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H I G H L I G H T S

� A new energy efficiency rating system for the residential building was developed.
� The incentive and penalty programs were established using an advanced CBR model.
� The new system was established using reasonable and fair standards.
� It allows all residents to voluntarily participate in the energy saving campaign.
� It can be applied to any country or sector in the global environment.
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a b s t r a c t

Building energy efficiency rating systems have been established worldwide to systematically manage the
energy consumption of existing buildings. This study aimed to develop a new energy efficiency rating
system for existing residential buildings from two perspectives: (i) establishment of reasonable and fair
criteria for the building energy efficiency rating system; and (ii) establishment of comparative incentive
and penalty programs to encourage the voluntary participation of all residents in the energy saving
campaign. Based on the analysis of the conventional energy efficiency rating system for existing
residential buildings, this study was conducted in five steps: (i) data collection and analysis; (ii)
correlation analysis between the household size and the CO2 emission density (i.e., CO2 emission per unit
area); (iii) cluster formation based on results of the correlation analysis using a decision tree; (iv)
establishment of a new energy efficiency rating system for existing buildings; and (v) establishment of
incentive and penalty programs using advanced case-based reasoning. The proposed system can allow a
policymaker to establish a reasonable and fair energy efficiency rating system for existing residential
buildings and can encourage the voluntary participation of all residents in the energy saving campaign.

& 2013 The Authors. Published by Elsevier Ltd.

1. Introduction

The worldwide crisis known as global warming has prompted
the enactment of the United Nations Framework Convention on
Climate Change in Rio de Janeiro, Brazil in June 1992. This was
followed by the Kyoto Protocol in Kyoto, Japan in December 1997,
which regulated the obligatory greenhouse gas (GHG) emissions
from industrialized countries (IPCC, 2007; UNFCCC, 1998). It has
been reported that in the U.S. and the European Union (EU), two
representative countries/regions with GHG emission reduction

obligations, about 40% of the total fossil fuel consumption comes
from the building sectors (CCC, 2010; DECC, 2012; EIA, 2012; IEA,
2012). Accordingly, the EU approved the Energy Performance of
Building Directive (EPBD) on December 16, 2002 to strengthen
control over the total energy consumption of buildings. In 2007,
EPBD adopted a regulation that forces building purchasers and
tenants to provide energy performance certificates (EPCs) in the
building sale or rental process. The U.K. announced in December
2006 that it would realize its nearly-zero-energy building (nZEB)
target on all new homes in the country by 2016 (ECEEE, 2011; GFE,
2010; IRENA, 2012; Sunikka, 2005; ZCH, 2011). The U.S. Depart-
ment of Energy (DOE) proactively supports research on nZEB (DOE,
2002; NREL, 2006; NSTC, 2008). Thus, the world is enacting
building laws related to building energy efficiency or is reforming
existing ones for the improvement of the energy performance of
buildings (KC, 2012; KME, 2011; MLTM, 2012; NREL, 2009, 2010;
RICS, 2009).
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The Post-Kyoto Protocol categorizes South Korea as a non-
Annex-I country. As of 2011, however, the main index of South
Korea0s GHG emissions ranks as high as follows: (i) its annual CO2

emission was determined to be 0.61 billion tons of CO2 equiv.
(ranked 7th in the world); (ii) the increase ratio of its annual CO2

emission from 1990 to 2011 was 144% (ranked 6th in the world);
and (iii) its annual CO2 emission per gross domestic product was
0.55 t of CO2 equiv. per thousand U.S. dollars (ranked 12th in the
world) (refer to Table S1). Accordingly, the global society is
requesting South Korea to follow the obligatory GHG emission
regulation (IEA, 2011; UNDP, 2012).

In keeping with such global trend, South Korea has established
GHG emission reduction targets by industry. For the building sector,
it has established a 26.9% GHG emission reduction target (business-
as-usual) (KG, 2011). To achieve this, the country imposed about
50%, 25%, and 25% of the allocation of emission allowances on its
existing buildings, new buildings, and improvement of behavior,
respectively (MLTM, 2012). The South Korean government enacted
and proclaimed in February 2012 the ‘Act on the Promotion of Green
Buildings,’ based on the country0s national vision, ‘Low Carbon and
Green Growth.’ This move was aimed at the distribution of green
buildings that have high new renewable energy use and lower GHG
emissions. Having been in effect since February 23, 2013, this act
focuses on controlling the GHG emissions of existing buildings.
Based on this act, the South Korean government created a new
green-building division under the Ministry of Land, Transport, and
Maritime Affairs (MLTM) (MLTM, 2012).

Besides the EU, the U.S. and U.K., South Korea is also establish-
ing a building energy efficiency rating system to systematically
control the energy consumption and GHG emissions of its existing
buildings. However, for such a system to be effective, it should
generally satisfy two conditions: (i) the building energy efficiency
rating system should be set up based on reasonable and fair
standards; and (ii) its implementation should be coupled with the
voluntary participation of all the residents. Therefore, this study
analyzed the conventional energy efficiency rating system for
existing residential buildings based on these two conditions. Based
on the analysis results, this study aimed to develop a new energy
efficiency rating system for existing residential buildings from two
perspectives: (i) establishment of reasonable and fair criteria for
the building energy efficiency rating system; and (ii) establish-
ment of comparative incentive and penalty programs to encourage
the voluntary participation of all residents in the energy saving
campaign. Towards these objectives, the multi-family housing
complex was selected as the representative type of existing
residential building in South Korea.

2. Conventional energy efficiency rating system for existing
residential buildings

2.1. Building energy efficiency rating system

The EU announced EPBD in 2002 to minimize the GHG
emissions of its buildings. EPBD defined not only a clause that
made the evaluation of the energy performance of new and
existing buildings compulsory, but also a clause that made the
attachment of EPCs on contract documents during the sale or
rental of buildings compulsory. The building energy efficiency
rating system defined by EPBD is generally divided into two types:
(i) asset rating calculated by the energy demand calculation
method based on the characteristics of a building (mainly for
new buildings); and (ii) operational rating based on the building0s
actual energy consumption (mainly for existing buildings).

