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This paper compares the policy relevance and derives mathematical relationships between three

approaches for GHG emissions accounting for cities. The three approaches are: (a) Purely-Geographic

Inventory, (b) Trans-boundary Community-Wide Infrastructure Footprint (CIF), and (c) Consumption-

Based Footprint (CBF). Mathematical derivations coupled with case study of three US communities

(Denver Colorado, Routt Colorado, and Sarasota Florida), shows that no one method provides a larger or

more holistic estimate of GHG emissions associated with communities. A net-producing community

(Routt) demonstrates higher CIF GHG emissions relative to the CBF, while a net-consuming community

(Sarasota) yields the opposite. Trade-balanced communities (Denver) demonstrate similar numerical

estimates of CIF and CBF, as predicted by the mathematical equations. Knowledge of community

typology is important in understanding trans-boundary GHG emission contributions.

& 2012 Elsevier Ltd. Open access under CC BY-NC-ND license. 
1. Introduction

This paper addresses the allocation of greenhouse gas (GHG)
emissions to various segments of society – producers, consumers,
nations and cities – using different types of GHG emission
footprints. The focus is on footprints pertaining to cities where
many local initiatives to mitigate GHG emissions are underway
(e.g., Mayors Climate Protection Agreement (MCPA), 2009; World
Mayors Summit on Climate (WMSC), 2010).

The assignment of GHGs associated with the life-cycle of a
product to a unit of production has been well-understood in the
industrial ecology literature. Recent efforts have incorporated
such life-cycle approaches to inform GHG reporting by corpora-
tions (producers) using the concept of scopes (WRI, 2004, 2011).

Consumption-based footprints (CBF) have also been articu-
lated, wherein GHGs in commercial/industrial sectors are not
assigned to producers, but to economic final consumption repre-
sented by household expenditures, government expenditures, and
business capital investments. At the national scale, GHG embo-
died in trade between nations has been assigned to final con-
sumption sectors in each nation, yielding CBF of nations (Peters
and Hertwich, 2008). More recently, downscaled input–output
(IO) models are being tested to develop CBF at the city- and state-
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scales (Stanton et al., 2011). Final consumption is dominated
(480%) by household expenditures; hence several CBF studies
develop GHG footprints of households using readily available
consumer expenditure surveys (CE) and tracing the life-cycle
GHGs associated with these expenditures using nationally-
aggregated EIO-LCA (e.g., Weber and Matthews, 2008; Jones and
Kammen, 2011).

When nations report GHG emissions, however, territorial
accounting is employed, i.e., direct GHG emissions within national
boundaries are reported in national GHG inventories (e.g., EPA,
2010). These territorial accounts are often referred to as
production-based accounts, but also include final household
consumption of fuel (i.e., fuel combustion). Territorial or in-
boundary accounts (IB) yield GHG intensity per unit productivity
of nations, but are also reported on a per capita basis, although
GHGIB/capita does not reflect the worldwide emissions associated
with the residents of any nation.

There is wide recognition that strict territorial accounting of GHGs
such as that employed in national-scale GHG accounting is not by
itself meaningful for the smaller spatial scale of cities (e.g.,
Ramaswami et al., 2008, 2011; Kennedy et al., 2009). Cities are
relatively small compared to nations, and also small compared to the
larger-scaled infrastructure systems in which they are embedded, e.g.,
transportation commutersheds, water-, power- and fuel-supply net-
works. Consequently, important infrastructures that provide key
goods and services to cities are artificially truncated at the city’s
geographic boundary. Thus, GHGs from energy use in these key trans-
boundary infrastructures often occurs outside the boundary of the
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city using these services (e.g., electricity or petrofuels used in a city
are produced in power-plants and refineries located outside). While
there is intuitive consensus that GHGs from trans-boundary power
generation should be allocated to the city using that electricity (e.g.,
Wuppertal Institute for Climate, 2009), there is no systematic con-
sensus on the treatment of other key infrastructures.

