due to increasing uncertainty. In 2050, 42% of runs do not achieve
the target while in 2030, the probability is 27%. In addition, the
level of deviation in 2050 is much larger than in 2030, where it
never exceeds 5%; of course, a 1% deviation in 2030 is equivalent to
emissions that are three times higher than in 2050. The observed
pattern is one that would be expected; lower uncertainties in the
near term mean that the reference carbon price is going to ensure
a higher percentage of simulations meet the target, and that the
average deviation from the target value will be lower.

From this, we can surmise that a given carbon price may or may
not be sufficient to incentivise action. How far this uncertainty is
to be mitigated (and by when) is a question for policy makers. This
will in part be dependent on the impact of an incremental rise in
the carbon price on the probability of meeting a target or not. To
explore this, a set of high and low carbon price simulations were
run, based on a 25% increase/decrease on the reference carbon
prices.3 The results show how an increase in carbon price can in-
crease the probability of meeting the target, thereby mitigating
uncertainty (Fig. 2). Carbon price sensitivity is high in 2030; a d35
reduction in price (or 26% reduction) reduces the probability of
meeting the target to zero. Conversely, a d30 increase leads to a
100% probability of meeting the target. This sensitivity in the mid-
3 DECC (2009) actually assume a þ/�50% range on their carbon price esti-
mates, albeit on lower absolute values.



Fig. 4. Standard regression coefficients (SRCs) parameter rank from multivariate regression analysis – total system costs.
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term means an insufficient price can adversely affect the prob-
ability of staying on the proposed transition pathway but that a
modest increase can strongly mitigate the uncertainty of meeting
the target level.

In 2050, carbon price sensitivity is much lower, as shown by the
dashed series in Fig. 2. Therefore, managing the probability of
meeting the target (or not) in 2050 requires much larger shifts in
the carbon price. A limitation of this analysis is that it only uses
two additional sets of simulations to construct this sensitivity
metric; a more robust relationship between the carbon price and
target delivery could be developed by running a larger number of
alternative carbon price simulations.

3.2. Identifying key uncertainties through sensitivity analysis

Sensitivity analysis helps identify those input uncertainties that
are influential in determining the probability of meeting the tar-
gets or not, and directs further investigation. Our chosen output
metrics for this analysis are total system costs (as this is the
model's objective function) and total emissions (as the policy re-
levant constraint).

The first step of the sensitivity analysis is to observe scatter-
plots, to assess how correlated input uncertainties are with the
above output metrics. For total system costs, the obvious correla-
tions include, from left to right in Fig. 3, nuclear capital costs, gas
price and biomass resource availability (total cost is on vertical
axis). This suggests that all three factors independently have an
important impact on total system costs. For total CO2 emissions,
biomass resource availability provides the only obvious pattern
(with lower emissions at higher availability).

A second step is to perform a multivariate linear regression,
using standardised regression coefficients (SRCs) as first order
sensitivity indices to rank the uncertain parameters by their im-
pact on the outputs analysed. In order to test the validity of these
indexes we check three statistical metrics of each of the regression
models obtained by means of the multivariate linear regression
equations (see Eq. (3)) obtained for the two output metrics of in-
terest as presented in Table 2.

The models obtained for the total system costs and emissions
show a correct goodness of fit with R-squared values of 0.99 and
0.874 respectively proving the goodness of fit of the corresponding
linear regression models to the data and the linearity of the ori-
ginal model. Once the validity of the models is tested, the ranking
of the uncertain parameters is performed based on the absolute
values of their respective SRCs. The initial ranking is then filtered
by the p-values or significance levels obtained for each parameter.
The parameters with p-values lower than 0.05 are considered as
important or otherwise removed from the rank.

Then potential collinearity problems of the model are explored
by using the variance inflation factor (VIF) metric. The parameters
presenting VIF values higher than 10 are removed from the im-
portance rank. VIF is an indicator of the correlation of one para-
meter with others in the model, and therefore separated from the
analysis the importance effect from purely correlation effects. A
similar analysis is performed for the least influential parameters in
the model. The results of the sensitivity analysis and the respective
rank of most (factor prioritisation) and least influential (factor
fixing) parameters for the total system costs are presented in
Fig. 4.

