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and (2) the Precambrian basement of the Xilinhot complex 
and Paleozoic Baolidao arc to the north are the provenance 
rocks of the schists in the Erdaojing area. We infer that 
the existence of the ocean between the above two regions 
in the late of Early Paleozoic in accordance with the result 
of this study. Furthermore, a comparison of the youngest 
age population in the intruded-diorite rock and metasedi-
mentary rocks with U-Pb ages implies that the final closure 
of the Paleo- Asian Ocean along the Solonker Suture Zone 
most likely occurred in the period between 239 and 222 Ma 
(Late Paleozoic-Triassic).

Keywords Ondor Sum complex · Erdaojing complex · 
Paleo-Asian Ocean · Xing’an-Mongolia Orogenic Belt · 
Late Paleozoic-Triassic

Introduction

The Central Asian Orogenic Belt (CAOB) is one of the 
largest Phanerozoic orogenic systems on Earth (Cawood 
et  al. 2009) (Fig.  1), which is generally thought to sepa-
rate the North China Craton from the growing accretion-
ary front encircling the Siberian Craton (e.g., Jahn et  al. 
2000, 2004; Windley et al. 2007; Xiao et al. 2003, 2009a, 
b, 2010, 2013, 2015; Kröner et al. 2007; Song et al. 2015). 
This area has attracted much attention from researchers in 
the last decade, as its formation is related to accretionary 
processes (e.g., accretion of terranes, accretionary wedges, 
seamounts, subduction roll-back and back-arc basin open-
ing and closure) and continental crust formation induced by 
the Palaeozoic subduction of the Palaeo-Asian Ocean that 
had evolved for a long period of time since the Neoprote-
rozoic (e.g., Şengör et al. 1993; Xiao et al. 2003, 2009a, b; 
Windley et al. 2007; Wang et al. 2009; Zhang et al. 2009a, 
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the provenance rocks of the schists in the Tulinkai area, 
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b, c; Eizenhöfer et al. 2015; Liu et al. 2016) (Fig. 1). Final 
disappearance of the Paleo-Asian Ocean between the North 
China and Siberian Cratons terminated the formation of the 
CAOB, leading to collision between the combined North 
China Craton and the southern accretionary margin of the 
Siberian Craton in the Late Paleozoic and/or Early Meso-
zoic time (e.g., Xiao et al. 2009a, b, 2015; Liu et al. 2012; 
Eizenhöfer et  al. 2014; Xu et  al. 2015; Song et  al. 2015; 
Li et  al. 2016a, b). However, several issues dealing with 
the Paleozoic evolution of the Paleo-Asian Ocean remain 
speculative, especially the location of suture zone and the 
timing of the final oceanic closure.

Several tectonic models have been proposed to explain 
the formation and evolution of the CAOB, The end-mem-
ber models include: (1) single-arc model of Şengör et  al. 
(1993), which requires main elements of the CAOB were 
derived from a single (or multiple of Yakubchuk 2008) 
ocean spanning arc system, (2) archipelago-type tectonic 
model of Xiao et  al. (2003, 2009a, b, 2010), Windley 
et  al. (2007), and Lehmann et  al. (2010), which predicts 

that distinct volcanic arcs and blocks were accreted onto 
the active margins of the Siberian Craton from the Early 
Paleozoic to the Early Mesozoic. Also, several subdivision 
schemes in terms of the tectonic architecture of the east-
ern part of the CAOB had been proposed (e.g., Wang and 
Liu 1986; Chen et al. 2000; Badarch et al. 2002; Xiao et al. 
2003, 2009a, 2015; Xu et al. 2013, 2014, 2015; Eizenhöfer 
et  al. 2014, 2015; Song et  al. 2015; Zhang et  al. 2015), 
which made the relationship between major tectonic blocks 
confusing to understand.