In recent years, several cities and associated research papers have
started incorporating the embodied energy in a number of different
infrastructure supply-chains serving the city as a whole (Table 1), an
approach that we are formally articulating in this paper as the trans-
boundary Community-Wide Infrastructure Footprint (CIF). CIF stu-
dies demonstrate that trans-boundary energy use in key infrastruc-
tures serving cities can be as large, or larger than, the direct energy
Table 1
Examples of community-wide GHG emission studies in cities that incorporated infrastru

on local energy use and GHG data, and not derived from IO tables.

Researchers Cities/Urban areas included in study

Sovacool and Brown

(2010)

Beijing, Delhi, Jakarta, London, Los Angeles, Manila, Mexico

Paolo, Seoul, Singapore, Tokyo

Ramaswami et al.

(2008)

Denver

Ngo and Pataki (2008) Los Angeles

McGraw et al. (2010) Chicago

Kennedy et al. (2009) Bangkok, Barcelona, Cape Town, Denver, Geneva, London, L

Prague, Toronto

Hillman and

Ramaswami (2010)

Arvada, Austin, Boulder, Denver, Fort Collins, Minneapolis P

Baynes et al. (2011) Melbourne

Chavez et al. (2012) Delhi

Mairie de Paris (2009) Paris

Sharma et al. (2002) Calcutta, Delhi

Fig. 1. In-boundary and trans-boundary components of community-wide infrastructu

community consists of co-located homes, commercial establishments and industries w

white), while others serve visitors or physically export goods or services to other com

exports. Supply-chains associated with local consumption are shown in WHITE, and su
use and GHGs within city boundaries (Ramaswami et al., 2008;
Kennedy et al., 2009; Hillman and Ramaswami, 2010).

CIF supports cross-scale infrastructure planning for low-carbon
cities addressing infrastructure provisioning for both producers (e.g.,
industries) and consumers (e.g., households) co-located in a commu-
nity, i.e., the provision of electricity, fuel, transit, airports, water and
wastewater services in a city is planned for the community as a
whole–for homes, industries and businesses, together. In contrast,
CBF focuses more narrowly on city resident household- and govern-
ment-consumption, examining their full supply-chain impacts world-
wide; local industrial/commercial activities that support visitors or
export goods/services are not included in that city’s CBF (see Fig. 1).
Increasingly, researchers are suggesting that both a CIF and a parallel
cture supply-chains serving the whole community. All studies cited here are based

Trans-boundary infrastructures serving

whole community

Electricity Water Fuel Cement Food Air

travel

Freight

City, New York, Sao | |

| | | | | |

| | |
| |

os Angeles, New York, | | |

ortland, Seattle | | | | | | |

| | | | | |
| | | | | |
| | | |
| | |

re footprints (CIF) and consumption-based footprints (CBF) of a community. The

ithin a boundary, some of which produce locally to serve local homes (shown in

munities (shown in grey). Exports include infrastructure and non-infrastructure

pply-chains associated with exports are shown in GRAY.
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CBF be employed to inform a broad spectrum of GHG mitigation
strategies in cities (Baynes et al., 2011; Ramaswami et al., 2011).
Cities in the US and UK are also developing protocols to implement a
CIF and a CBF for their communities (BSI, 2012; ICLEI, 2012) However,
the two footprint approaches are often considered to be entirely
separate, when in fact, they are mathematically related in important
ways. The objectives of this paper are to:
�
 Articulate the CIF in the context of purely territorial (In-
boundary, IB) and purely consumption-based (CBF) account-
ing, addressing the policy relevance of all three approaches.

�
 Elucidate mathematical relationships between the three meth-

ods, enabling approximations and simplifications between
them, as appropriate.

2. Articulating an infrastructure supply-chain footprint for cities

Community-wide infrastructure footprints (CIF) overcome the
shortcomings of strictly boundary-limited approaches by reporting
direct community-wide energy use and GHGs within city boundaries
plus trans-boundary life-cycle GHG emissions associated with essen-
tial infrastructures serving the community as a whole.