The most important parameters include those revealed in the
scatterplots, particularly gas price and biomass availability. Nu-
clear power costs are important, although much less so than the
aforementioned inputs. The continued importance of gas in CCS
power generation means a strong impact on system costs when
resource cost increases, and highlights potential security of supply
risks. Reduced availability of biomass has significant implications
for costs, given its critical use in CCS technologies in the longer
term. Uncertainties of less relevance include biomass import costs
and a range of renewable technologies, including geothermal, tidal
barrage and range, and recovered bioenergy based power tech-
nologies. Imported biomass cost uncertainty is less important in
later periods, as the model wants to utilise biomass as much as
possible, and therefore availability is key as opposed to cost. The
range of renewable technologies appear less important as they
emerge in few of the model simulations.

Concerning emission levels in 2050, the most influential para-
meter is biomass availability (Fig. 5). Gas prices, nuclear power
costs, and a range of renewable generation technologies follow in
the ranking, albeit having much smaller values. Interestingly, some
of the technologies do not appear in the cost metric ranking,
highlighting the potential importance of selected technologies for
emission reduction, despite limited impact on costs. Least influ-
ential parameters are broadly consistent with the cost metric
analysis.

3.3. Sector based insights

The results in Section 3.1 provide the aggregate impact of un-
certainty on results, while Section 3.2 begins to identify the key
uncertainties. Guided by the sensitivity analysis, this section



Fig. 5. Standard regression coefficients from multivariate regression analysis – total system emissions.
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explores in more detail the role of different technologies by sector,
and those prominent in the delivery of emission reduction targets.

3.3.1. Power generation system evolution
A first observation, despite uncertainties, is the criticality of

power sector decarbonisation. Carbon intensity decreases sub-
stantially across all simulations, from a current level of just under
500 gCO2/kWh, reflecting the cost-effective mitigation available in
this sector (Fig. 6). However, it is also evident that carbon intensity
levels are generally lower in simulations meeting the target (MT)
versus those that do not (NMT), and supports the CCC guidance
that a low carbon intensity of generation is required by 2030 to
stay on a pathway to meeting the long term target (CCC, 2013). The
important role of biomass-based CCS technologies in 2050 is also
evident, with negative carbon intensities achieved through cap-
turing and storing emissions from biomass deemed to be carbon
neutral.4

System uncertainties do not appear to undermine the invest-
ment in low carbon generation (as observed above). All simula-
tions also show high levels of electrification, with limited differ-
ences in generation levels. The distribution of generation by
technology in 2030 is shown in Fig. 7. The main difference is be-
tween CCGT and nuclear; nuclear generation is on average higher
in simulations that meet the target, while CCGT is lower. The
probability of a generation level from CCGT w/CCS is broadly
consistent between the two time series, and higher than other
generation types, indicating the importance of this technology in
2030 irrespective of uncertainties.

In 2050, the generation by technology does not differ sig-
nificantly between the two sets of simulations, with nuclear or
CCGT w/CCS dominating. The carbon intensity differences ob-
served in Fig. 6 are primarily due to the level of uptake of biomass
IGCC w/CCS. With most technologies being near-zero or zero car-
bon, this technology drives differences in the carbon intensity le-
vels, even at relatively low levels of generation. Uncertainty
around gas prices and nuclear costs appear to be key determinants
of technology investment decisions in the power sector, as shown
by the sensitivity analysis.
4 This carbon intensity figure does not reflect negative emissions from hy-
drogen generation, where it uses hydrogen produced via biomass w/CCS
technology.
3.3.2. Road transport car technology uptake
Car-based transport, accounting for 55% of transport emissions

in 2010, requires strong mitigation action to meet targets. Differ-
ences between simulations that meet or do not meet targets are
less evident in 2030, with the role of the sector in mitigation more
pronounced in the longer term. Uptake of hybrid and electric ve-
hicles is slightly higher in simulations that meet the target (Fig. 8).
The continued role of ICE vehicles reflects more effort in other
sectors, the use of biofuels and assumed efficiency gains by 2030.