EBPD is considered a representative green-building policy
worldwide. Based on the EBPD guideline, the U.K., Germany,

France, etc. established and operated building laws related to
building energy efficiency (DCLG, 2012a, b, 2008; IEEP, 2011).

In the case of the EPCs in the U.K., the asset rating based on the
government0s standard assessment procedure (SAP) for the energy
rating of a dwelling is applied for new residential buildings. For
existing buildings, however, both the asset rating based on the
reduced-data SAP (RdSAP) and the operational rating based on the
actual energy consumption are used. Meanwhile, for public build-
ings, the U.K. issues display energy certificates (DECs), which are
applied to the operational rating. DECs offer a standardized value
(0–150) for a building0s CO2 emissions, which is categorized into
seven grades from A to G (refer to Fig. 1) (CA EPBD, 2011a; Cho,
2010; Song et al., 2010).

As for the EPCs in Germany, both the asset rating and the
operational rating are used selectively. Since 2010, all new build-
ings and large rehabilitation projects of existing buildings have
been required to use the asset rating. For large residential build-
ings, either the asset or operational rating can be selected.
Compared to those of other countries, the EPCs of Germany are
not represented in a stepped scale but in a continuous scale,
resembling the speed meter. For example, the EPC of a residential
building is presented in the range of 0–400 kWh/m2 � year.
It consists of several types of buildings from the passive house,
which is the standard for energy efficiency in a building, resulting
in ultra-low energy buildings that require little energy for space
heating or cooling (Passive House, 2013), to single-family home
which is not refurbished. Also, the EPC of a non-residential
building is presented in the range of 0–1000 kWh/m2 � year (refer
to Fig. 2) (CA EPBD, 2011b; Cho, 2010).

Regarding the EPCs in France, the operational rating based on
the actual energy consumption is mainly used. It is divided into
four types: (i) sale of existing buildings; (ii) rental of residential
buildings; (iii) new buildings; and (iv) public buildings. While the
EPCs of residential buildings are divided into seven grades from A
to G, those of non-residential buildings are divided into nine
grades from A to I (CA EPBD, 2011c; Cho, 2010).

The South Korean government hopes to achieve national energy
savings and its GHG emission reduction target by promoting

Fig. 1. Building EPCs for the operational rating in the UK.
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improvement of the energy efficiency of the country0s existing
buildings through the enactment and proclamation of ‘the Act on
the Promotion of Green Buildings.’ To make the Act effective, the
government introduced a building energy certification system, which
encourages building purchasers and tenants to select a building
with a higher energy performance by attaching building energy
certificates to the contract documents in the building sale or rental
process. As shown in Fig. 3, the building energy certificates present
the operational rating, based on energy consumption and CO2

emission. Additionally, the average energy consumption of buildings,
which is located in the same region and with an identical household
size, is presented as a standard value (MLTM, 2012).

As has been discussed, this study examined the current state of
the country0s implementation of building energy certificates. Con-
ventional building energy certificates have two limitations in their
implementation on existing residential buildings: (i) conventional
building energy efficiency rating is not based on reasonable and fair
standards; and (ii) its implementation is not coupled with the
voluntary participation of all the residents.

First, it has been shown that the preliminary survey on the
household size was inadequate in establishing the building energy
certificates. For residential buildings, the household size is one of
the important factors to be considered in determining the building
energy efficiency rating. Generally, it is considered that the larger
the household size is, the higher the energy consumption per unit
area is. However, it is not true.

� Regardless of the household size, the similar sizes of basic
home appliances are required. Accordingly, the household size

is not directly proportional to the sizes of the home appliances,
and neither is the household size directly proportional to the
electricity consumptions which are affected by the home
appliances (Hong et al., 2012b).

� The household size is highly related to the number of residents.
However, because the household size is also related to the
income level, it is not directly proportional to the number of
residents, and neither is it directly proportional to the heating
and cooling energy consumptions which are affected by the
number of residents.

Consequently, an increase in the household size tends to decrease
the energy consumption per unit area (i.e., the CO2 emission density
or CO2 emission per unit area, which is commonly used worldwide to
determine the building energy efficiency rating). In other words,
the smaller the household size is, the lower the building energy
efficiency rating can be set. Meanwhile, the larger the household size
is, the higher the energy efficiency rating can be set. Therefore, it is
necessary to establish a reasonable and fair standard by conducting
the correlational analysis between the household size and the CO2

emission density.
Second, it has been shown that the preliminary survey on the

voluntary participation of all residents in the energy saving
campaign was shown to be lacking. Additional considerations
should be reflected to encourage the voluntary participation of
all residents as follows.

� The building energy certificates are attached to the contract
documents as part of the building sale or rental process.
Accordingly, while the excellent grade in the building energy
certificates of a given building can motivate the prospective
owners or new tenants of the building to purchase or rent the
building, it cannot motivate the existing tenant. In other words,
the conventional building energy certificates do not offer
additional benefits to the existing tenant based on his or her
energy saving efforts. To address this challenge, it is necessary
to establish a new incentive and penalty program to promote
the existing tenants0 voluntary participation in the energy
saving campaign.

� In South Korea, the carbon point system is introduced as an
incentive program. This conventional incentive program uses the
historical energy consumption of a given building (i.e., the monthly
average energy consumption for the last two years) as the standard
with which to evaluate the GHG reduction. Accordingly, the
conventional carbon point system can raise the fairness issues, as
follows: (i) the existing residents, who have been already partici-
pating in the energy saving campaign, may have a lower energy
saving potential; and (ii) the new residents, who do not yet have
historical energy consumption, may be excluded from such an
incentive program. To address this challenge, it is necessary to
establish a comparative incentive and penalty program to encou-
rage the voluntary participation of all residents in the energy
saving campaign. The comparative incentive and penalty program
can be established by retrieving similar cases based on the
characteristics of multi-family housing complexes and by using
their annual average energy consumption.