Introduced by Ramaswami et al. (2008), CIF quantifies both in-
boundary and trans-boundary GHGs from essential infrastructures
defined as those that provision electricity, gas, commuter- and
airline-travel, transport fuels, drinking water, wastewater/waste
management, food supply, and building construction materials in
cities. Hillman and Ramaswami (2010) further included long-distance
freight infrastructure in eight US cities. Baynes et al. (2011), and
Chavez et al. (2012) evaluated most of these trans-boundary infra-
structures for Melbourne and Delhi, respectively. Several others
incorporated trans-boundary GHGs from a smaller subset of infra-
structures (Table 1). While studies have included different infrastruc-
ture supply-chains, articulating the method explicitly as a community-

wide infrastructure supply-chain GHG emissions footprint for cities,
while elucidating its policy relevance, helps clarify the method.

In formalizing the CIF method, Chavez (2012) proposes criteria to
identify what constitutes ‘‘essential infrastructure’’. Similar to the
case of electricity, we propose an infrastructure be considered
essential when community productivity (Gross Domestic Product
(GDP)) is highly correlated with community-wide use of that
infrastructure, while the production/export of these services is
patchy/sparse across multiple cities and hence poorly correlated
with city-GDP (Fig. 2). Applying these criteria to 21 US communities
affirmed that key infrastructures include provision of electricity,
fuel, food, cement, and iron/steel; the water/WW sector was not
highly correlated with productivity however was deemed essential,
as was travel. These infrastructures, covered by CIF, are widely
accepted as essential for any city to function, addressing both
productivity as well as basic needs for water, energy, mobility, food
and shelter. GHG emissions from the in-boundary components of
these infrastructures are already being measured and reported by
several cities (e.g., ICLEI). The purpose of CIF is to promote
standardized accounting of these essential infrastructures in all
cities to promote sustainable urban infrastructure planning, irre-
spective of city-size/boundary differences. In contrast, other sectors
such as Furniture, Appliances and other consumables are not
essential to production activities in all cities. Although the vocabu-
lary of food production as an infrastructure sector is fuzzy, cities are
indeed considering ‘‘green infrastructure’’ for urban food production
(Grimm and Wagner, 2009). Moreover, food may also be viewed as
another form of energy required to be productive.

Care must be taken to avoid double counting when incorporating
supply-chains GHGs in CIF. Most infrastructures are large and visibly
distinct (e.g., oil refineries, power-plants, water treatment plants),
such that their GHGs can be carefully allocated based on use/
demand. In the case of food production, CIF incorporates GHGs only
from agriculture/livestock (i.e., farm-to-gate GHGs only) to avoid
double count; any small (limited) agriculture within the city
boundary can be carefully addressed avoiding double-count
(Chavez et al., 2012).

Consumption-based GHG footprints (CBF) go beyond allocat-
ing infrastructure, to allocate the trade of all goods and services
across cities, however, focusing only on supply-chains serving
final consumption (see Fig. 1). As a result, local businesses and
industries that serve visitors or produce goods and services for
export are allocated out, and excluded from the city’s CBF.

Both CIF and CBF provide different types of policy-relevant
information. CIF is particularly relevant to future infrastructure
planning for the community as a whole, because urban infra-
structures are always designed to serve homes–businesses–
industries in a city considered together. The potential for greening
of infrastructures and supply-chains, made visible by the CIF, can
be facilitated by multi-level governance (Betsill and Bulkeley,
2006) from the city- to region- to state- and national-scales, e.g.,
promoting alternate fueled vehicles in cities requires government
facilitation at all levels including refueling stations within cities
as well as adequate fuel production supply-chains outside. CIF is
also effective in addressing multi-scale risks that arise from fossil
energy use by all sectors in a city–homes, businesses and
industries. These risks range from indoor air pollution from
cook-stoves, to local-scale air pollution from traffic and industrial
emissions, to regional haze and global climate change induced
risks to a city’s coupled water-energy system (Ramaswami et al.,
2012). Thus CIF addresses trans-boundary GHG emissions, as well
as local supply-chain and human health risks from community-
wide infrastructure-related activities.

