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� A comprehensive panel dataset of energy performance and building characteristics was assembled and cleaned.
� The effectiveness of the disclosed information to predict building energy performance was tested using a regression model.
� Building-level variation has a greater effect than any building characteristic or systems.
� Benchmarking data alone predicts energy performance equally as well as both benchmarking and engineering audit data together, and better than
audit data alone.
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a b s t r a c t

Many different governments have begun to require disclosure of building energy performance, in order
to allow owners and prospective buyers to incorporate this information into their investment decisions.
These policies, known as disclosure or information policies, require owners to benchmark their buildings
and sometimes conduct engineering audits. However, given substantial variation in the cost to disclose
different types of information, it is natural to ask: how much and what kind of information about
building energy performance should be disclosed, and for what purposes? To answer this question, this
paper assembles and cleans a comprehensive panel dataset of New York City multifamily buildings, and
analyzes its predictive power using a Bayesian multilevel regression model. Analysis of variance (ANOVA)
reveals that building-level variation is the most important factor in explaining building energy use, and
that there are few, if any, relationships of building systems to observed energy use. This indicates that
disclosure laws requiring benchmarking data may be relatively more useful than engineering audits in
explaining the observed energy performance of existing buildings. These results should inform the
further development of information disclosure laws.

& 2013 The Author. Published by Elsevier Ltd.

1. Introduction

Buildings have been recognized as a key pathway and setting
for the consumption of energy and carbon emissions worldwide
(Mazria, 2003; Pacala and Socolow, 2004; Ürge-Vorsatz and
Novikova, 2008). In the United States, 40% of all energy is used
by residential and commercial buildings alone (USEIA, 2012).
Estimates of the portion of total energy used by buildings range
from 20% to 40% worldwide, and is expected to grow rapidly in future
years (Pérez-Lombard et al., 2008).

In building energy efficiency, as in other sectors, over the past
forty years there has been ongoing debate about the existence or

nature of the “energy efficiency” gap. Information plays a key role
in this debate, such as whether people have information about
energy efficiency investments; whether they pay attention to it; or
if it is sufficient and salient enough on which to act. Research on
this gap has therefore focused on the reasons why owners and
occupiers may be unable or unwilling to invest in energy efficiency,
even when it is considered to be rational based on the returns
predicted by engineering-economic models (see, for example,
Allcot and Greenstone, 2012; Blumstein et al., 1980; Jaffe and
Stavins, 1994; Levine et al., 1995). Lack of information contributes
to other structural barriers to energy efficiency such as infor-
mation asymmetry, bounded rationality, and uncertain risks and
rewards.

The emphasis on the role of information is clearly reflected in
recent efforts to mandate energy performance disclosure, which
are intended to transform the market for energy efficiency in
buildings. Mandatory disclosure policies have built on previous
efforts to establish voluntary benchmarking schemes in many
countries (Burr et al., 2011). These policies have a number of
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attractive features. They have relatively low implementation costs
compared to other energy efficiency policies. And, in contrast to
other policies that require legislation at the federal level in the
United States, they can be passed at the local and state level. At
present, the states of California and Washington, and eight major
cities, including Washington DC, Austin, New York, Seattle, San
Francisco, Philadelphia, Minneapolis, and Boston have passed such
disclosure laws. Chicago is currently deliberating such a policy, and
other numerous other cities have expressed interest. In the Eur-
opean Union, the United Kingdom has implemented Energy Per-
formance Certificates for domestic buildings, Display Energy
Certificates for public buildings.

These disclosure efforts also play an important role in creating
new information for owners, policymakers, and analysis. In just
the past few years, cities that have passed these policies plan to
gather information on more than 60,000 buildings, more than
4 billion square feet of commercial and multifamily space, or more
than 4% of all U.S. commercial real estate (Florance et al., 2010).
This is considerably larger than existing surveys of commercial or
residential buildings which are conducted by the U.S. Energy
Information Administration at five year intervals, and sometimes
less frequently. This information is also particularly important
because it addresses actual building performance, which many
studies indicate can differ from the performance predicted from
the design, modeling, or certification processes (Norford et al.,
1994; Turner and Frankel, 2008; Pang et al., 2012). Furthermore,
occupant behavior and building commissioning have both been
found to play critical roles in determining energy use, leading to a
renewed emphasis on empirical validation of building models and
operational efficiency measures (Judkoff and Neymark, 2006;
Mills, 2011).

Disclosing information about energy performance, however,
requires a non-trivial amount of work necessary by all parties
involved, including policymakers, building owners, tenants, and
investors. Information needs to be gathered, verified, structured,
analyzed and disclosed before anyone can act on it. Policymakers,
building owners, consultants, and academics are only at the
beginning stages of developing new policies for information
disclosure, and need to strike an appropriate balance between
cost and effectiveness. Given wide variation in the laws that have
been passed by various jurisdictions and their initial experiences, a
critical question therefore arises: how much and what kind of
information should be disclosed about building energy perfor-
mance, and to what purposes?

This paper answers this question by first assembling a com-
prehensive dataset of energy consumption and building character-
istics for a group of multifamily buildings in New York City, similar
to the best information that could be gathered from a range of
existing policies. It will be discussed further below why New York
City multifamily buildings serve as a test case for analysis. This
paper then evaluates the effectiveness of three different informa-
tion disclosure policies, as implemented in New York, Seattle, and
San Francisco respectively, in predicting building energy perfor-
mance. Each city's policy requires a different level of information
disclosure. By modeling the same dataset through the lens of each
policy, and using regression models to explain the observed
energy performance, this paper tests whether the required levels
of information disclosure for each city could enable market
transformation by allowing other actors in the marketplace to
assess the energy performance of buildings. Analyzing one com-
prehensive dataset using policies that are similar in intent but
different in implementation enables this paper to suggest
improvements in policy design.