2.2. Literature reviews on the green-building policy

The green-building policy is actively being established worldwide,
and various research from diverse viewpoints related to the policy
are being conducted. First, many studies have focused on presenting
evaluation systems and future improvements of the green-building
policy. In Germany, for example, studies have focused on proposing
policy improvement plans for the increasing refurbishment rates and

Fig. 3. Building EPCs for the operational rating in South Korea.

Fig. 2. Building EPCs for the operational rating in Germany.

C. Koo et al. / Energy Policy 68 (2014) 218–231220



energy saving of single-family houses. Towards this end, these
studies analyzed the problems of the existing policies in
Germany. The following effective policy instruments were proposed:
(i) regulatory instruments: random audits, suitable refurbishment
occasions; and (ii) financial support instruments: special funding for
achieving a high standard of energy efficiency, additional program for
supporting measures meeting lower standards and considering the
social criteria (income level), additional funding through the existing
policy (Weiss et al., 2012). In other studies, the theory-based
evaluation method was used, and stakeholder interviews were
conducted in order to evaluate policy instruments for improving
energy performance of existing private dwellings in the Netherlands.
By describing and evaluating the contents, underlying theories, and
impacts of the policy instruments, energy policy concepts were
established, and the instruments were examined to determine if
the following are reflected therein: (i) policy instrument combina-
tion; (ii) long-term program; (iii) obligation/incentive balance; (iv)
non-generic instruments; (v) primacy to energy efficiency; (vi)
whole-house approach; and (vii) energy sufficiency. Results of the
research can be the first step towards conceptualizing the improved
and alternative policy instruments (Murphy et al., 2012). In the U.K.,
the limitations of the SAP and RdSAP, tools for building energy

performance certification, were analyzed. Results revealed a huge
difference between the estimated energy performance resulting from
SPA and RdSAP and the actual energy performance. Thus, as part of
the improvement plans, Kelly et al. (2012) proposed to add the actual
energy consumption to the EPC.

Second, studies have focused on assessing the building energy
efficiency rating or the impact of EPCs. For example, in Germany,
some studies analyzed the effect of EPCs on the sale of buildings.
Using a Web-based survey, these studies showed that the effects of
EPCs were limited in the sale of buildings, and argued that the
improvement of EPBD would increase the impact of EPCs (Amecke,
2012). In the U.K., studies have focused on the effects of EPCs on
the capital and rental values of commercial property assets, using
hedonic regression procedures. These have shown that building
energy performance did not have a significant relationship with
the capital and rental values. In other words, the building energy
efficiency rating does not yet affect the market value significantly
(Fuerst and McAllister, 2011a). In the U.S., studies have focused on
analyzing the effect of eco-labeling on the rental rates, sale prices,
and occupancy rates of commercial office buildings, using a
hedonic model. In the case of office buildings that have acquired
either the Energy Star or Leadership in Energy and Environmental

Fig. 4. Research framework.
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Design (LEED) eco-labels, the rental and sale price premiums were
3–5% and 18%, respectively, whereas the occupancy premium was
negligible. If two certificates were acquired, the rental and sale
price premiums were 9% and 25%, respectively (Fuerst and
McAllister, 2011b).

Various studies are being conducted on the green-building policy
and EPCs. Also, efficient system operation requires improvements of
the green-building policy and the building energy efficiency rating, but
few studies have proposed concrete improvement plans. Therefore,
this study aimed to present a concrete improvement plan for the
building energy efficiency rating system and the incentive and penalty
programs, which are key issues in the green-building policy, through
extensive literature review and data analysis.

3. Research framework

To solve the problems from the conventional energy efficiency
rating system and the conventional carbon point system, this
study was conducted in five steps: (i) data collection and analysis;
(ii) correlation analysis between the household size and the CO2

emission density; (iii) cluster formation based on the results of the
correlation analysis using a decision tree (DT); (iv) establishment
of a new energy efficiency rating system for existing residential
buildings; and (v) establishment of a new incentive and penalty
program for existing residential buildings using advanced case-
based reasoning (A-CBR) (refer to Fig. 4).

3.1. Data collection and analysis

3.1.1. Data collection and variable definition
In this research, the multi-family housing complex was selected

as the representative type of existing residential building in South
Korea. The key energy sources mainly used in residential buildings
are electricity, which is used for home appliances, lighting, and
cooling; and gas energy, which is used for domestic heating, water
heating, and cooking. This energy consumption profile can differ
depending on regional characteristics and season (Koo et al., 2014).
Therefore, the spatial scope of this study was limited to the multi-
family housing complexes located in Seoul, and its temporal scope
was limited to the 2010 energy consumption data. A total of 299
complexes with both electricity and gas energy data were used.
Table 1 shows the independent variables affecting energy consump-
tion and the explanation of the CO2 emission density, which was
used as a dependent variable in this study. This study used the CO2

emission density as the assessment standard, which is commonly
used worldwide to determine the building energy efficiency rating.
Meanwhile, if it is necessary, a better measure might be energy
consumption per person (or CO2 emission per person). However,
the available administrative data does not include the private

information such as the number of residents and the income level
of residents. Given this background, this study determined that
energy consumption per unit area might be the best measure.

3.1.2. Data standardization
In spite of their identical household sizes in identical regions,

the energy consumption profiles of buildings can differ according
to the residential environment and lifestyle of the residents. Thus,
to ensure the representative nature of the energy consumption
data, this study estimated the probability density function (PDF)
on the energy consumption of identical household-sized buildings.
To extract the PDF, this study used the “distribution fitting”
function of Crystal Ball. The median of such estimated PDF was
used as a representative value to minimize the effect of the outlier.