In contrast, CBF conceptually provides the most holistic
assessment of per capita GHG emissions arising from all personal
consumption activities, going beyond infrastructure. CBF can
promote shifts in consumption behaviors of households and
governments, and encourage purchases from cleaner producing
regions, i.e., greening the supply-chain beyond the infrastructure
sectors already addressed in CIF. However, because CBF excludes
visitor activity and exported business–industrial output in a
community, and their supply-chains (gray areas, Fig. 1), the
stimulus to greening the supply-chain is limited to households
and governments. Table 2 summarizes the policy relevance of the
purely in-boundary accounting (IB), the CIF, and the CBF.
3. Mathematical relationships

CIF and CBF are often treated as completely separate methods,
when in fact they are mathematically related. This section high-
lights mathematical relationships between the two using a single-
region IO (SRIO) model for simplicity of illustrating the derivation.
A uni-directional multi-region IO (MRIO) derivation is provided in
the appendix.

3.1. SRIO derivation

Consumption-based GHG emissions, GHGCBF, are computed as
(Peters and Hertwich, 2008):

GHGCBF
¼ f½B�½L�þ½EFuse

�g
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

Life-cycle=Supply-chain GHG Emissions IntensityþUse Phase Emissions Factor

� f½F�þ½MF �g
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Total Final Consumption in Community

ð1Þ



Fig. 2. Preliminary analysis of the correlation between community GDP (production) vs. community-wide Supply, and community GDP vs. community Exports of various

sectors: (a) Electricity; (b) Petroleum Refining; and (c) Services. The supply of sectors such as electricity and fuel refining correlated with community productivity (GDP) for

all 21 US cities studied by Chavez (2012) while the production of these important sectors occurred sparsely in very few cities. Sectors with characteristics similar to

electricity and fuel refining are allocated based on their community-wide use in a community’s infrastructure footprint (CIF).
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where: F is the portion of local final consumption met by local
production, and MF is the portion of local final consumption met by
imports. F plus MF yields total final consumption by households,
government, and capital investments in the community. L is the total
requirements matrix ($-output/$-final demand) representing inter-
industry requirements (direct and indirect) of domestically produced
and imported goods/services, which in an SRIO model, are assumed to
be equal to the national L. B is the GHG intensity vector (mt-CO2e/

$-output) (CMU, 2008), assumed the same across all regions in an
SRIO. EFuse is the use phase combustion emissions factor of fuels
consumed by final consumption (e.g., natural gas, transport fuels).

Next, the production balance of a community’s economy is
written as:

½L�f½F�þ½E�g
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

Total Requirements ðTRÞ of Final Demand

¼ ½L�½MZ �
|fflfflffl{zfflfflffl}

TR of Imports to Local Industries
þ ½Z�þ½F�þ½E�
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

Total Local Output ðTLOÞ

¼ ½TLO�þ½L�½MZ � ð2Þ

where: E are exports, MZ are imports to local industries, and Z are
local inter-industry transactions among 440 sectors of the economy
represented in the IO models (MIG, 2010). The supply-chain of MZ is
computed applying the national L. Total local output (TLO) represents
the total local requirements of producing local final demand, and is
computed as the sum of Z (inter-industry flows), F (local production
consumed locally) and E (local production for exports). TLO reflects
the local economy.

Upon substituting the term [L][F] from (2) into (1), and
recognizing that total net imports are the sum of imports to
industry (MZ), plus imports to households (MF) minus export (E)
(Mnet¼MZþMF�E), GHGCBF can be re-written as:

GHGCBF
¼ ½B�½TLO�þ½EFuse

� � f½F�þ½MF �gþ½B�½L�½MZþMF�E�



Table 2
Policy relevant attributes and the degree of relevance for each of the three GHG emission accounting methods discussed in this paper. Three stars (nnn) represent greatest

relevance; [Explanations] are provided for reduced relevance.

Desired policy-relevant attributes k Utility of greenhouse gas accounting methods to policy attribute {nnn represents greatest relevance; [Explanations] are

provided for reduced relevance}

Purely geographic Community-wide infrastructure

footprint (CIF)

Consumption-based footprint (CBF)

Informs future city and regional

infrastructure (multi-level) planning

and policy

n nnn n

[Most infrastructures transcend city

boundaries]

[Most relevant] [Excludes infrastructures serving local

businesses and industries that export goods.]