The remainder of this paper is organized as follows. Section 2
reviews the literature about information and disclosure policies.
Section 3 describes the policy context, and discusses variations

between the policies of New York, Seattle, and San Francisco.
Section 4 describes the methods used to analyze the data and how
this analysis would be viewed differently from the perspective of
each city's policy. Section 5 describes the dataset, and Section 6
interprets the results. Finally, Section 7 concludes the paper by
discussing the findings and limitations of the research.

2. Literature review

This section describes connections between energy efficiency,
building performance, and information disclosure policies in the
academic literature.

Markets require information to work, and lack or asymmetry of
information has long been recognized as a potential barrier to
investments in energy efficiency in buildings. Owners are unlikely
to invest in energy efficiency if there is uncertainty about the
future benefits of energy efficiency relative to upfront investments.
Furthermore, if prospective buyers cannot evaluate and compare
the energy performance of buildings, then there is no way for
owners to capitalize the value of future energy savings. Everyone
seems to agree that more, better and shared information would
decrease investment inefficiencies, reduce adverse selection, and
enable better targeting of energy efficiency policies to increase
their overall effectiveness in terms of cost and energy reductions
(see, among many others, Akerlof, 1970; McKinsey, 2009).

Information programs to assist environmental markets can be
generally classified into two broad categories: product labeling
and reporting requirements (Stavins, 2003). Product labeling has
been extensively used for appliances through programs such as
Energy Star (Banerjee and Solomon, 2003), and has directly led to
the numerous building rating and labeling programs in use today,
such as Leadership in Energy and Environmental Design (LEED);
the European Union's Energy Performance of Buildings Directive,
and Australia's building certification scheme. Several academic
studies find significant premiums associated with Energy Star and
LEED certifications (Eichholtz et al., 2009; Fuerst and McAllister,
2011; Miller et al., 2008). In contrast, reporting requirements are
relatively new for building energy performance, compared to the
broader environmental economics literature. This is in part
because it has been, until recently, relatively difficult to obtain
data about energy use in large samples of buildings.

Disclosure of building operating performance fits into a general
trend of policies that have been applied in other areas, with
varying degrees of success. Disclosure laws go by many names,
including but not limited to, information laws, regulatory disclo-
sure, or transparency laws. Weil et al. (2006) defines this growing
area as “the mandatory disclosure of information by private or
public institutions with a regulatory intent.” Such laws have been
applied in many policy areas, including financial markets, health
care and nutrition, workplace hazards, sex offenders, and corrup-
tion, with mixed results depending on their design and context
(Fung, 2007; Rosenthal, 2012; Winston, 2008).

One example, the Toxic Release Inventory data by the U.S.
Environmental Protection Agency, illustrates some of the issues
raised by the quantity and quality of the data in disclosure laws.
While some studies find that the release of the information by the
US Environmental Protection Agency leads to positive outcomes
such as better environmental behavior by firms (Konar and Cohen,
1997) and increased allocations to environmental and natural
resource programs (Patten, 1998), other studies also find that
there can be unintended consequences, such as inefficient alloca-
tion of benefits and costs for relatively clean and dirty firms
(Delmas et al., 2010). Fewer studies are able to get at the impact
of the quality of the information itself. Two notable exceptions
include Bae et al. (2010), who find that states that engage in efforts
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to analyze and process the data achieve lower toxic risks than
those that simply release the data; and Massey (2011), who uses
surveys and interviews to identify the most effective aspects of
Massachusetts' Toxic Use Reduction Act (TURA) program.

Building energy performance disclosure laws can also be clear
and effective because they are focused on a single metric –

observed energy consumption – which can be obtained from a
relatively small number of fuel providers and utility companies. In
Weil et al. (2006), the concept of ‘embeddedness’ for information
users and disclosers is used to conceptualize how these disclosure
laws may overcome barriers from the energy efficiency literature.
In order for disclosed information to be effective, both users and
disclosers must make use of accurate and valid information in a
repeated cycle of communication and action. Users are connected
to their buildings in a number of ways: financially, as owners,
tenants, or prospective buyers; spatially, as utility planners,
tenants or local community groups; or through the jurisdiction
of government and markets, in which users may benefit from
high-quality, aggregated information about building energy use in
the local industry or market. Disclosers of energy data, usually
building owners or utilities, need to have a direct economic
incentive to better position efficient buildings relative to other
less efficient buildings. Both users and disclosers may discover
new ways to save energy when comparing themselves to peers in
the aggregated data.

Better understanding of how information disclosure is used
should also impact how policies are formulated and implemented
in a number of ways. First, Allcott and Greenstone (2012) note that
there may be significant heterogeneity in the return on invest-
ments in energy efficiency. Identifying good investments is a
necessary first step to better design and target energy efficiency
policies. Second, building energy disclosure laws will greatly assist
movement towards performance-based energy codes, rather than
those based on prescribed efficiency measures (Hewitt et al.,
2010). Third and finally, disclosure to municipal governments
may lead to improved energy efficiency through better under-
standing of the building stock, and subsequent improvement in
policy design by governments.