A more detailed understanding is needed with respect 
to the development of volcanic arcs, the relative paleoge-
ographic location of terranes before the final closure, and 
the interaction between respective tectonic elements within 
the Paleo-Asian Ocean. Detrital U-Pb zircon geochronol-
ogy of Paleozoic sedimentary arc basins is a potentially 
powerful tool with which to quantitatively evaluate issues 
of when and how opening and closing of the ocean. It pro-
vides information on relationships between major tectonic 
blocks, such as their relative paleogeographic locations in 

Fig. 1  Sketch map of the geology in the southern Central Asian Oro-
genic Belt, modified from Xiao et  al. (2003) and Wu et  al. (2016) 
based on our own observations showing the Solonker suture zone 

separating the northern and southern Paleozoic orogens. The blue 
dash box shows the location of the study area
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time or contribution to sedimentary material (Haughton 
et al. 1991). Major tectonic units can be identified by com-
paring age distributions to well-defined “age-fingerprints” 
of likely provenance terrane candidates.

Xing’an-Mongolia Orogenic Belt of the eastern Central 
Asian Orogenic Belt is characterized by various Phanero-
zoic accretionary orogen, which are interpreted as island 
arcs, forearc or back-arc basins, ophiolites, and microcon-
tinents (e.g., Şengör et  al. 1993; Xiao et  al. 2003, 2009a, 
b, 2013; Windley et al. 2007; Eizenhöfer et al. 2015; Song 
et al. 2015; Xu et al. 2015; Zhang et al. 2015) (Fig. 1). This 
work evaluates the location and timing of the final closure 
of the Paleo-Asian Ocean, and identifies major sedimentary 
provenance terranes within the Xing’an-Mongolia Oro-
genic Belt. The main goal of this paper is to use coupled 
U-Pb dating of detrital zircon to determine zircon-popu-
lation distributions in the Erdaojing and Ondor Sum com-
plexes of central Inner Mongolia (Fig. 2). The detrital-zir-
con-grain ages record the crystallization of the source rock 

and can only place a maximum age on deposition of the 
host strata, and that detrital zircons are highly susceptible 
to sedimentary recycling given their resistance to mechani-
cal abrasion. In additional, our U-Pb detrital zircon dating 
provides valuable information about the provenance of the 
metasedimentary rocks in the Xing’an-Mongolia Oro-
genic Belt. Comparison of zircon populations in the study 
area and those of bedrock allows us to quantify the spatial 
relationships of zircon populations between the Erdaojing 
and Ondor Sum complexes and the processes that transfer 
zircon populations from the source regions to the forearc 
basin.

Regional geology

The eastern section of the CAOB is characterized by 
east–northeast trending tectonic units, consisting of 
ophiolites, arcs, accretionary wedges and associated 
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Fig. 2  Simplified geological map of the study area, modified from 
Chu et  al. (2013) based on our own observations, showing sample 
localities. Ages data from: (1) Jian et al. (2008); (2) Li et al. (2012); 

(3) Xu et al. (2014); (4) Chen et al. (2009); (5) Chu et al. (2013); (6) 
Liu et  al. (2003); (7) Liu et  al. (2015); (8) Wu et  al. (2016); (9) Li 
et al. (2016); (10) Zhou et al. (2009)
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volcanosedimentary rocks that were assembled during the 
final Late Paleozoic–Early Mesozoic closure of the Paleo-
Asian Ocean (e.g., Sengör et  al. 1993; Ye et  al. 1994; 
Xiao et al. 2010; Wu et al. 2014, 2015; Zhang et al. 2015) 
(Fig.  1). The eastern section of the CAOB region can be 
divided into three domains, from north to south (Fig.  1): 
the accretionary zone between the Solonker suture and the 
Uliastai continental margin, the Solonker suture zone, and 
the southern accretionary zone between the North China 
Craton and the Solonker suture (Xiao et  al. 2003, 2009a, 
b; Xu et al. 2013). The northern accretionary zone extends 
southward from a continental margin that was active during 
Devonian to Carboniferous times, through the Hegenshan 
ophiolitic accretionary complex to the Late Carboniferous 
Baolidao arc (Xiao et al. 2003; Li et al. 2014) (Fig. 1). The 
southern accretionary zone is characterized by the Middle 
Ordovician–early Silurian Ondor Sum subduction–accre-
tion complex (De Jong et al. 2006; Jian et al. 2008) and the 
Bainaimiao arc (Fig. 1). Complete subduction of the Paleo-
Asian Ocean caused the two opposing active continental 
margins to collide, leading to formation of the Solonker 
suture (Xiao et  al. 2003). Whether the Solonker Suture 
Zone was formed by episodic (Jian et  al. 2008, 2010) or 
continuous (Chen et al. 2000, 2009; Xiao et al. 2003) tec-
tonic activity caused by subduction of oceanic lithosphere 
is also debated. According to the published models pro-
posed by Li et al. (2006) and Jian et al. (2008, 2010), the 
Solonker Suture Zone is located along the northern bank 
of the Xar Moron River. Most researchers (e.g., Wu et al. 
2002, 2007; Xiao et al. 2003; De Jong et al. 2006; Li et al. 
2006; Shen et al. 2006; Zhang et al. 2007, 2009a, b, c; Jian 
et al. 2008, 2010; Lin et al. 2008; Chen et al. 2009; Eizen-
höfer et al. 2014, 2015) locate the final closure of the Paleo-
Asian Ocean along the banks of the Xar Moron River. 
However, some other authors (e.g., Shao 1989; Tang 1990; 
Nozaka and Liu 2002) assume that the final collision took 
place further north near the Hegenshan Ophiolite Complex 
(see Miao et  al. 2008) varying from end of the Devonian 
to the Middle Mesozoic. Inner Mongolia is an accretionary 
orogen that has one terminal suture zone passing through 
Solonker, which contains many lenses of melange, ophi-
olites and blueschists (Xiao et al. 2003).