Linkage of energy use to local urban heat

islands, local air quality, and public

health

nnn

[Most relevant]

nn n

[Energy use in key

infrastructures is allocated based

on use, not location]

[Energy use in all industries and businesses are

allocated based on consumption, not location]

Informs supply-chain vulnerability for

future planning

n nnn n

[Most infrastructures transcend city

boundaries]

[Most relevant] [Allocates GHG after consumption occurs, but

does not address future planning for local supply

vulnerability]

Enables inter-city comparisons using per

capita metrics to inform residents

N/A N/A nnn

[Most relevant][Per capita metric is incorrectly

applied]

[Per capita metric is incorrectly

applied]

Enables inter-city comparisons using

economic productivity metrics

n nnn N/A

[Most infrastructures transcend city

boundaries]

[Most relevant]

Data availability, quality and ability to

benchmark or verify energy use and

GHG emissions data

nn nn n

[Remote sensing (e.g., Shepson et al.,

2011) may enable independent

verification]

[IO models are calibrated to personal

consumption and other data, not separately

verifiable]

Table 3
Numerical results for CIF and CBF for three U.S. communities identified by the proposed typology – net-producers, net-consumers and trade-balanced in terms of GHG

embodied in imports minus exports.

County

(Typology)

GHGCBF (mt-CO2e/cap):

[Eq. (1)]; {Eq. (3)}

GHGCIF (mt-CO2e/

cap) [Eq. (4)]

Numeric ratio:

GHGCIF/GHGCBF

Embodied GHG in net-imports of non-

infrastructures: GHGnon-infra
Mnet (mt-CO2e/cap)

Commercial–industrial electricity

use per capita (kW h/cap)

Routt, CO (net-

producer)

[32.2]; {31.9} 52 163% �20 13,271

Large negative net-producer

Denver, CO

(balanced)

[31.6]; {29.9} 28 94% 2 8,704

Approaches zero (�balanced)

Sarasota, FL

(net-

consumer)

[28.8]; {29.7} 22 74% 8 5,123

Larger positive (net-consumer)

U.S. average a 28 26 93% 2 7,704

(�Balanced)

a U.S. Averages have been computed by applying the methods and equations discussed in this article, using the 2008 US IO IMPLAN dataset (MIG, 2010).
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¼ ½B�½TLO�þ½EFuse
� � f½F�þ½MF �g

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Represents Geographic ðTerritorialÞ GHGEmissions Inventory GHGIBð Þ

þ½B�½L�½Minf ra
net �

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Represents CIF GHG Emissions Footprint GHGCIFð Þ

þ ½B�½L�½Mnon-inf ra
net �

|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

GHG embodied in net non�infrastructure imports to city

ð3Þ

In Eq. (3),
Term 1, [B][TLO], represents in-boundary GHG emissions from

direct energy use in all business-industrial production within the
boundary. As shown in Fig. 1, these territorial GHG emissions
from TLO can serve local residents (shown in white within the
community boundary), as well as exports (shown in gray).

Term 2, [EFuse][FþMF], captures use-phase GHG emissions from
final consumption, e.g., GHG from natural gas combustion by house-
holds. The sum of terms 1 and 2 yields total GHG emissions from direct
energy use within the community boundary, i.e., territorial (GHGIB).

Term 3, [B][L][Minf ra
net ], quantifies the supply-chain GHG emis-

sions from net imports of key infrastructures to cities. The sum of
Terms 1 and 2 (territorial) plus Term 3 (infrastructure supply-
chains) yields GHGCIF, also illustrated in Fig. 1. Net imports
indicate that any infrastructure exports from the community are
subtracted out in computing GHGCIF.



Table 4
Material-energy flow analysis (M-EFA) data sources for completing GHGCIF for US cities, without using IO tables. Typically GHGCIF uses more locally specific data from

utilities. The spatial specificity is indicated by local, regional, state or national. The data quality is indicated as low, medium, or high based on ability to track with local/

regional benchmarks.