How much or what kind of information is needed has not been
addressed very often in the building energy efficiency literature.
Although some authors have suggested both labeling and energy
efficiency audits as a policy to overcome the barrier of asymmetric
information (Hirst and Brown, 1990; Levine et al., 1995), empirical
studies of the effectiveness of energy efficiency audits are relatively
few in number. In the industrial sector, Anderson and Newell (2004)
find that government-sponsored energy audits do encourage indus-
trial users to implement energy efficiency projects, while Schleich
(2004) finds that only some auditors actually result in lower energy
consumption. Surprisingly, considering the emphasis placed upon
audits in energy efficiency policy, this author could find no
academic or peer-reviewed studies of the effectiveness of energy
audits on building energy consumption. The closest that the author
could find was two recent studies which consider how residential
homeowners and auditors exchange and act on the kinds of
information typically included in audits (Palmer et al., 2012; Ingle
et al., 2012). Shapiro (2011) is a general review of the problems that
can lead to bad energy audits, including inadequate review and
analysis, overestimated saving and/or low or missing cost estimates,
and no costs based on life-cycles or improvement life. Krarti (2011)
lists several verification methods for energy audits, including
regression and time variant models.

Finally, it is again important to emphasize that audits as energy
information may have a very different effect on owner-occupiers, as
opposed to a tool for communicating in the market. While many
measurement and verification studies have been done in the
California utility industry, such as evaluations of audits in

residential buildings (Robert Mowris and Associates, 2008), com-
mercial buildings (Robert Mowris and Associates, 2007), affordable
housing (KEMA, Inc., 2006), and school buildings (Itron, Inc., 2006),
most of these studies are intended to measure the impact of audits
on energy use by owners or occupiers. None of these studies
address how information disclosure may affect the valuation of
energy efficiency in buildings by prospective owners or tenants.

3. Policy context

Small changes in implementation can make a large difference
in the effects of a policy. Evaluating what kind, and how much
information, assists in the comparison of buildings therefore has
important implications for the further development of energy
disclosure policies. In order to achieve the goal of maximizing
social welfare, policymakers should balance the benefits and costs
of gathering this information within a theory of policy action, and
analyze the effectiveness of these policies in achieving these goals.
Interpreting this in terms of energy performance disclosure laws,
the minimum criterion would be that policymakers should seek to
require information disclosure at the minimum cost that is
required to enable an increase in benefit or welfare for each
individual (Zerbe and Dively, 1994). Another criteria may be that
there should be a net social benefit to information disclosure,
although benefits and costs will not be allocated evenly.

Of the major cities, at the time of writing, only four have
collected data: Austin, New York, Seattle, and San Francisco. All of
these ordinances have different requirements for how the infor-
mation will be gathered and disclosed. While all of the ordinances
require utility data to be disclosed to the city government, some
cities (New York and San Francisco) make data available on a
public website, while other cities (Austin and Seattle) make data
available only to prospective buyers at the time of transaction.
Legislation for these policies also often requires the city to produce
a report on trends in energy use in the major building sectors and
to analyze the quality of the data (see, for example, Kerr et al.,
2012, to which this author contributed). The data requirements for
the cities vary greatly, and can generally be divided into two
categories: benchmarking and audit requirements. The City of
Seattle only requires benchmarking disclosure, while Austin, New
York, and San Francisco all require additional energy auditing to
varying degrees.

Benchmarking laws typically require building owners simply to
gather their utility data, usually from monthly bills, and to report
some basic information, such as building characteristics and size.
The U.S. Environmental Protection Agency's Portfolio Manager
website is often used to collect this information, and often the
data is benchmarked in terms of total energy use or energy use
intensity (EUI), which is total energy use normalized by total gross
floor area. The Portfolio Manager website also provides an Energy
Star rating for commercial buildings (not yet for multifamily), as
well as weather-normalization of total energy use and EUI.

Audit laws, such as in Austin, New York and San Francisco,
require a higher level of information gathering and disclosure.
In the United States, a comprehensive energy efficiency audit
requires a engineer licensed by the American Society of Heating,
Refrigerating and Air-Conditioning Engineers (ASHRAE) to perform
measurements and calculations at several different levels. An
ASHRAE Level 1 audit is a walk-through survey, while an ASHRAE
Level 2 audit requires a more comprehensive energy survey and
data analysis. The highest level, an ASHRAE Level 3 audit, requires
detailed analysis of possible capital intensive-modifications,
including modeling and simulations (ASHRAE, 2011). Again, each
city has different information requirements. Table 1 summarizes
each city's laws, including data passed, total square footage, and
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information requirements. The City of Austin requires both audits
and disclosure, while the City of New York will require their first
ASHRAE Level 2 audits by the end of 2013, with the entire
population of buildings audited every ten years on a rolling basis.
The City of San Francisco requires a ASHRAE Level 1 or 2 audit
every five years in order to certify the energy benchmarking, and
to provide a list of possible energy efficiency improvements.

In this paper, the effect of auditing and benchmarking is
considered using only multifamily buildings in the City of New
York for the following reasons. The City of New York is the largest
of the cities engaged in benchmarking and auditing disclosure,
comprising nearly 50% of all benchmarked buildings in the United
States alone. The City of New York also had extremely good
compliance and take-up of its benchmarking policies (over 75%),
compared to the first year in Seattle and San Francisco. Use of a
single comprehensive dataset, which is discussed further in
Section 5, allows comparison of different laws applied to the same
data without introducing between-city variation, as would be the
case with different datasets from different cities. Finally, because
the cities are all applying benchmarking with Portfolio Manager
and auditing with ASHRAE Level-2 audits, insights about policy
implementation from the City of New York should be generalizable
to the other cities, at least in the United States.