3.1.3. Data unification
To present the grade of energy consumption on the building

energy certificate, it is necessary to unify different energy sources
(i.e., electricity and gas energy) in a common unit. In other words,
they need to be converted into the primary energy consumption or
CO2 emission. To assess the global warming potential, an index
most closely related to climate change, this study set the CO2

emission density as a dependent variable (refer to Table 1). To
calculate CO2 emission by energy source, the following Eqs. (1.1)
and (1.2) were used, along with CO2 emission factor by energy
source offered by Intergovernmental Panel on Climate Change. Also,
based on Eq. (1.3), CO2 emission as a common unit was calculated.

CE ðtCO2Þ ¼ ðThe yearly amount of electricity consumption ðkWhÞÞ

� Carbon dioxide emission factor for electricity
tCO2

MWh

� �
� 1

10

� �3
 !

ð1:1Þ
where, CE stands for CO2 emission for electricity consumption; and
CO2 emission factor for electricity is 0.4705 tCO2/MWh.

CGðtCO2Þ ¼ ðThe yearly amount of gas energy consumption ðm3ÞÞ

� Sensible caloric value for gas energy
Kcal
m3

� �
� 1

10

� �7
 !

� Carbon emission factor for gas energy
tC
TOE

� �� �

� The ratio of the molecular weight of CO2 to carbon
tCO2

tC

� �� �

ð1:2Þ
where, CG stands for CO2 emission for gas energy consumption;
the sensible caloric value for gas energy is 9420 Kcal/m3; CO2

emission factor for gas energy is 0.637 tC/TOE; and the ratio of the
molecular weight of CO2 to carbon is 44 tCO2/12tC.

CT ðtCO2Þ ¼ CE ðtCO2ÞþCG ðtCO2Þ ð1:3Þ

Table 1
Factors affecting the CO2 emission density of multi-family housing complex.

Variables Detailed description Type of scale

Independent variable District 25 Districts in Seoul city Nominal
Elapsed years ( ) years Ratio
Total floor area ( ) m2 Ratio
No. of buildings ( ) buildings Ratio
No. of stories ( ) stories Ratio
No. of households ( ) households Ratio
Household size ( ) m2 Ratio
Tenure type Sale Nominal
Corridor type Stair/Corridor/Mixed Nominal
Heating type Individual/Central Nominal

Dependent variable CO2 emission density ( ) kgCO2/m2/yr Ratio

C. Koo et al. / Energy Policy 68 (2014) 218–231222



where, CT stands for CO2 emission for total energy consumption;
CE stands for CO2 emission for electricity; and CG stands for CO2

emission for gas energy.

3.2. Correlation analysis between the household size and the CO2

emission density

Table 2 shows the results of the correlation analysis between the
household size and the CO2 emission density. The correlation coefficient
between the household size and the CO2 emission density was negative
(�0.456), indicating that if the CO2 emission density will be used as an
assessment standard, the smaller the household size is, the higher the
CO2 emission density is. In other words, the smaller the household size
is, the lower the building energy efficiency rating can be set. The results
indicate that there is the irrationality in the conventional system. To
address this problem, this study conducted cluster formation based on
the household size so as to establish reasonable and fair criteria for the
building energy efficiency rating system.

3.3. Cluster formation based on the results of the correlation analysis

Decision tree (DT), a nonparametric method, performs cluster
formation through the correlation analysis between the indepen-
dent and dependent variables. Its result can then be used in
explaining the data structure. The CO2 emission density as the
dependent variable is in continuous scale. Accordingly, this study
used CHAID (chi-squared automatic interaction detection) among
the various DT methods. As previously discussed, an increase in
household size tends to decrease the CO2 emission density. Thus,
in forming a cluster using the DT method, this study attempted to
establish a reasonable and fair standard for determining the grade
of the building energy certificates, using the household size (one of
the independent variables) as the splitting criteria. As shown in
Table 3 and Fig. 5, three clusters were formed based on the
household size by using the software program called ‘IBM SPSS
Statistics 21.0.’ Fig. 6 shows the distribution of the CO2 emission
density by cluster. As the data accumulate in the future, more
clusters will be formed, which allows multilateral analyses.

3.4. A new energy efficiency rating system for existing residential
buildings

In this study, the PDF of the CO2 emission density was estimated
for each of the three clusters. Fig. 7 shows the PDF of the CO2 emission
density for cluster 1. The median value (i.e., 47.59 kgCO2/m2/yr) of
Fig. 7 stands for the CO2 emission density of the standard building in
cluster 1. Namely, it means the typical CO2 emission density for the
buildings included in cluster 1. The PDFs for clusters 2 and 3 are shown
in Figs. S1 and S2. According to the U.K.0s DECs and South Korea0s
building energy efficiency rating system, the operational rating was
divided into a total of seven grades in this study (refer to Table 4).

Using Eq. (2), the operational rating of a given building can be
determined. For example, if the energy efficiency of a given building
is identical to that of the standard building, the operational rating is
set to 100. If a given building is a zero energy building, in which no fossil fuels are consumed, and the annual electricity consump-

tion equals annual electricity generation (Marszal and Heiselberg,
2010; NREL, 2006; Torcellini and Crawley, 2006; U.S. DOE, 2002),
the operational rating is set to 0. If the energy efficiency of a given
building is half that of the standard building, the operational rating
is set to 200.

ORðGBÞ ¼ CTðGBÞ
TFAðGBÞ �

TFAðSBÞ
CTðSBÞ � 100 ð2Þ

where, OR(GB) stands for the operational rating of a given building;
CT(GB) stands for CO2 emission density for the total energy
consumption of a given building; TFA(GB) stands for the total floor

Table 2
Correlation analysis between the household size and the CO2 emission density.