Sector Energy/material

type

M-EFA data source {Local specificity}, and [Relative

Quality] of M-EFA data

Frequency of data update

Buildings

energy use

Electricity Local utility billing data {local}, [high] Annual

Natural gas Local utility billing data {local}, [high] Annual

Transportation

energy use

Surface transport

(Gasoline and diesel)

VMT from regional transport models {regional}, [medium-high] Every 4–5 years

Fleet fuel economies {state/regional}, [medium] Variable

Air transport (Jet

fuel)

Jet fuel loaded at regional airport {local}, [high] Annual

Jet fuel allocated to cities via road trips to airport (Ramaswami

et al., 2008) or airport surveys (Chavez et al., 2012)

{regional}, [medium-high] Jet fuel is annual, and

transport models every 4–5

years

Long-distance

freight

County-level Expenditure Data (US Census) {local}, [low-medium] Every 5 years

County-level economic census

Materials use

and waste

Water/wastewater

(WW)

Regional water utility {local}, [high] Annual

Food Consumer Expenditure Survey {local}, [medium] ncompiled for

only a small set of U.S. cities

Annual

Consumer Expenditure Microdata {local}, [higher] Annual

Cement County Level Economic Expenditure data (US Census) {local}, [low-medium] Every 5 years

Portland Cement Association reporta {local}, [high] Annual

Waste generated Estimated from regional, state, or national level {state/regional}, [low] Uncertain

a Portland cement association (PCA)—Apparent use of Portland cement and ready-mix concrete.
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Term 4, [B][L][Mnon�inf ra
net ], quantifies the supply-chain GHG

emissions from net imports of all other, non-infrastructure
sectors.

Thus, Eq. (3) can be re-written as:

GHGCBF
¼ GHGCIF

�GHGnon-inf ra
Enet

ð4aÞ

¼ GHGCIF
þGHGnon-inf ra

Mnet
ð4bÞ

Eq. (4a) shows that the full supply-chain of net non-
infrastructure exports (Enon-inf ra

net ) from the community must be
subtracted from CIF to yield CBF. This is the equivalent to adding
GHGs in non-infrastructure imports to the whole community
(non-infrastructure supply-chains on right side of Fig. 1), and
subtracting the GHGs embodied in non-infrastructure exports
from the community – which includes infrastructure (e.g., elec-
tricity) and non-infrastructure supply-chains serving exports
(gray areas in the two supply-chains in Fig. 1), as well as local
production serving exports (all the gray areas within the com-
munity boundary, Fig. 1).

Eq. (4) implies that:
In a trade-balanced community, where GHGnon-inf ra

Mnet
5

GHGCIF, GHGCIFEGHGCBF.
In a net-producer community, where GHGnon-inf ra

Mnet
is a large

negative, GHGCIF4GHGCBF.
In a net-consumer community, where GHGnon-inf ra

Mnet
is a large

positive, GHGCIFoGHGCBF.
4. Results and insights

The mathematical derivations (1–4) are tested for three US
communities, Denver, Routt, and Sarasota. To compare the three
methods side-by-side, downscaled IO tables for these three
communities were obtained from IMPLAN (MIG, 2010) and
calibrated with actual household energy use, transportation
energy use and commercial–industrial energy use reported in
their respective GHG inventories (Denver, 2010; Routt, 2010;
Sarasota, 2008). The calibrated IO tables had to be further
corrected (see following section), after which Eqs. (1–4) were
evaluated; results are shown in Table 3. Note the IMPLAN
tables were used to enable side-by-side comparison of all three
methods with the equations. In practical applications, GHGIB and
GHGCIF would use local utility-derived data sources shown in
Table 4.

As expected, (1) and (3) yield estimates of GHGCBF computed in
two different ways that are in-line with each other for each of the
three communities (column 2, Table 3). Moreover, GHGCBF is also
similar across the three communities, ranging from 29 mt-CO2e/
cap in Sarasota, to 32 mt-CO2e/cap in Routt, and in-line with the
national average GHGCBF of 28 mt-CO2e/cap. This can arise
because total household expenditures in the cities ($54,000–
$73,000/year) are near the US average ($55,000/year), although
the distribution of goods/service consumed in the different cities
varies. However, GHGCIF (computed from (3)) is vastly different
across the communities, ranging from 22 mt-CO2e/cap in Sara-
sota, to 52 mt-CO2e/cap in Routt (column 3, Table 3)—the latter
containing a high proportion of commercial–industrial activities
engaged in exports. Thus, CIF reflects the nature of each commu-
nity, including the proportion of production activities relative to
residential.