The key difference between benchmarking and audit policies is
that the former provides a snapshot of building-level variation in
energy consumption only, while the latter is expected to provide
critical engineering information about building characteristics,
systems, occupancy, and space uses which will help to explain
these differences. It is possible that these two types of information
may have very different effects in the marketplace. Benchmarking
reduces building energy use to a single metric (total weather-
normalized EUI) while auditing provides a much more detailed
portrait of building characteristics and may include suggested
energy efficiency improvements.

Finally, and very importantly, cost differs significantly between
benchmarking and auditing. Consultants charge more for more
complex modeling and data analysis, often by a factor of 10
(California Energy Commission, 2000; U.S. Department of Energy,
2011). To take a recent example, benchmarking in New York City
was estimated to cost approximately $500-$1500 USD per build-
ing, while auditing is significantly more expensive at approxi-
mately $1.50 per square meter (Kerr, 2013). For a typical New York
City building of approximately 20,000 square meters, the differ-
ence between benchmarking and auditing in the same year
computes to almost $30,000 USD, though under City of New
York's law, audits are only required once every ten years.

4. Methods

This paper applies a general regression model in order to evaluate
the systematic relationships that could be inferred from building
level audit and energy consumption data, in order to estimate

building-specific effects, and to analyze variance components. By
including all of these effects in the model, and then including
or removing various parts of the data in the model, we can predict
what comparisons could be made with different combinations of
benchmarking and audit data. Model 1 is fit using the full range of
consumption and engineering information and is similar to what
could be learned from New York's or San Francisco's ordinances.
Model 2 is fit only using weather-normalized data is similar to what
could be learned from Seattle's benchmarking-only ordinance. Model
3 is fit using only information about the building systems, similar to
what could be learned in an engineering audit, and is called an
“engineering-only” model.

The model structure applied in all three cases is a multilevel,
two-way, crossed model with mixed effects. A two-way crossed
model is used because there are clearly building-specific and
seasonally specific effects in the total energy consumption of each
building in a given month; estimation of this model is similar to
estimating panel-corrected fixed effects and standard errors
(Wooldridge, 2002). Bayesian methods were used to estimate the
model for the following reasons:

� Multilevel modeling allows flexible specifications of hierarch-
ical data, such as in studying the effects of individual building
characteristics as well as to analyze components of variance
(ANOVA) (Faraway, 2005; Gelman and Hill, 2007).

� Mixed effects are used to specify randomly varying intercepts
for each building and month separately, as suggested by
Gelman and Hill (2007). The main variable of interest is the
variance in the random effects themselves, because they
describe the variation in the average energy consumption
between buildings.

� Classical methods for panel datasets and ANOVA do not
estimate unbalanced datasets well, i.e., datasets where there
are varying number of observations for each building or where
there is missing data, because inference depends on assump-
tions about the degrees of freedom and the number of
observations, while Bayesian methods are relatively robust to
unbalanced datasets (Gelman, 2005).

The dependent variable in the analysis is energy consumption
normalized by area, as measured by energy use intensity (EUI). The
EUI is to be explained by the independent variables representing
building characteristics, because buildings with different physical
characteristics can be expected to have different levels of energy
consumption (U.S. Environmental Protection Agency, 2011; Chung,
2011; Eddy and Marton, 2012).

The general model specification was as follows. As indicated by
the square brackets, each observation i¼ 1…N belongs to the
building j¼ 1…J and in the calendar month t ¼ 1…12. The
equation form of the statistical model is parameterized with the
following structure:

yi½jt� ¼ μþβkxki½jt� þθjþθtþϵi½jt� ð1Þ

Table 1
Table of benchmarking and audit legislation.

City Legislation/ordinance Benchmarking requirement,
frequency

Benchmarking
disclosure

Auditing requirement,
frequency

Auditing disclosure

New York Local laws 84, 87 Annual disclosure of total energy
use and building characteristics

Public ASHRAE Level 2 for all buildings
every ten years

To City only

San Francisco Energy Performance Ordinance Annual disclosure of total energy
use and building characteristics

Public ASHRAE Level 1 or 2 for
each building every five years

Public

Seattle CB 116731 Annual disclosure of total energy
use and building characteristics

Only to potential
buyers and tenants

None None
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θj �Normalð0; s2j Þ ð2Þ

θt �Normalð0; s2t Þ ð3Þ

ϵi½jt� �Normalð0; s2y Þ ð4Þ

where yi½jt� is the observation i of the log-transformed energy use
intensity (EUI) for a given building j in month t. EUI in terms of
kilowatt-hours per square meter (kWH per m2) is used as the
observed outcome to be explained, in order to normalize total
energy use by building size, and the log-transform is used because
of the extreme left skewness of the EUI distribution. Individual
predictors are described by i� k dimensional matrix xki½jt� for a
given building j or month t, such as a given building characteristic
or energy system for a particular building, or the average tem-
perature or total precipitation for a given month, respectively.

The model parameters therefore to be estimated are μ, which is
the overall model intercept, or grand mean; βk, which are the
coefficients of the individual predictors; and the building- and
time-specific group effects, θj and θt , respectively. Group effects
are specified in Eqs. (2) and (3) as normally distributed with
separate group-level standard deviations sj and st , and zero means
to avoid identification problems with the grand mean. Individual
errors ϵi½jt� are specified in Eq. (4) as a normal distribution with
zero mean and a super-population standard deviation of sy.

Model estimation was carried out using Gibbs sampling, as a
special case of Markov chain Monte Carlo (MCMC) simulation.
Gelman and Hill (2007) provides an excellent general introduction
to these methods for various data structures, based on work by
Dempster et al. (1981), Efron and Morris (1975), Gelfand and Smith
(1990), Lindley and Smith (1972), and Pauler et al. (1999). The R
language was used to conduct the analysis including JAGS software
and the Rjags package (Plummer, 2012, 2013; R Development Core
Team, 2012).