The Northeast China, tectonically named in the past as 
Xing’an-Mongolian Orogenic Belt, geosyncline or fold 
system (IMBGMR 1991) and Manchurides of Sengör and 
Natal’in (1996), composes the main part of the eastern 
segment of the CAOB, and tectonically located in the area 
surrounded by the Siberian Craton to the north, the North 
China Craton to the south and the western Pacific Plate 
to the east. The tectonic evolution in the area was closely 
related to the Paleo-Asian Ocean and Paleo-Pacific Ocean 
regimes during the Paleozoic-Early Mesozoic (e.g., Li 
et al. 2006; Windley et al. 2007; Xiao et al. 2003, 2009a, b, 

2015). Li et al. (2006) considered that there are two kinds of 
different tectonic domains in NE China and its surrounding 
areas, i.e. Pre-Sinian blocks or massifs with the Archean-
Paleoproterozoic or Middle Proterozoic-Early Neoprote-
rozoic basements and the Phanerozoic orogenic belts of 
various ages, based on which he divided the NE China 
from west to east into Central Mongolian-Ergun blocks, 
South Mongolian-Central Great Xing’an orogenic belt 
and Bureya-Jiamusi paleoplate. Recently, Xu et al. (2015) 
gave a tectonic division of the Xing’an-Mongolia Orogenic 
Belt according to tectonics, geochronology and geochem-
istry. They recognized four blocks and four sutures in the 
Xing’an-Mongolia Orogenic Belt, including the Erguna 
block, Xing’an-Airgin Sum block, Songliao-Hunshandake 
block and Jiamusi block, and Xinlin-Xiguitu suture, Xilin-
hot-Heihe suture, Mudanjiang suture and Ondor Sum-Yanji 
suture. Liu et al. (2016) suggest that the Paleozoic tectonic 
divisions in Northeast China are, from west to east, Erguna 
block, Xing’an block, Songliao-Xilinhot block and Jiamusi 
block, and Xinlin-Xiguitu suture, Heihe-Hegenshan suture, 
Mudanjiang-Yilan suture between them and Solonker-Xar 
Moron-Changchun-Yanji suture between the blocks in the 
Northeast China and North China Craton to the south.

The basement of the North China Craton consists of 
Archaean and Lower Proterozoic rocks, covered by pas-
sive margin sediments of Neoproterozoic to early Paleo-
zoic age (Hsü et  al. 1991). On the northern side of the 
Chifeng-Bayan Obo fault is the Mid-Ordovician to Early 
Silurian Bianaimiao arc (Hu et al. 1990), which comprises 
calc-alkaline tholeiitic basalts to minor felsic lavas, alkaline 
basalts, and agglomerates, volcanic breccias, tuffs, grano-
diorites, and granites (e.g., Xiao et  al. 2003). There is no 
evidence of subduction zone rocks or a suture zone south 
of Bainaimiao regional to allow northward subduction to 
create this arc, and therefore Xiao et  al. (2003) suggested 
that southward subduction was relatively responsible. The 
occurrence of shallow marine clastic sediments and car-
bonates on top of early Paleozoic granites in the western 
Ondor Sum region (Wang and Liu 1986) constrains the 
exhumation of the Bainaimiao-type magmatic rocks, which 
may point to the extinction of the arc. In the Silurian, Devo-
nian and Carboniferous no island arcs were generated and 
accreted to the northern margin of the North China Craton 
(e.g., Xiao et al. 2003; De Jong et al. 2006).