Variable CO2 emission density
(kgCO2/m2/yr)

Household size
(m2/class)

Pearson correlation �0.456nn

Sig. (2-tailed) 0.000
N 299

nnCorrelation coefficient is significant at 0.01 level (both sides).

Table 3
Definition of the splitting criteria for the CO2 emission density.

Cluster Number of
cases

CO2 emission density (kgCO2/
m2/yr)

Household size (m2)
(X1)

1 59 48.320 X1r96.770
2 180 45.114 96.770oX1r111.450
3 60 42.088 X14111.450

Fig. 5. Cluster formation using a decision tree.

Fig. 6. Distribution of the CO2 emission density by cluster.
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area of a given building; TFA(SB) stands for the total floor area of the
standard building; and CT(SB) stands for CO2 emission density for
the total energy consumption of the standard building.

3.5. A new incentive and penalty program for existing residential
buildings

Along with the proposed energy efficiency rating system for
existing buildings, this study proposed a new incentive and
penalty program: the improved carbon point system. The
improved carbon point system creates motivation effects not only
on the prospective owner or new residents, the ones who are
related to the sale or rental of a building, but also on the existing
residents, so that they can voluntarily participate in the energy
saving campaign.

There currently exists a carbon point system, which is intro-
duced as an incentive program targeting existing residential
buildings (Carbon Point System, 2013; Green Credit Card System,
2013; Green Together, 2013; KME, 2012; Lee, 2011). However, this
conventional incentive program uses the historical energy con-
sumption of a given building (i.e., the monthly average energy
consumption for the last two years) as the standard with which to
evaluate the GHG reduction. To address this challenge, it is
necessary to establish a comparative incentive and penalty pro-
gram. Namely, the standard for the incentive and penalty can be

established by retrieving similar cases based on the characteristics
of multi-family housing complexes and by using their annual
average energy consumption. Ultimately, the sustainable and
voluntary participation of all residents in the energy saving
campaign can be promoted.

To retrieve similar cases, this study used the advanced case-
based reasoning (A-CBR) method. The A-CBR model is a hybrid
method that combines artificial neural network (ANN), multi-
regression analysis (MRA), and genetic algorithm (GA), based on
the CBR model that proposes estimation results based on similar
cases. The A-CBR model uses a filtering mechanism based on ANN
and MRA to complement its weakness: its lower prediction
accuracy compared to that of ANN or MRA.

This study developed an A-CBR model for each of the three
clusters, using the aforementioned DT method. Fig. S3 shows the
detailed process of developing the A-CBR model, and the corre-
sponding equations. More detailed explanations have been given
by previous researches (Hong et al., 2014a, b, 2012a, b, c; Koo et al.,
2013b, 2011).

3.5.1. Selection of similar cases using CBR
In the CBR method, similar cases can be retrieved based on the

case similarity, which is calculated using attribute similarity and
attribute weight. It can be expressed as a determinant using

AS11 ⋯ AS1n
⋮ ⋱ ⋮

ASm1 ⋯ ASmn

0
B@

1
CA

AW1

⋮
AWn

0
B@

1
CA¼

CS1
⋮

CSm

0
B@

1
CA ð3:1Þ

where, AS is the attribute similarity; AW is the attribute weight; CS
is the case similarity; m is the number of cases; and n is the
number of attributes.

First, if an attribute is in continuous scale, the attribute similarity
can be calculated using Eq. (3.2), when the attribute similarity is
more than the minimum criterion for scoring the attribute similarity
(MCAS); otherwise, it is 0. On the other hand, if an attribute is in
nominal scale, when the value of the attribute is the same, the
attribute similarity can be considered 100; otherwise, it is 0. Second,

Fig. 7. Probability density function of the CO2 emission density for cluster 1.

Table 4
Seven grades (A to G) for the operational rating.

Operational rating ‘A to G’ label

0–25 A
26–50 B
51–75 C
76–100 D
101–125 E
126–150 F
More than 150 G

Note: The standard building has an operational
rating of 100.
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the case similarity can be calculated using Eq. (3.3).

f ASðxÞ ¼
100� jAVTestC ase �AVRetrievedC asej

AVTestC ase
� 100

� �
if f ASðxÞZMCAS

0 if f ASðxÞoMCAS

8<
:

ð3:2Þ
where, fAS is the function of the attribute similarity; AVtest-case is the
attribute value of the test case; and AVretrieved-case is the attribute value
of the retrieved case.

f CSðxÞ ¼
∑n

i ¼ 1ðf AWi
� f ASi Þ

∑n
i ¼ 1ðf AWi

Þ ð3:3Þ

where, fCS is the function of the case similarity; fAW is the function of
the attribute weight; and n is the number of attributes.

For the similar cases retrieved based on the case similarity, the
mean absolute percentage error (MAPE) and the prediction accu-
racy can be calculated using

f MAPEðxÞ ¼
100
m

� ∑
m

i ¼ 1

AVi�PVi

AVi

����
���� ð4:1Þ

f PAðxÞ ¼ 100� f MAPEðxÞ ð4:2Þ
where, fMAPE is the function of the MAPE; AV is the actual value of
the target variable; PV is the predicted value of the target variable;
m is the number of cases; and fPA is the function of the prediction
accuracy.

3.5.2. A filtering mechanism for improving the prediction accuracy
In the CBR method, the relationship between the case similarity

and the prediction accuracy is not always proportional. Accord-
ingly, it is necessary to establish a filtering mechanism for
improving prediction accuracy. In this study, a filtering mechanism
was developed using the ANN and MRA models. It can be
expressed using Eqs. (5.1)–(5.4). The CBR model with a filtering
mechanism was defined as an A-CBR model.