By 2050, the role of electric vehicles is much more established,
with over 25 million vehicles in 65% of the simulations (irre-
spective of meeting the target or not), reflecting the electrification
of the system. Where the target is met, those simulations tend to
show a stronger role for hydrogen and reduced role for hybrids.
However, hybrids do still play a role due to use of biofuels. The
doubling of biofuel share relative to 2030 levels reflects mitigation
efforts towards biofuel production with CCS, allowing for negative
emissions. Without such technologies, it is likely that the role of
hydrogen and electric vehicles would be stronger in 2050.

3.3.3. Heating provision in buildings
Heating provision, which accounts for the largest share of en-

ergy demand in the building sector, is largely unaffected by system
uncertainties. CO2 prices deliver similar levels of heat pump up-
take and district heating in both 2030 and 2050 across most si-
mulations. The average space heating production reflects the
profile observed in the deterministic run, with low standard de-
viations for any technology type (range of 5–15).

In part, this reflects the limited uncertainties accounted for in
the buildings sector. In future analysis, many more uncertainties
could be explored, also focusing on infrastructure build and de-
mand side measures, not just technology costs. This could include
uncertainty around the feasibility of district heating supply op-
tions, and investment cost implications e.g. decentralised versus
centralised supply options, commercialisation of marine heat
pumps and geothermal options, etc.

3.3.4. Biomass use
Highlighted in the sensitivity analysis, biomass availability is

critical to meeting the 2050 target. This is evident by the much
higher levels of biomass consumption in those simulations where
the target is met (Fig. 9); average biomass use is 349 TWh com-
pared to 195 TWh. The apparent impact of biomass resource
availability is linked to its use in CCS technologies for power



Fig. 6. Cumulative probability of carbon intensity of electricity in 2030 and 2050 in Sims meeting/not meeting target (MT/NMT).
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production and biofuel production, and the model predisposition
towards the use of biomass in CCS as a critical mitigation option in
the longer term. In 2030, there is limited difference between the
simulation cases.
Fig. 7. Probability of electricity generation levels being at least at a specific level in
2030 in Sims meeting/not meeting target (dashed time series denote runs not
meeting target).
4. Discussion

System wide uncertainty has a strong impact on the invest-
ment choices required to decarbonise the energy system in the
mid to long term. Using a probabilistic energy systems modelling
approach, the role of these uncertainties on achieving carbon
targets has been explored. The results of the analysis highlight that
the carbon price level is critical to ensuring decarbonisation is
sufficient to deliver the UK's strategy objectives, and to mitigate
this uncertainty.

In 2030, the level of carbon price is very sensitive; set too low
(less d30/tCO2) results in a low likelihood of achieving the required
reduction levels. However, this risk can be mitigated by a relatively
modest increase. In infrastructure planning terms, 2030 is not far
off, and therefore incentive levels via a carbon price need to be
carefully considered. Achieving the targets in the mid-term re-
quires a lower carbon intensive generation mix, delivered by
higher levels of nuclear, CCGT w/CCS, and other renewables, a
lower carbon car vehicle fleet, notably through the higher uptake
of hybrid vehicles and lower ICE vehicles in operation, and in-
creasing levels of district heating provision and use of heat pumps
for heat provision in buildings.

In the longer term (to 2050), uncertainties have a stronger
impact on investment choices in both the power generation, fuel
production and transport sectors. This results in fewer simulations
(58%) meeting the target than observed in 2030, and a larger de-
viation from the target level. Incremental changes in carbon prices
have a more limited impact on improving the probability of
meeting the target level. While it is evident that policy makers do
not need to determine incentive levels for investment for 2050
now, this analysis does show that the longer term strategy de-
velopment does need to be cognisant of large uncertainties in the
long term. If we consider our uncertainty focus in this analysis to
be narrow, as argued later, this insight is even more critical.

A key uncertainty determining reduction levels in 2050 is the
availability of biomass, ranked as very influential for both costs
and emission metrics in the sensitivity analysis. Higher availability
increases the probability of meeting the target, as the option to use
biomass in CCS plant (either for power generation or biofuel
production) is extremely attractive. Other key uncertainties for
power generation are the price of gas and capital cost of nuclear.
Both technologies contribute the most significant share of gen-
eration, although the relative contribution by and success in
meeting targets is dependent on these uncertainties. Given the
sensitivity of the model to these three key uncertainties, our as-
sumptions used merit further consideration.