Model fit is assessed using proportion of explained variance, or
R2, or the ratio of the variance of the residuals (ϵi½jt�, or y�y) and
variance of the predictors (θ). The data-level predictors include the
linear terms βkx, as well as the building and monthly specific
random effects, θj and θt .

R2 ¼ 1�
E
�
∑n

i ¼ 1ðy�yÞ2
�

E
�
∑n

i ¼ 1ðθ�θÞ2
�

This metric has the conventional interpretation: R2 is a percentage,
and as it nears 1, more of the variance in the data is explained by
the model and predictors.

5. Data and results

This section describes the assembly and cleaning process for
the dataset, and the results of the modeling approach. Billing data
and building typology data was provided by FS Energy, an energy
advisory subsidiary of First Service Residential, a major real estate
management firm that manages a large number of multifamily
buildings across North America and in New York City.

Utility billing data was assembled as a result of a comprehen-
sive data integrity effort carried out by FS Energy. This process first
identified gaps in utility bill records for buildings, and obtained all
missing records for buildings from utility providers and energy
service companies (ESCOs) if they were involved. Overlapping bills
were resolved and duplicate bills were removed. As a result, the
utility billing data for each building is a comprehensive record of
monthly energy consumption and does not include any imputed or
estimated consumption figures (Mehta, 2013).

The existing utility data, which has starting and end points on
random calendar days, was then recast into monthly bills which
coincide with calendar months. This was achieved by first con-
verting the monthly consumption figures into a daily average for
each day of the period between the start and end date for each bill,
and then re-aggregating on all bills to get consumption for each
fuel type by building in each calendar month. Although the utility
data contained bills for different fuel types, the vast majority of
information was for either electric or natural gas, with relatively
fewer bills for steam and heating oil of all types. This monthly
energy and water data was then joined to climatic information
obtained from the U.S. National Oceanographic and Atmospheric
Administration Climatic Data Center, including daily maximum
and minimum temperatures, heating-degree-days, and cooling-
degree-days.

The building typology data file contains information on 361
buildings in New York City. This data was all gathered by a team of
company-employed and certified auditors using a consistent
auditing methodology, which is unusual for a large group of
buildings. The audits were carried out at a level equivalent to a
Level-2 ASHRAE audit. The building typology data includes key
typology information that would be expected to have an impact on
total building energy consumption, such as key information about
building systems for heating, ventilation, and air-conditioning, as
well as information about space uses, including commercial spaces
and additional special building features such as pools, garages, and
elevators. Previous studies compared these buildings to the gen-
eral population of New York City multifamily buildings and found
them similar in distribution of EUI and size (Kerr et al., 2012).

It is also important to discuss the limitations of the building
typology data. The building typology data contains both direct-
metered and master-sub-metered buildings, which could have
significantly different building profiles, because some of the
typology and billing data represents full buildings in some cases
and only common areas in others.

The data also required cleaning in several different ways.
Categorical responses that were inconsistently coded but in which
the meaning was clear (i.e. “zero” versus “0” versus “none”) were
recoded. If a particular numerical data point was ambiguous and
unclear, then a zero was entered to omit this data point from the
overall regression model. Many of the key engineering variables
were coded simply as binary variables, such as whether or not a
building control system was indicated, or if there are heating
problems. Binary variables were used, because if they do not show
significant results, it is unlikely that more detailed categorical data
will show significant results either. In cases where some surveys
consistently showed more detailed information, such as specific
ages of particular equipment, continuous variables were interacted
with binary variables. Audits were only conducted once in each
building, so major building changes could not be identified in
order to explain changes in energy consumption time series,
though this happened rarely.

The panel dataset was created by joining the utility bills and
building typology files on unique building identification codes.
Once this data was joined, there were only 255 buildings that had
consistent billing records in the three year period from 2008 to
2011 for all fuel types including electricity, natural gas, heating oil,
and steam bills. All energy figures were then converted to
kilowatt-hours using regional conversion factors and added
together to get total building energy consumption, and then
divided by total building areas to get EUI.

It is also worth comparing this dataset to other recent studies, such
as Belzer (2009), Howard et al. (2012), and Ryan and Sanquist (2012).
This dataset contains a well-verified monthly time-series of energy
consumption on existing individual buildings over a relatively long
period over three years, and matches it to a building typology file.
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It does not use any estimates or assumptions about market share,
seasonal or annual energy consumption. Unlike more detailed
engineering studies, however, this dataset does not include any
detailed energy efficiency measure data. As noted above, if binary
data does not show statistically significant effects in initial regression
models, then more detailed categorical data is also unlikely to show
statistically significant effects either.

Tables 2–4 shows the basic descriptive statistics of the dataset,
including the number of buildings, the number of bills per
building, and the distribution of the various binary system vari-
ables. Numerical data, such as weather and building characteristics
(e.g. building area in square meters) in Tables 2 and 3, was center-
normalized by subtracting the mean and dividing by the standard
deviation in order to ease interpretation of the models, so the
relative magnitude of each estimated coefficient could be com-
pared as the relative change in the outcome data as a result of a
one standard deviation change in each of the predictors.