Isolated outcrops of ophiolites occur around Ondor 
Sum, in an area of about 70 km along strike associated with 
high-pressure metamorphic rocks, and further eastward 
in the area of Kedanshan and along the northern banks 
of the Xar Moron River (e.g., Xiao et  al. 2003; De Jong 
et al. 2006) (Fig. 1). The Ondor Sum complex consists of 
Early Paleozoic metamorphic rocks, unconformably over-
lain by Late Paleozoic Carboniferous sedimentary rocks 
and Permian volcanic-sedimentary rocks. The Ondor Sum 
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metamorphic rocks consist of schist and quartzite with 
marble lenses, which have been thrust onto the continen-
tal margin of the North China Craton. The Mesoproterozoic 
amphibolite-facies orthogneisses and supracrustal rocks 
as well as Neoproterozoic greenstones described by Zhai 
et  al. (2003) probably belong to the basement of Ondor 
Sum. They are overlain by Carboniferous limestone, and 
Permian flysch, andesite, dolerite, sandstone, and lime-
stone with a large number of brachiopod fossils. The origi-
nal rocks of the Ondor Sum complex assemblage north of 
the Xar Moron fault have been intensely shredded by tec-
tonic processes partly during accretion, and partly during 
subduction and exhumation (e.g., Xiao et al. 2003). There 
are plutonic rocks in this region with a wide compositional 
range and a very wide age range, which are composed of 
Cambrian–Ordovician granitoids, Permian diorite, quartz 
diorite, granodiorite (Zhou et al. 2009).

The Solonker suture zone is marked by a belt of mel-
anges, blueschists and ophiolites that is 700 km long and 
60 km wide. It contains blocks of dolomite, quartzite, mafic 
and ultramafic rocks, marble and blueschist (e.g., Tang 
1990; Xu et  al. 2001; Xiao et  al. 2003; Jian et  al. 2008, 
2012). The accretionary wedge Erdaojing complex (Fig. 1) 
is composed of tectonic melange typical of a modern accre-
tionary wedge (Tang 1990). Also, The Erdaojing accretion 
complex contains the youngest ophiolites among eastern 
CAOB. The northward younging in the ophiolitic mel-
anges from the Early Paleozoic ophiolites in the south to 
the Permian ophiolites in the north, together with the fact 
that both these ophiolites were imbricated with the Lower 
Permian sediments (Li 1986, 1987), Xiao et al. (2003) sug-
gests that the whole section represents a northward grow-
ing accretionary complex which may have been resulted 
from seaward retreat (northward) of a south dipping trench 
along which the Paleo-Asian ocean was subducted beneath 
the North China Craton in the Late Paleozoic. There is a 
substantial body of evidence indicating that the final sutur-
ing of the Solonker zone occurred between the Late Per-
mian and earliest Triassic (Xiao et al. 2003, 2009a, b; Miao 
et al. 2008; Jian et al. 2010; Li et al. 2011), which may be 
related to the closure of the Permian oceanic basin in west-
ern Inner Mongolia (Li et al. 2011, 2014).

The Xilinhot complex is an amphibolite facies tectonic 
unit within the eastern part of the CAOB (Shi et al. 2003; 
Li et al. 2016a, b). It is distributed discontinuously as vari-
ably sized tectonic blocks in the Late Carboniferous Baoli-
dao arc accretionary zone (IMBGMR 1991; Shi et al. 2003; 
Li et al. 2016a, b). The Xilinhot complex occurs within the 
northern accretionary zone along the northern margin of 
the Xilinhot fault and is well exposed at Baiyintala, Xiretu, 
Baiyinxile and Baiyinchagan in a region just south of Xil-
inhot City (IMBGMR 1991; Li et  al. 2016a, b) (Fig.  1). 
It is in fault contact with the upper Silurian sedimentary 