The analysis also highlights a range of input uncertainties that
do not impact on the model outputs. This includes a number of
renewable technologies, which do not appear in many of the si-
mulations. Based on an iterative analysis, these uncertainties could
therefore be removed, narrowing the focus and complexity of the
analysis.
5. Conclusions and policy implications

Developing strategy for deep decarbonisation of the energy
system has to contend with pervasive and overlapping un-
certainties. This paper highlights the impact of uncertainty on
meeting reduction targets, and the importance of adequate price
signals for ensuring investment in the low carbon energy system.
It also highlights the importance of the electricity system in the
transition, and the importance of key low carbon technologies,
which strongly impact the cost of the transition as shown by
sensitivity to gas price and nuclear capital costs. By 2050, target
stringency steers system investment towards the use of CCS
technologies with biomass. The predisposition to these technology
types requires policy makers to further explore the uncertainties
around biomass availability, and CCS technology availability.

The analysis presented in this paper could be extended. It is
only the first stage of an iterative process between analyst and
policy maker. Further discussion would help base the analysis in
policy reality, and could be framed around the following



Fig. 8. Probability of car stock level by type being at least at a specific level in 2030 and 2050 in Sims meeting/not meeting target (dashed time series denote runs not
meeting target).

Fig. 9. Probability of biomass consumption being at least � TWh in 2030 and 2050
reflecting uncertainty on resource availability (dashed time series denote runs not
meeting target).

5 There is a bias towards the power generation sector and transport sectors,
which account for 75% of all uncertain inputs.
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questions: (1) were all key parametric uncertainties introduced,
and were the distribution used for those parameters sufficiently
broad to capture all plausible futures? For example work to
identify the nature, location and level of uncertainties through
different approaches, such as expert elicitation (Usher and Stra-
chan, 2013), model uncertainty characterisation or more sys-
tematic review of the literature, and (2) how does structural un-
certainty impact on model outputs? Based on this discussion, (3)
how do we adjust our analysis to either streamline, add or remove
uncertainty?

We believe that this iterative process could significantly en-
hance strategy development. While not the same, it borrows two
important concepts from long term planning analysis process set
out by Lempert et al. (2003), that is to explore the many different
plausible futures generated by the modelling, and iterate with the
policy community in determining what matters.

There are a number of areas for developing this research, in
addition to the iterative process proposed above. Firstly, a broader
view of the uncertainty space could provide more insightful re-
sults. Our analysis, quite reasonably, focuses on commodity and
technology cost and performance uncertainties; however, explor-
ing broader uncertainties e.g. ‘in–out’ possibilities for technologies
such biomass CCS, could be informative of the many different
plausible futures. We argue that broadening the analysis of the
uncertainty space is required in order to start discounting un-
certainties that appear inconsequential in the model outputs.
Secondly, further work is needed to elicit uncertainty distributions
for use in the modelling. Thirdly, exploration of structural un-
certainty in the model is required. For example, it would be useful
to understand why the buildings sector shows limited divergence
from the deterministic pathway, or whether this reflects limited
characterisation of the parametric uncertainties across this sector.5

In conclusion, this paper approaches the question of un-
certainty using a probabilistic approach combined with sensitivity
analysis. The strengths of this approach are apparent; it identifies
(based on predefined uncertainties and model framework) the key
assumptions that really matter, when ranked against all others. For
policy, this additional understanding is fundamental to formulat-
ing strategies that recognise the key uncertainties, and their im-
pact on achieving deep and sustained decarbonisation.
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Appendix A. Overview of model assumptions

This appendix provides an overview of updated model as-
sumptions used in ESME v3.2. As part of the process of making the
model more consistent with government assumptions, the fol-
lowing updates were made, and are further detailed in this
appendix.
�
 Power sector costs (and learning), based on the latest estimates
published by DECC (2013a).
�
 Transport sector costs and performance characteristics, used in
recent CCC (2013) analysis (sourced primarily from AEA (2012),
Element Energy (2013)).
�
 Fossil resource prices from the latest updated energy projec-
tions (UEP) publication (DECC, 2013b).
�
 Biomass prices based on information from E4tec (2012) and
Redpoint (2012).
�
 Biomass resource availability estimates based on the bioenergy



Table A1
Power sector CAPEX assumptions, d/kW.