All of the criteria for good Bayesian estimation were satisfied. In
the model estimation process, flat Bayesian priors were specified
for all of the parameters with initial standard deviations of
100,000 were specified in order to allow them to fully explore
the parameter space before converging on the point estimates.
Monte Carlo Markov Chain (MCMC) methods were used with 5000
iterations, random parameter starting points, 4 separate chains,
and the model results were adjusted for burn-in by throwing away
the first half (2500) simulated values. Convergence in the chains
for all of the parameters was extremely good, with R̂eff values all
less than 1.001, where the criteria for acceptability is less than 1.2
(Gelman and Rubin, 1992).

6. Discussion

Table 5 and Figs. 1–3 present the three different models, all
applied to the same observed building energy performance. Model
1 includes all of the available billing and building information,
such as could be run with benchmarking and audit data, as will be
collected by the Cities of New York and San Francisco. Model 2 is
fit only using weather-normalized monthly billing data, similar to
the more limited dataset which is provided by the benchmarking
law in the City of Seattle. Model 3 is fit using only the building
characteristics which could be obtained from an engineering audit,

but without including any historical energy consumption data,
which I refer to as the “audit-only” model. These models will be
discussed in terms of their overall goodness of fit and the
statistical significance of the parameters, and then will be inter-
preted in terms of practical significance for interpretation.

Evaluating the models in terms of overall goodness of fit or R2,
Model 1 and Model 2 have very high levels of explained variance,
0.8271 and 0.8268, respectively. Between the models there is
almost no difference at all in overall model goodness of fit, to at
least three significant figures. This implies that Model 2, with only
benchmarking data, explains building energy performance just as
well as Model 1, which includes engineering audit information of
building and system characteristics. When we fit Model 3 with
only building and system characteristics, as would be obtained in
an engineering audit, we find that while we can obtain a relatively
high proportion of explained variance (0.5270), this is still much
lower than we obtained before. In comparison, the models for EUI
used by the EPA's Portfolio Manager and Energy Star ratings
system only have an R2 of approximately 0.33 (U.S.
Environmental Protection Agency, 2011).

In summary, benchmarking data alone, as required by law in
the City of Seattle, does just as good a job of explaining the
variation in the energy consumption observed in buildings, with or
without the additional engineering audit data, as required by the
ordinances of the City of New York or San Francisco. Put another
way, if you were given only three years of weather-normalized

Table 2
Descriptive statistics for monthly bill data, 2008–2011.

Variable Mean Std dev Min q25% Median q75% Max

1 Average temperature (1C) 13.4 8.7 �2.3 5.8 12.9 21.7 27.4
2 Total precipitation (mm) 122.4 76.8 23.6 76.0 105.2 149.0 481.3
3 Heating degree-days (to 18 1C) 60.7 84.8 0.0 0.0 8.1 112.3 291.6
4 Cooling degree-days (to 18 1C) 200.6 199.5 0.0 1.3 162.0 378.5 628.4
5 Total energy use (kWH) 1,557,798.6 2,223,121.8 156.9 497,929.1 885,225.8 1,490,037.0 32,534,133.9

Table 3
Descriptive statistics for building typology. Zeroes added to ambiguous fields, in order to omit these values from the regression models.

Variable Mean Std dev Min q25% Median q75% Max

1 Area (m2) 14,591.0 9563.8 92.9 6271.0 14,492.9 22,900.6 31,122.5
2 Floors 34.4 19.8 1.0 16.0 35.0 53.0 62.0
3 Volume (000 m2) 2155.2 2070.4 0.4 428.2 1491.8 3291.8 7370.5
4 Buildings on lot 3.8 3.6 1.0 2.0 2.0 2.0 16.0
5 Apartment units 165.4 201.6 0.0 52.0 102.0 203.0 1744.0
6 Commercial spaces 2.6 9.1 0.0 0.0 1.0 3.0 155.0
7 Building age 1189.8 956.1 0.0 0.0 1926.0 1961.0 2009.0
8 Boiler age 15.1 15.6 0.0 0.0 11.0 26.0 64.0
9 Burner age 10.8 13.4 0.0 0.0 5.0 19.0 68.0

Table 4
Descriptive statistics for building systems: binary variables.

Variable N Y

1 Direct metered 118 237
2 Comm. spaces with own meter 198 157
3 Comm. spaces with same heating 228 127
4 Comm. spaces with distributed hot water 258 97
5 Comm. spaces with same cooling 312 43
6 Multiple buildings on single boiler 295 60
7 Steam distribution 237 118
8 Radiators 226 129
9 Indicate make control system 69 286

10 Indicate heating distribution problems 32 323
11 Indicate heating problems 326 29
12 Indicate air conditioning equipment 282 73
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energy bills, you would still be able to obtain an equally good
prediction of the energy use of a given building in the next year,
without needing to know anything else about the building
characteristics or engineering systems. This clearly shows that
auditing information is less valuable than benchmarking informa-
tion in predicting the energy performance of a given building.

Figs. 1–3 visualizes and explains further these model results in
terms of the statistical significance of the individual predictive
variables. The horizontal, logarithmic axis is in terms of orders of
magnitude of the energy use intensity, so estimates for each of the
coefficients are identified with a dot, while the 95% confidence
intervals and the standard deviation intervals are indicated with
thick and thin line segments, respectively. The null hypothesis is
that each of the coefficients has no effect on the observed outcome
of total building energy consumption; this is only true if the thick
and thin line segments cross the zero axis indicated by the vertical
dotted line.