PVANN � 1�MAPEANN
100

� �
rPRANNrPVANN � 1þMAPEANN

100

� �
ð5:1Þ

PVMRA � 1�MAPEMRA

100

� �
rPRMRArPVMRA � 1þMAPEMRA

100

� �
ð5:2Þ

where, PRANN, PVANN, and MAPEANN stand for the predicted range,
the predicted value, and the MAPE of the ANN model, respectively;
and PRMRA, PVMRA, and MAPEMRA stand for the predicted range, the
predicted value, and the MAPE of the MRA model, respectively.

MaxðMinðPRANNÞ;MinðPRMRAÞÞrCRMArMinðMaxðPRANNÞ;MaxðPRMRAÞÞ
ð5:3Þ

Min CRMAð Þ � 1�TRCRMA
100

� �
rCRMAnrMax CRMAð Þ

� 1þTRCRMA
100

� �
ð5:4Þ

where, CRMA is the cross-range between the predicted value of the
MRA and ANN models; TRCRMA is the tolerance range of the
CRMA; and CRMAn is the filtering range in which the TRCRMA was
applied to the CRMA.

3.5.3. Establishment of the optimization process by using GA
In the A-CBR model, a total of four optimization parameters

were applied to maximize prediction accuracy: (i) MCAS; (ii) RAW
(the range of the attribute weight); (iii) TRCRMA; and (iv) RCS (the
range of the case selection). To find the optimal solution of the

four parameters, this study established the optimization process
using GA.

4. Results and discussion

4.1. A new energy efficiency rating system for existing residential
buildings

This study proposed an improvement plan for the conventional
energy efficiency rating system for existing residential buildings.
As shown in the analysis results in Section 3.2, there is the
irrationality in the conventional system. To address these issues,
this study conducted cluster formation based on the household size
(refer to Table 3). The results of the comparative analysis between
the conventional system (i.e., the overall-data-based energy effi-
ciency rating) and the proposed system (i.e., the cluster-based
energy efficiency rating) were shown in Table 5, Figs. 8, and S4.
The following is a discussion of the changes that occurred in the
energy efficiency rating by cluster.

First, it was determined that the overall energy efficiency rating
of the small-household-sized building (included in cluster 1) was
adjusted upward. As shown in the third column (A) and the sixth
column (D) of Table 5, it was determined that the average of the
operational rating in the proposed system (101.5, dark blue line of
Fig. 8) was decreased by 5.7 points, compared to that in the
conventional system (107.2, light blue line of Fig. 8). In addition, as
shown in the fifth column (C) and the eighth column (F) of Table 5,
it was determined that the ratio of the cases included in grade A to
D was increased from 27.1% (the conventional system) to 57.6%
(the proposed system). In conclusion, the overall energy efficiency
rating in cluster 1 was adjusted upward.

Second, it was determined that the change in the overall
energy efficiency rating of medium-household-sized building
(included in cluster 2) was insignificant. As shown in the third
column (A) and the sixth column (D) of Table 5, it was determined
that the average of the operational rating in the proposed system
(99.8, dark green line of Fig. 8) was changed at 0.3 points,
compared to that in the conventional system (100.1, light green
line of Fig. 8). In addition, as shown in the fifth column (C) and the
eighth column (F) of Table 5, it was determined that the ratio of
the cases included in grade A to D was changed from 50.0% (the
conventional system) to 50.6% (the proposed system). In conclu-
sion, there was no significant change in the energy efficiency
rating in cluster 2.

Third, it was determined that the overall energy efficiency
rating of the large-household-sized building (included in cluster 3)
was adjusted downward. As shown in the third column (A) and the
sixth column (D) of Table 5, it was determined that the average of
the operational rating in the proposed system (100.1, dark red line
of Fig. 8) was increased by 6.8 points, compared to that in the
conventional system (93.3, light red line of Fig. 8). In addition, as
shown in the fifth column (C) and the eighth column (F) of Table 5,
it was determined that the ratio of the cases included in grade A to
D was decreased from 80.0% (the conventional system) to 46.7%
(the proposed system). In conclusion, the overall energy efficiency
rating in cluster 3 was adjusted downward.

In summary, it was determined that the irrationality of the
conventional energy efficiency rating (which was caused by the
negative correlation between the household size and the CO2

emission density) had been resolved. Namely, in the conventional
system (refer to the fifth column (C) of Table 5), the small-
household-sized building (included in cluster 1) has a higher
CO2 emission density just because it has a small area; accordingly,
it has a lower energy efficiency rating. Meanwhile, the large-
household-sized building (included in cluster 3) has a lower CO2
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emission density just because it has a larger area; accordingly, it
has a higher energy efficiency rating. These results are caused by
the irrationality of the conventional system. To address this

challenge, this research proposed the cluster-based energy effi-
ciency rating system. Through the application of the proposed
system (refer to the eighth column (F) of Table 5), the overall

Table 5
Comparison results of the conventional system and proposed system.

Classification Conventional system Proposed system

Cluster A to G label Sum of the
operational rating

The number
of cases

Ratio (%) Sum of the
operational rating

The number
of cases

Ratio (%)

(A) (B) (C) (D) (E) (F)

Cluster 1
(Small household size)

A 0–25 0.0 0 27.1% 0.0 0 57.6%
B 26–50 0.0 0 0.0 0
C 51–75 0.0 0 0.0 0
D 76–100 1516.3 16 3190.3 34
E 101–125 4104.7 38 72.9% 2375.5 22 42.4%
F 126–150 389.7 3 273.4 2
G More than 150 312.0 2 151.3 1
Sum 6322.7 59 – 5990.6 59 –

Average 107.2 – – 101.5 – –

Cluster 2
(Medium household size)

A 0–25 0.0 0 50.0% 0.0 0 50.6%
B 26–50 0.0 0 0.0 0
C 51–75 136.9 2 136.6 2
D 76–100 8386.3 88 8467.7 89
E 101–125 9359.8 89 50.0% 9239.2 88 49.4%
F 126–150 126.7 1 126.4 1
G More than 150 0.0 0 0.0 0
Sum 18,009.7 180 – 17,969.8 180 –