Table 3 shows that establishing a typology for communities as
net-producers, net-consumers, and trade-balanced in terms of
GHG embodied in trade – after allocating basic infrastructures – is
important in understanding the relative magnitudes of GHGIB,
GHGCIF and GHGCBF in different types of cities. Both Table 3 and
Fig. 3 demonstrate the mathematical relationships in (3) and (4).
For a highly net-producing community GHGIB and GHGCIF are
larger, compared to GHGCBF. In contrast, for a net-consuming
community, GHGIB is small, and GHGCBF is larger than GHGCIF. In
trade-balanced community, GHGCIF and GHGCBF are numerically
similar.

These results indicate than no one method offers a more holistic
(larger number) for GHG accounting. The data also highlight that per
capita metrics applied to GHGCIF can present a misleading picture,
wherein cities with disproportionately large commercial-industrial
production activities relative to residential activity report



Fig. 3. Graphical illustration of mathematical relationships derived in

this article. (a) Routt, a net-producing community reports GHGCIF4GHGCBF.

(b) Denver, a larger metro community, estimated to be roughly trade-balanced

reports GHGCIFEGHGCBF. (c) Sarasota, a community dominated by residences (net-

consumer) reports GHGCIFoGHGCBF.
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substantially larger GHGCIF/cap, while their GHGCBF are similar to
the US average.
5. Data challenges

Computing GHGCBF for the three communities in this paper
using downscaled IO data revealed significant data challenges.
Downscaled IO tables are primarily used for economic develop-
ment planning and do not match actual energy flows associated
with electricity and fossil fuel use in local communities (e.g.,
Table 5). Nationally downscaled home energy use did not match
locally observed data and had to be corrected therewith (Denver,
2010; Routt, 2010; Sarasota, 2008). Further, the local electricity
generation as projected by IMPLAN, significantly deviated from
that reported by eGRID (EPA, 2011) in the three communities
(Table 5). This mismatch became visible for electricity because
comparison with eGRID was possible; however, such mismatches
in representing local production may also exist in other sectors,
but remain unverifiable.

Other mismatches between monetary and physical flows were
also observed when large corporate headquarters are situated in a
city, or when self-employed persons in a city operate energy
assets located elsewhere. For example, Denver’s IO table reported
high Oil & Natural Gas Sector exports from residents who have a
stake in the business; however, there are no oil and gas wells
located in the city. More collaboration with developers of IO
models such as IMPLAN can help flag these mismatches and
develop tools specific for city-scale energy use and GHG analysis,
as the IO models are not currently designed to represent energy/
material flows.

The challenges of downscaling IO tables are particularly
relevant only to CBF computations (GHGIB and GHGCIF use mostly
local-scale data, see Table 4). Consequently, many researchers
prefer to use Consumer Expenditure Surveys with national EIO-
LCA to compute GHGCBF. However, this alternate approach does
not capture efficiencies in the local production system that serves
local consumption.
6. Conclusion

Our preliminary case study of 3 cities suggests using caution in
applying downscaled IO data to city-scale GHG accounting
because current IO downscaling methods do not incorporate
energy-materials mapping/verification capabilities that are essen-
tial to show the percent local consumption that is being met by
local production.

Analysis of the IO tables, however, provided a useful side-by-
side theoretical comparison of GHGIB, GHGCIF, and GHGCBF for net-
producing, net-consuming and trade-balanced communities
based on GHGs embodied in trade of non-infrastructure sectors.
Along with the mathematical relationships (3 and 4), the data
offer the following insights:
�
 No one method among IB, CIF or CBF provides a larger or
‘‘more holistic’’ account of GHG emissions associated with
communities.

�
 For high net-producing communities, CIF will yield a larger

GHG footprint compared to the CBF. In such cities, focusing
GHG mitigation on production activities is likely to be more
important than focusing on household consumption.