In Fig. 1, one can see that very few of the building and system
characteristics are statistically significant, since in many cases the
95% confidence intervals and the standard deviation intervals
cross the zero (center) line. In addition, because the numerical
variables have been center-normalized, we can directly compare
the effect of a standard deviation change in any of the predictors
with the variation between buildings. The magnitude, or effect
sizes, of all of the system characteristics are considerably smaller
than the effect of building-level effects, in most cases by an order
of magnitude, since the horizontal axis is a logarithmic scale.
Square footage of the building still has a significant impact on the
EUI of the building, meaning that total energy consumption goes
downwith the effect of area squared, though that there is an effect

of area on energy consumption is not surprising. The presence of
radiators is the only building system that has a significant impact
on energy consumption.

Fig. 2 shows the same results of Fig. 1, since each of the climate
variables is significantly smaller than the effect of building-level
variation. Fig. 3 shows a slightly different though not inconsistent
result: although each of the variables is statistically significant in
the audit model, they are only significant in the absence of the
benchmarking data, and the overall model fit is worse, as
mentioned above.

Taken together, the model results show that, surprisingly,
almost none of the individual building-level predictors from
engineering audits are statistically significant when compared to
the data that could be obtained by regular benchmarking. In
contrast, building-specific effects in observed energy consumption
are persistent year over year, relatively more important in their
magnitude, and statistically significant. This states in clear statis-
tical terms that benchmarking information is relatively more
important than audit information when attempting to compare
the relative energy performance of two buildings. Policymakers
should therefore consider benchmarking to be a low-cost but cost-
effective information disclosure policy when compared to more-
expensive audits that do not add any additional prediction value
about the expected energy performance for a given building.

Furthermore, since the sample of buildings has previously been
found to be broadly representative of the overall population, the
relative magnitude of the effect sizes are unlikely to change even if
many more audits are conducted. If sample size increases,
although the errors in the estimates will decrease as in Model 3,
the magnitude or effect sizes for particular building characteristics

Table 5
Model results. Means indicate the mean estimates from Bayesian simulations, and parentheses indicate the 95% confidence intervals for each estimate.

Data type Policy equivalent New York, San Francisco Seattle
Model 1: full-information Model 2: benchmark only Model 3: engineering only

Variable Mean (2.5%, 97.5%) Mean (2.5%, 97.5%) Mean (2.5%, 97.5%)

Monthly bill Precipitation (mm) �0.035 (�0.051, �0.019) �0.035 (�0.052, �0.018) �0.028 (�0.052, �0.003)
HDD (18 1C) �0.052 (�0.084, �0.017) �0.052 (�0.085, �0.016) �0.057 (�0.091, �0.023)
CDD (18 1C) 0.122 (0.085, 0.158) 0.121 (0.087, 0.159) 0.122 (0.088, 0.155)
Year of bill 0.114 (0.099, 0.129) 0.114 (0.099, 0.129) 0.106 (0.082, 0.131)
Building age �0.202 (�0.355, �0.055) �0.171 (�0.197, �0.145)

Building Area (m2) �1.204 (�1.509, �0.897) �1.412 (�1.465, �1.36)
Floors �0.004 (�0.26, 0.253) �0.049 (�0.094, �0.007)
Volume (m3) 0.133 (�0.253, 0.515) 0.232 (0.169, 0.297)
Buildings in complex �0.206 (�0.373, �0.042) �0.033 (�0.065, �0.003)
No. apartment units 0.37 (0.198, 0.542) 0.362 (0.333, 0.391)
No. comm. spaces 0.046 (�0.109, 0.206) 0.098 (0.072, 0.124)
Boiler age 0.004 (�0.186, 0.187) �0.007 (�0.038, 0.024)
Burner age �0.047 (�0.232, 0.134) �0.099 (�0.129, �0.068)

Comm. spaces Separate meter? 0.34 (�0.073, 0.745) 0.005 (�0.107, 0.113)
Same heating? 0.102 (�0.46, 0.678) 0.351 (0.236, 0.472)
Same DHW? �0.181 (�0.66, 0.295) �0.064 (�0.145, 0.017)
Same cooling? �0.433 (�0.932, 0.063) �0.471 (�0.558, �0.386)

Systems Direct-meter? 0.086 (�0.3, 0.467) 0.139 (0.075, 0.201)
Mult. bldg. on boiler? �0.088 (�0.48, 0.302) �0.449 (�0.527, �0.371)
Steam dist.? �0.174 (�0.549, 0.197) �0.304 (�0.368, �0.24)
Radiators? 0.524 (0.112, 0.933) 0.661 (0.591, 0.731)
Make ctrl system? 0.022 (�0.441, 0.491) 0.147 (0.07, 0.225)
Heating dist. prob.? 0.143 (�0.518, 0.824) 0.146 (0.033, 0.262)
Heating prob.? 0.295 (�0.194, 0.793) 0.222 (0.135, 0.306)
AC Units? �0.093 (�0.537, 0.371) �0.104 (�0.184, �0.024)

Variance Monthly 0.046 (0.019, 0.088) 0.045 (0.019, 0.084)
Building 1.144 (1.04, 1.257) 1.75 (1.604, 1.917)
Residual errors 0.787 (0.776, 0.797) 0.787 (0.777, 0.798)

Model fit Expl. variance (R2) 0.8271 0.8268 0.5270
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or systems will still be much less than that of the building-specific
effects found in Models 1 and 2. This means that variations from
sources specific to the building, such as the unobserved effects of
operations and/or occupancy, may be much more important than
changes to building systems, or the efficiency measures that have
been typically recommended by building engineers and consul-
tants. While this is in keeping with recent research on the effects
of occupancy on building energy consumption (Lutzenheiser,
1993; Guerra Santin et al., 2009; Deuble and de Dear, 2012), it is
worth noting two things: at present there are no major policy
initiatives that require disclosure of occupancy information
because of privacy and commercial concerns, and it remains very
difficult to measure occupancy information that could be used for
benchmarking. Information disclosure policies that report occu-
pancy are purely theoretical at present.