Average 100.1 – – 99.8 – –

Cluster 3
(Large household size)

A 0–25 0.0 0 80.0% 0.0 0 46.7%
B 26–50 0.0 0 0.0 0
C 51–75 73.0 1 0.0 0
D 76–100 4271.7 47 2584.6 28
E 101–125 1255.8 12 20.0% 3289.6 31 53.3%
F 126–150 0.0 0 132.6 1
G More than 150 0.0 0 0.0 0
Sum 5600.6 60 – 6006.9 60 –

Average 93.3 – – 100.1 – –

Fig. 8. Distribution of the operational rating by cluster in the proposed system. (For interpretation of the references to color in this figure, the reader is referred to the web
version of this article).
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energy efficiency rating of small-household-sized building
(included in cluster 1) was adjusted upward (101.5), compared to
that in the conventional system (107.2). Meanwhile, the overall
energy efficiency rating of large-household-sized building
(included in cluster 3) was adjusted downward (100.1), compared
to that in the conventional system (93.3). Therefore, it was
concluded that the reasonable and fair criteria for the building
energy efficiency rating system had been established in this study.

4.2. A new incentive and penalty program for existing residential
buildings

This study proposed an incentive and penalty program – the
carbon point system – to encourage the prospective owner or new
residents as well as the existing residents to voluntarily participate
in the energy saving campaign. This study proposed an A-CBR
model as the reasonable standard with which to set the GHG
emissions reduction in carbon point system.

4.2.1. Validation of the prediction accuracy of the A-CBR model
To validate the prediction performance of the A-CBR model,

this study compared the proposed model to the other models
which were often used in previous researches: the ANN, MRA, and
CBR models.

Table 6 shows the average prediction accuracy and the standard
deviation of the prediction accuracy for each of the three clusters.
The average prediction accuracy of the A-CBR model in all the
three clusters was superior to the other models (about 95%):
94.02% for cluster 1, 96.58% for cluster 2, and 94.92% for cluster 3.
Also, the standard deviation of the prediction accuracy was
superior to the other model (about 5%) in all the three clusters:
5.96% for cluster 1, 4.10% for cluster 2, and 4.31% for cluster 3.
Compared to the MRA, ANN, and CBR models, it was determined
that the prediction performance was improved with the use of the
A-CBR model.

It was determined that the A-CBR model obtained the advan-
tage of the CBR model, which offers historical cases as the bases
for decision making processes, and that of the ANN model, which
has excellent prediction accuracy. Therefore, the A-CBR model is
believed to be suitable for use as an incentive and penalty
standard.

4.2.2. Application of the new incentive and penalty program
Based on the proposed energy efficiency rating system for

existing residential buildings, this study divided the targets
applicable to the incentive and penalty program into seven grades
of operational rating. As shown in Table 4, the seven grades of
operational rating were calculated based on Eq. (2). If the energy
efficiency of a given building is identical to that of the standard
building, the operational rating is set to 100. Therefore, compared
to the standard building, the buildings whose energy efficiency is

Table 6
Comparison of prediction accuracy and standard deviation by model.

Model Cluster 1 Cluster 2 Cluster 3

APAa SDPAb APA SDPA APA SDPA

MRA 93.25 5.89 95.55 5.27 93.73 4.86
ANN 93.18 6.26 95.68 4.40 94.69 4.37
CBR 90.72 7.93 93.50 5.89 92.25 6.85
A-CBR 94.02 5.96 96.58 4.10 94.92 4.31

Note:
a APA stands for the average prediction accuracy.
b SDPA stands for the standard deviation of the prediction accuracy.
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excellent (grade A, B, C, or D) were categorized as target buildings
for incentive programs. On the other hand, the buildings whose
energy efficiency grade is inferior (grade E, F, or G) were categor-
ized as target buildings for penalty programs.

First, the application from the perspective of the new incentive
program was conducted using the test case included in label D.
Table 7 shows the characteristics of the test case and the five cases
retrieved using the A-CBR model. Fig. 9 shows the CO2 emission
density of the test case and the five cases retrieved using the A-
CBR model. It was shown that the CO2 emission density of the test
case (43.02 kgCO2/m²) was lower by 4.34%, compared to the
average value of the five retrieved cases (44.97 kgCO2/m²). In other
words, the test case can obtain a carbon point of 4.34 (savings rate)
as an incentive, as opposed to the similar cases. If the test case is
applied to the conventional carbon point systemwhich is based on
the historical energy consumption, the test case is not able to
obtain such carbon point because its energy saving potential is
very small. This result means that there is the irrationality of the
conventional carbon point system.

Second, the application from the perspective of the new
penalty program was conducted using the test case included in
label E. Table 8 shows the characteristics of the test case and the
five cases retrieved using the A-CBR model. Fig. 10 shows the CO2

emission density of the test case and the five cases retrieved using
the A-CBR model. It was shown that the CO2 emission density of
the test case (49.16 kgCO2/m²) was higher by 5.49%, compared to
the average value of the five retrieved cases (46.60 kgCO2/m²). In
other words, the test case should turn in a carbon point of 5.49
(excess rate) as a penalty, compared to the similar cases. If the test
case is applied to the conventional carbon point system which is
based on the historical energy consumption, the test case is not
able to turn in the carbon point because its energy saving potential
is very large. This result means that there is the irrationality of the
conventional carbon point system.