Technology 2020 2030 2040 2050 2050
(Low)

2050
(High)

Uncertainty
growth

PC coal 1338 1322 1305 1289 1115 1462 Low
PC coal with
CCS

2347 2225 2092 1987 1367 2955 High

IGCC coal 2283 2257 2233 2218 1288 3149 Mid
IGCC coal with
CCS

3511 3350 3198 3111 1209 4715 High

CCGT 610 601 593 587 451 736 Low
CCGT with CCS 1418 1330 1253 1201 574 1858 High
OCGT 438 433 429 425 246 443 Low
H2 turbine 747 724 701 654 326 982 Mid/high
Macro CHP 650 633 615 581 502 659 Low
Nuclear 4649 4310 3998 3763 2446 5765 Mid/high
Biomass fired
generation

2530 2346 2180 2038 1168 2892 Mid

IGCC biomass
with CCS

5726 5463 5216 5074 1638 8511 High

Incineration of
waste

4900 4294 3780 3436 3058 3720 Low

Anaer. diges-
tion gas plant

4180 4102 4032 3962 2300 6456 Mid

Anaer. diges-
tion CHP
plant

4200 4200 4200 4200 2438 6843 Mid

Oil fired
generation

4870 4812 4749 4689 4057 5321 Low

Offshore wind 2570 2285 2034 1856 941 2836 Mid/high
Onshore wind 1500 1374 1259 1174 682 1544 Mid
Hydro power 3150 2908 2683 2496 2496 2496 Low
Tidal stream 3200 2878 2596 2389 1125 3400 High
Wave power 4610 3971 3430 3089 1478 3588 High
Tidal range 3000 2885 2775 2699 892 4506 Mid/high
Severn barrage 2330 2330 2330 2330 752 3908 High

nUncertainty growth rates: Low – 1%, mid – 2.5%, Mid/high – 3.75%, High – 5%.

Table A2
Power sector O&M costs, d/kW.

Technology Fixed O&M, d/kW/Yr Variable O&M,
d/KWh

2020 2030 2040 2050

PC coal 60.65 59.93 59.14 58.40 0.0190
PC coal with CCS 58.89 55.83 52.50 49.86 0.0020
IGCC coal 100.91 99.77 98.70 98.03 0.0016
IGCC coal with CCS 140.54 134.08 128.00 124.53 0.0020
CCGT 28.45 28.02 27.65 27.37 0.0001
CCGT with CCS 30.07 28.20 26.55 25.46 0.0020
OCGT 13.20 13.06 12.93 12.83 0.0001
H2 turbine 0.00 0.00 0.00 0.00 0.0000
Macro CHP 51.62 50.24 48.87 46.11 0.0001
Nuclear 70.59 65.44 60.70 57.13 0.0030
Biomass fired
generation

83.86 77.75 72.26 67.54 0.0050

IGCC biomass with CCS 58.40 58.40 58.40 58.40 0.0010
Incineration of waste 179.49 171.24 163.49 159.05 0.0019
Anaer. digestion gas
plant

183.30 160.62 141.38 128.55 0.0250

Anaer. digestion CHP
plant

299.00 293.41 288.39 283.43 0.0300

Oil fired generation 372.70 372.70 372.70 372.70 0.0200
Offshore wind 0.00 0.00 0.00 0.00 0.0000
Onshore wind 89.24 79.35 70.62 64.44 0.0020
Hydro power 25.77 23.61 21.63 20.18 0.0000
Tidal stream 36.81 33.98 31.36 29.17 0.0100
Wave power 95.62 86.00 77.58 71.38 0.0010
Tidal range 79.13 68.17 58.88 53.03 0.0000
Severn barrage 36.58 35.18 33.84 32.92 0.0000

Table A3
Power sector build rate assumptions for key technologies, GW/Yr

Technology 2020 2030 2040 2050 2050 (low) 2050 (high)

CCS technologies 1 2 2 2 1.5 2.5
Nuclear 1 1 2 2 1.5 2.5
Onshore wind 1.5 1.5 1.5 1.5 1.125 1.875
Offshore wind 2 3 3 3 1.5 4.5

6 For population projections, ONS’s ‘low migration’ variant is used, consistent
with that used by the OBR in their forecasts.