7. Conclusions

This paper began by reviewing the important contribution of
buildings to worldwide energy consumption and carbon emis-
sions, and then described the policy context of recent efforts to
pass energy disclosure laws that are intended to transform
markets for energy efficiency. These policy developments were
connected to the overall background of disclosure and information
laws used in environmental regulation and have been studied
extensively in the literature.

This paper then applied a flexible statistical model form to a
comprehensive dataset of building energy consumption and engi-
neering audits, in order to determine which data is most valuable in
order to predict the log EUI of individual buildings, and could
therefore be expected to transform markets. In almost all cases, the
effects of individual building and system characteristics are statis-
tically insignificant relative to the building-level variation, which
could be revealed by a well-designed benchmarking program.

What the results also imply is that even controlling for all
observed characteristics, prospective buyers and tenants of build-
ings should pay close attention to the annualized energy con-
sumption of individual buildings, and that policymakers should
consider energy efficiency relative to current energy use and not
technical systems. These results will hopefully shift attention to
capturing operational efficiencies and behavioral changes in build-
ing occupants, rather than changing the systems of buildings, as
engineering-economic models frequently emphasize. It is rela-
tively cheap to capture operating efficiencies instead of retro-
fitting building systems.

Considering these results in terms of market transformation,
while the growth in new data from benchmarking is intended to
reduce information asymmetries, additional information from
engineering audits may not allow improved systematic prediction
of energy performance. It is possible that there are additional
benefits to engineering audits which may not be captured by this
study. For example, a building owner who commissions an
engineering audit may receive a list of proposed energy conserva-
tion measures, and this may spur them to take action on energy
efficiency. On the other hand, it is also possible that these energy
conservation measures and system changes will not yield the
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Fig. 1. Estimation results for model. Center dots indicate the mean estimate, the
thicker bars indicate the standard error of the estimate, and the thinnest bars
indicate the 95% confidence interval. As the graph shows, the climate variables are
significant but not highly influential (with small magnitude). The square footage of
the building appears to be highly influential and statistically significant (because
the error bars do not include zero). Most surprisingly, for most of the building and
system level variables, they are neither influential nor statistically significant. By
far, the most important finding is that the building-level variation is significantly
higher than the seasonal variation, or any other building system or characteristic.
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Fig. 2. Estimation results for model. Center dots indicate the mean estimate, the
thicker bars indicate the standard error of the estimate, and the thinnest bars
indicate the 95% confidence interval.
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expected savings, as Shapiro (2011) notes, resulting in a disap-
pointed or demotivated customer for energy efficiency.

These results also lead to interesting potential conclusions
about how policymakers, real estate owners, and consultants
might communicate when analyzing the overall market for energy
efficiency. First, these results imply that there is significant
variation in building energy use regardless of systems, meaning
that it very possible that identical buildings may have different
levels of energy use intensity. Second, if energy use intensity does
not directly result from the systems in a building, then it may be
much cheaper to focus on operational efficiency improvements
rather than technical or system upgrades. Third, if the only
variable that truly matters is the observed energy use, rather than
their particular systems, then policymakers could simply inform
all building owners that they need to meet a uniform standard for
energy use intensity when compared to similar buildings, say by
facility type. Or, owners of multiple buildings could try to reduce
their energy use by an arbitrary standard, say to the median or
better, with the expectation that all buildings, on average, have
some potential for improvement regardless of systems. This
approach would be quite different from the existing utility
approach that assesses energy efficiency potential based on the
technical and economic feasibility of particular energy conserva-
tion measures. Consultants that are confident that operational
efficiencies remain un-captured could proposed to reduce energy
consumption by a certain amount from the existing baseline,
without necessarily having to resort to installing physical con-
servation measures. However, ESCOs may want additional control
or clauses to affect occupant behavior, since this may have a
relatively larger effect than anything that they may be able to
install.

One significant limitation to this research is that even if this
analysis finds that engineering audits do not explain building-level

variation, the source of this heterogeneity remains unobserved or
unexplained. Other information that might explain the observed
energy use would be information about operations, occupancy,
and existing conservation measures, but it is very difficult to
obtain this comprehensive information about buildings consis-
tently over long periods of time, and for reasonable sample sizes. If
this information could be obtained, then it may help to explain
unobserved heterogeneity in buildings and point towards further
refinement of disclosure policies. However, as noted above, at
present there are no major policies being proposed that would
mandate systematic measurement of occupancy or energy con-
servation measures, and therefore these types of data cannot yet
be used to predict the energy performance of buildings in a
practical manner.

Furthermore, these results should not be taken to imply that
auditing information has no additional value in energy efficiency.
Whether or not it is actually possible to reduce energy consumption
by an arbitrary percentage may differ from building to building,
particularly if operational energy efficiency measures have already
been implemented. Audits may still provide important information
to owners and occupiers about the energy efficiency measures that
could be further undertaken to reduce energy use. However, these
results can be read as implying that auditing information may not
provide any additional predictive power beyond benchmarking,
meaning that a prospective buyer or tenant may have no use for
this additional and costly level of information to predict the future
energy use of a building. If policymakers pass disclosure and
auditing requirements, then they should be connected either to
different theories of market transformation, or to different stages of
energy efficiency efforts. Finally, these results imply that we should
perhaps be looking for structural incentives, such as fuel prices,
carbon taxes, or other such signals, that would encourage all
owners to reduce their current levels of energy use regardless of
their current building characteristics.
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