In summary, it was determined that the irrationality of the
conventional carbon point system, which is based on the historical
energy consumption of the test case, had been resolved. Namely, in
the conventional system, the large-household-sized building has a
lower CO2 emission density just because it has a larger area; thus, it
will get the more carbon point. In addition, the existing residents,
who have been already participating in the energy saving campaign,
may have a lower energy saving potential. Also, the new residents,
who do not yet have historical energy consumption, may be excluded

from such an incentive program. Therefore, the conventional carbon
point system is not able to encourage the voluntary participation of
the prospective owner or new residents as well as the existing
residents in the energy saving campaign. To address this challenge,
this research proposed a comparative incentive and penalty program
as a reasonable and fair standard. It can be established by retrieving
similar cases based on the characteristics of multi-family housing
complexes and by using their annual average energy consumption. In
conclusion, the proposed carbon point system as a comparative
incentive and penalty program can solve the irrationality of the
conventional carbon point system; thus, it can encourage the
voluntary participation of the prospective owner or new residents
as well as the existing residents in the energy saving campaign.

4.3. EPCs of the proposed system

As shown in Fig. 11, new building energy performance certifi-
cates were created based on the proposed energy efficiency rating
system and the proposed carbon point system.

In part (1), the operational system based on the actual energy
consumption of a given building is presented. As an index
comparable to the energy efficiency of the standard building (refer
to Section 3.4), a relative grade based on 100 as the standard value
is shown. The smaller the operational rating is, the higher the
energy efficiency of the building is. As shown in part (1), the
operational rating of the given building was 95.19, which is grade
D. Compared to the standard building, the energy efficiency of the
given building is higher somewhat.

In part (2), the CO2 emission by energy source, which is
consumed by a given building, is presented. If new renewable
energy is used, the CO2 emission reduction is shown at the same
time. Also, the CO2 emission density in the current year (2010) and
in the previous year (2009) is presented, through which the
history of the CO2 emission density of the given building can be
determined at once.

Finally, in part (3), through comparison with buildings whose
characteristics are similar to those of the given building, the
carbon point system as an incentive and penalty program is
presented. Carbon points can be used in the following ways:
(i) as a cash benefit through mileage accumulation; (ii) for
deductions in maintenance costs of multi-family housing com-
plexes; (iii) as technical support fund for energy saving; (iv) as

Fig. 9. Comparison of the CO2 emission density of the test case and retrieved cases for an incentive program.
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technical support fund for the use of new renewable energy; and
(v) as contributions to slowing down climate change and to
environmental protection. The detailed applications of the carbon
points are out of this study0s scope, however, and will be discussed
in depth in future research.

5. Conclusions

Building energy efficiency rating systems have been established
worldwide to systematically manage the energy consumptions and
GHG emissions of existing buildings. As the building energy certificates
are attached to the contract documents as part of the building sale or
rental process, the excellent grade in the building energy certificates of
a given building can motivate the prospective owners or new tenants
of the building to purchase or rent the building. To achieve this
objective, the reasonable and fair criteria for the building energy
efficiency rating system should be established.

Based on the analysis of the conventional building energy
certificates, this study aimed to develop a new energy efficiency
rating system for existing residential buildings from two perspec-
tives: (i) establishment of reasonable and fair criteria for the
building energy efficiency rating system; and (ii) establishment
of comparative incentive and penalty program to encourage the
voluntary participation of all residents in the energy saving
campaign. The multi-family housing complex was selected as the
representative type of existing residential building in South Korea,
and the corresponding data were collected from a total of 299
complexes. The results of this study are summarized as follows.

� First, the correlation between the household size and the CO2

emission density was negative (�0.456), indicating that there
is the irrationality in the conventional energy efficiency rating
system. Namely, in the conventional system, the small-household-
sized building has a higher CO2 emission density just because it
has a small area; accordingly, it has a lower energy efficiency
rating. Meanwhile, the large-household-sized building has a
lower CO2 emission density just because it has a larger area;
accordingly, it has a higher energy efficiency rating. These results
are caused by the irrationality of the conventional system. To
address this problem, this study conducted cluster formation based
on the household size as the splitting criteria so as to establish
reasonable and fair criteria for the building energy efficiency rating
system.

� Second, this study conducted the comparative analysis
between the conventional energy efficiency rating system (i.e.,
the overall-data-based energy efficiency rating) and the proposed
system (i.e., the cluster-based energy efficiency rating). Using the
proposed system, the overall energy efficiency rating of small-
household-sized buildings was adjusted upward, while that of
large-household-sized buildings was adjusted downward. Namely,
it was determined that the conventional energy efficiency rating0s
irrationality due to the negative correlation between the house-
hold size and the CO2 emission density had been resolved. There-
fore, it was concluded that the reasonable and fair criteria for the
building energy efficiency rating system had been established in
this study.

� Third, the large-household-sized building has a lower CO2

emission density just because it has a larger area; thus, it will get
the more carbon point. However, this is caused by the irrationality
of the conventional carbon point system, which is based on the
historical energy consumption. Namely, in the conventional sys-
tem, the existing residents, who have been already participating in
the energy saving campaign, may have a lower energy saving
potential. Also, the new residents, who do not yet have historical
energy consumption, may be excluded from such an incentive
program. To address this problem, this study developed the A-CBRTa
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model that can be used to establish the comparative incentive and
penalty program as a reasonable and fair standard. It was aimed
not only to solve the fairness issue raised from the conventional

carbon point system but also to encourage the voluntary partici-
pation of the prospective owner or new residents as well as the
existing residents in the energy saving campaign.

Fig. 11. Building EPCs of the proposed system.

Fig. 10. Comparison of the CO2 emission density of the test case and retrieved cases for a penalty program.
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Meanwhile, there are some limitations of this research. How-
ever, they can be improved or solved through the future research:
(i) the proposed systemwas developed using Microsoft-Excel-based
VBA. If it can be developed as the network-based real time system
in the future research, it is expected that it can be more useful for
practical purposes, offer a systematic and continuous management
foundation as a platform, and encourage the voluntary participation
of the public in the energy saving campaign; and (ii) this study
presented the examples using the carbon point system. If the
specific applications of the incentive and penalty program can be
presented in the future, it will allow a policymaker to establish a
reasonable and fair energy efficiency rating system for existing
residential buildings.
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