7 To retain the uncertainty in these periods, the 2010 value is inflated. Inflated
CAPEX costs for 2010 do not impact on model solution as there is no investment in
2010, as it is a historic period.
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review by the CCC (2011).

Energy service demands were not updated; the ESME Reference
scenario was used, and is consistent with government demand
projections from a range of models (as of April 2013), including the
DECC energy model, and DfT transport demand models, including
NTM. Key drivers underlying the demands include GDP growth
estimates from the Office for Budget Responsibility (OBR, 2012)
and population estimates from the Office for National statistics
(ONS).6

Where presented, all cost data are expressed on a 2010 year
basis.

Power sector

Power sector CAPEX assumptions are based on estimates in the
main, with DECC and other international learning rates applied.
High – low estimates are initially based on range values, for date of
build (2020/2025);7 out to 2050, these uncertainties are assumed
to grow by different rates, as highlighted in Table A1.

In the model, investments are annualised using a capital re-
covery factor (CRF) of 10% across all technologies. CCS retrofit
technology cost assumptions in the model have been made con-
sistent with the cost assumptions shown above. Operation and
maintenance costs are listed in Table A2 below.

Build rates assumptions used in the model for key selected
technologies are shown in Table A3.

Transport sector

Only car vehicle estimates have been updated in ESME, as the
focus of the uncertainty analysis. Estimates for CAPEX (including
uncertainty ranges) and fuel efficiency are from Element Energy
(2013) and AEA (2012), and listed in Tables A4 and A5.

Resource prices and availability

Fossil fuel resource prices, shown in Table A6, are based on
those used in the annual DECC UEP publication (DECC, 2013a,
2013b). The ranges specified are used to determine the uncertainty
across prices. Domestic and imported biomass prices (and ranges)
are based on estimates from E4tec (2012) and Redpoint (2012)
analyses for Government.

The biomass availability range is based on the three scenarios
considered in the CCC Bioenergy Review (2011), with biomass
availability between 100 and 500 TWh, with 200 TWh as a central
value.

Demand response

Price elasticity factors used in this analysis are shown in Table
A7, and are from a paper by Pye et al. (2014a). Only the central
estimates have been used, with demand response assumptions
being held deterministic.



Table A4
Transport sector Car CAPEX assumptions, d/vehicles.

Vehicle type Class 2020 2030 2040 2050 2050 (low) 2050 (high)

Car ICE A/B segment 7581 8210 8696 8886 8998 8098
Car CNG A/B segment 9258 10025 10619 10852 10987 9889
Car hybrid A/B segment 9339 8866 8926 8951 8958 8063
Car PHEV Short range A/B Seg 12554 10196 9980 9764 9548 8116
Car PHEV Med range A/B Seg 13572 11022 10154 10086 10009 8507
Car PHEV Long range A/B Seg 14590 11849 11359 10868 10378 8821
Car battery A/B segment 18447 12524 9923 10056 10125 8100
Car hydrogen FCV A/B segment 57351 23671 12727 11542 11242 8994
Car ICE C/D segment 13673 14806 15283 15618 15813 14232
Car CNG C/D segment 17695 19161 19779 20212 20465 18418
Car hybrid C/D segment 16843 15990 15687 15730 15744 14170
Car PHEV Short range C/D Seg 20483 16635 16426 16216 16007 13606
Car PHEV Med range C/D Seg 22143 17984 16887 16775 16646 14149
Car PHEV Long range C/D Seg 23804 19333 18686 18038 17391 14783
Car battery C/D segment 30361 20613 18256 18502 18628 14902
Car hydrogen FCV C/D segment 93326 37894 22030 19849 19298 15439

Table A5
Transport sector car efficiency assumptions, KWh/km.