�
 For high net-consuming communities, CIF will yield a lower

GHG footprint compared to CBF. Here household consumption
levers will be the largest.

�
 For large metro communities that are likely to be trade-

balanced, attention should be given to both production and
consumption.

Understanding the nature of communities as highly producing,
highly net-consuming and net-GHG trade-balanced, after allocat-
ing out basic infrastructures, is essential for an improved scien-
tific understanding of their trans-boundary impacts and better
prioritization of mitigation strategies.



Table 5
Differences in electricity use between Unadjusted IMPLAN and Community GHG Inventory reports for three US communities. Monetary energy purchases retrieved from IO

tables were converted to physical units using state average prices (EIA, 2011).

Electricity use Total local electricity generation

From unadjusted IMPLANa From each community’s GHG inventoryb Unadjusted IMPLAN

(GW h/yr)

EPA eGRID

(GW h/yr)c

% error

Routt Residential intensity 980 kW h/HH/mo 833 kW h/HH/mo 1280 3654 �65%

Total commercial–industrial use 287 GW h 251 GW h

Denver Residential intensity 1,284 kW h/HH/mo 546 kW h/HH/mo 19,296 1269 1421%

Total commercial–industrial use 11,313 GW h 5038 GW h

Sarasota Residential intensity 952 kW h/HH/mo 1403 kW h/HH/mo 1671 0 Very large

Total commercial–industrial use 1,730 GW h 1861 GW h

a Unadjusted IMPLAN data was retrieved from each of the communities input–output data file, provided by MIG, Inc. (2010).
b Each of the three communities GHG inventory report are used to extract geographic (in-boundary) energy use.
c Local electricity generation retrieved from EPA eGRID (EPA, 2011).
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Appendix. MRIO Equation Derivations

MRIO Derivation
We now derive mathematical relationships between GHGCIF

and GHGCBF using a uni-directional MRIO model. A uni-directional
MRIO assumes that direct trade to local industries dominates. For
details on uni-directional MRIO, the reader is referred to Lenzen
et al. (2004), Peters and Hertwich (2008), and Weber and
Matthews (2008). MRIO attempts to attribute impacts to a
particular region by considering a number of trade partners with
different production characteristics (i.e., L-matrix). For simplicity,
we begin by writing MRIO GHGCBF, using a two-region model
where Region 1 is the local community, and Region 2 is the rest-
of-world (ROW).

GHGCBF
¼ ½B�½L1�½F�þ½B�½L2�½MF �þ½EFuse

�½FþMF � ðA1Þ

where: L1¼(I�A1)�1
¼(I�[A11þA21])�1 and is the full produc-

tion matrix of the local/base economy, L2 is the ROW production
matrix in which following uni-direction MRIO, is assumed equal
to the national (US) production matrix (L).

The production balance of an economy in the MRIO framework
is written:

½L1�f½F�þ½E�g ¼ A11x1þA21x1þFþE¼ TLOþA21x1 ðA2Þ

where: A11 are the direct requirements on local production, A21

are the direct requirements on production of industrial imports
from region 2 to 1, and x1 is region’s 1 output. Further, A11x1¼Z,
and A21x1 equals the total industrial imports into the local
economy, region 1.

Next we assume that all industrial imports into region 1 are
exclusive of region 1 exports, and that A21x1E[L2][MZ]. Then,
upon substituting [L1][F] from (Eq. A2) into (Eq. A1), MRIO
GHGCBF are shown as:

GHGCBF
¼ ½B�½TLO�þ½EFuse

�½FþMF �

þf½B�½L2�½M
inf ra
Z þMinf ra

F ��½B�½L1�½E
inf ra
�g

þf½B�½L2�½M
non-inf ra
Z þMnon-inf ra

F ��½B�½L1�½E
non-inf ra

�g ðA3Þ
where,
[B][TLO]þ[EFuse][FþMF]þ{[B][L2][Minfra]�[B][L1][Einfra]}

should approximate GHGCIF, and
{[B][L2][Mnon-infra]�[B][L1][Enon-infra]} are the GHG embo-

died in net imports of non-infrastructures to the city.
These relationships can be directly related to those obtained

from (4) in the manuscript.
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