Technology Class Fuel 2010 2020 2030 2040 2050

Car ICE A/B segment Liq. Fuel 0.56 0.46 0.38 0.33 0.31
Car CNG A/B segment Gas 0.67 0.55 0.45 0.40 0.37
Car hybrid A/B segment Liq. Fuel 0.43 0.37 0.32 0.29 0.27
Car PHEV Short range A/

B Seg
Liq. Fuel 0.31 0.23 0.19 0.17 0.15

Elc. 0.07 0.06 0.05 0.05 0.05
Car PHEV Med range A/B

Seg
Liq. Fuel 0.21 0.15 0.13 0.11 0.10

Elc. 0.10 0.09 0.08 0.07 0.07
Car PHEV Long range A/B

Seg
Liq. Fuel 0.10 0.08 0.06 0.06 0.05

Elc. 0.14 0.11 0.10 0.10 0.09
Car battery A/B segment Elc. 0.17 0.14 0.13 0.12 0.12
Car hydrogen
FCV

A/B segment H2 0.24 0.21 0.19 0.17 0.16

Car ICE C/D segment Liq. Fuel 0.64 0.52 0.43 0.38 0.35
Car CNG C/D segment Gas 0.79 0.64 0.53 0.47 0.43
Car hybrid C/D segment Liq. Fuel 0.49 0.43 0.37 0.34 0.31
Car PHEV Short range C/

D Seg
Liq. Fuel 0.36 0.27 0.23 0.20 0.18

Elc. 0.07 0.07 0.06 0.06 0.06
Car PHEV Med range C/D

Seg
Liq. Fuel 0.24 0.18 0.15 0.13 0.12

Elc. 0.11 0.11 0.10 0.09 0.09
Car PHEV Long range C/D

Seg
Liq. Fuel 0.12 0.09 0.08 0.07 0.06

Elc. 0.15 0.14 0.13 0.12 0.12
Car battery C/D segment Elc. 0.19 0.18 0.16 0.15 0.14
Car hydrogen
FCV

C/D segment H2 0.30 0.26 0.23 0.22 0.20

nActivity per vehicle is 13533 km/y. For PHEVs, the efficiencies for both electricity
and liquid fuel would be applied for each km, and represent the annual (fixed) ratio
of fuels used.

Table A6
Resource price assumptions, p/kWh.

Resource 2010 2020 2030 2040 2050 2050 (low) 2050 (high)

Gas 1.53 2.52 2.52 2.52 2.52 1.44 3.60
Coal 0.87 1.10 1.10 1.10 1.10 0.83 1.48
Petrol 3.92 5.59 6.30 6.96 7.41 3.09 11.95
Diesel 4.29 6.11 6.90 7.62 8.11 3.38 13.09
Liquid fuel 4.11 5.85 6.60 7.29 7.76 3.23 12.52
Aviation fuel 3.36 4.79 5.40 5.96 6.35 2.65 10.24
Biomass 1.80 1.80 1.80 1.80 1.80 1.50 2.50
Biomass Imports 2.16 2.25 2.34 2.43 2.52 2.00 5.00

nUranium and imported biofuel commodity prices have not been updated from
those in v3.2.

Table A7
Elasticity input parameters by energy service demand.

ESD name Sector Low Central High

Aviation Domestic Passenger Transport �0.50 �0.70 �1.50
Aviation International Passenger Transport �0.40 �0.60 �1.00
Rail Passenger (electric and
diesel)

Transport �0.60 �0.80 �1.10

Rail Freight Transport �0.01 �0.03 �0.05
Road Passenger Car (2 size
classes)

Transport �0.15 �0.30 �0.50

Road Passenger Bus Transport �0.50 �0.70 �1.00
Road Freight Goods Vehicle
(heavy and medium))

Transport �0.05 �0.20 �0.30

Road Freight Light Goods Vehicle Transport �0.10 �0.25 �0.35
Maritime International Freight Transport �0.01 �0.03 �0.05
Maritime Domestic Freight Transport �0.01 �0.03 �0.05
Dwellings (3 density types�high,
medium, low)

Residential �0.10 �0.25 �0.40

Appliances Residential �0.05 �0.15 �0.30
Cooking Residential �0.05 �0.15 �0.30
Air Conditioning Residential �0.05 �0.15 �0.30
Commercial Floorspace Comm./Public

sector
�0.01 �0.10 �0.15

Public Floorspace Comm./Public
sector

�0.01 �0.10 �0.15

Industry (8 subsectors) Industry �0.01 �0.03 �0.05
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