Xuniwusu Formation to the south, which formed in a shelf 
environment. The complex is locally covered by volcano-
sedimentary rocks above an angular unconformity. Many 
Late Paleozoic to Mesozoic granites and numerous later 
granitic and quartz veins intruded the complex. Quartzo-
feldspathic gneisses are the major component of the Xil-
inhot complex, including biotite-plagioclase gneiss, two 
mica-plagioclase gneiss, and sericite-plagioclase gneiss (Li 
et al. 2016a, b). The magmatic rocks of the Xilinhot block 
are exposed discontinuously along the northern margin 
of the Lixin Fault (Fig.  1), the northern boundary of the 
Solonker (Sun et al. 2013a, b).

The Baolidao arc is composed of variably deformed, 
metaluminous to weakly peraluminous, hornblende-bearing 
gabbroic diorite, quartz diorite, tonalite and granodiorite 
(IMBGMR 1991; Chen et al. 2000). U-Pb zircon ages indi-
cate that the bulk of the Baolidao rocks were emplaced in 
Late Carboniferous time at circa 310 Ma (Xiao et al. 2003). 
Contemporaneous volcano-sedimentary rocks to the north 
formed in island arc and back arc settings (Nan and Guo 
1992). Ophiolites and blueschists between Sunid Zouqi 
and Xilinhot (Fig. 1) occur as lenses in north dipping Car-
boniferous and Early Permian clastic sediments, and are 
overlain unconformably by Upper Permian conglomerates 
(Wang and Liu 1986). The Precambrian rocks outcrop in 
the Xilinhot and Sonid Zuoqi regionals belong to blocks 
that were accreted to the margin of the CAOB and incor-
porated into the subduction-accretion complex before the 
terminal closure of the central Asian ocean and formation 
of the Solonker suture (Xiao et al. 2003).

Sample petrology and analytical methods

Our study areas are located at the Erdaojing and Tulinkai 
(Figs.  1, 2) of the central segment of Inner Mongolia. 
In total, one metamorphic diorite sample and five schist 
samples were collected in the autumn of 2013 and the 
summer of 2014. U-Pb zircon dating analysis were per-
formed on the igneous and schist samples. Sample loca-
tions (Fig.  2a, b) are shown in Table  1. Specifically, 
Fig.  3a is the stratum section of Ondor Sum complex 
and Carboniferous strata which outcrop in the Tulinkai 
area. The Ondor Sum schist with the fault contact rela-
tionship to the Carboniferous strata consist of the lime-
stone within thin bedding sandstone, and the strata are 
domain dip to north. The detail location of the albite 
schist sample (Sample PM101TW21) are showing in 
this section (Fig.  3a), and the sample is very fresh and 
medium- to coarse- grained. To the north, the chromite-
bearing quartzite as the lens body outcrop the contact 
between the schist and phyllite (sample D03) (Fig. 3c). A 
metamorphic diorite dike (Sample D02) intruded into the 
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Tulinkai Ultra-mafic rocks, but the occurrence of the con-
tact relationships is discontinuous and the bedrock out-
crop is scattered (Fig. 4a). Also, Fig. 3b is a simple stra-
tum section of Erdaojing complex which outcrops in the 
Erdaojing area, the right lateral shear is developed across 
the metamorphic complex. The quartz schist (Sample 
D11) usually clip the chromite-bearing quartzite (Fig. 4d) 
as the lens body. To the west, the chlorite-sericite schist 
(Sample D10) is unconformity contact the upper vol-
canic rocks with the thin interbed of crust of weathering 
(Fig. 4b).

Sample petrology

Chlorite-sericite schist (Sample D10) The lower-medium 
grade metamorphic schist retains a fine greywacke to silt-
stone-like sedimentary texture and is mostly composed of 
clasts, which was collected from a weakly foliated meta-
morphic complex at the Erdaojing area (Fig.  4b). The 
basic mineralogical assemblage of this schist sample is 
40% quartz, 60% chlorite + sericite. Accessory minerals 
include a small amount of limonite, tourmalines and zircon. 
The monocrystalline quartz and albite clasts are typically 

Table 1  Summary of sample 
numbers and sample locations

Sample number Description Dating method Latitude (°N) Longitude (°E) Data source

D02 Diorite U-Pb zircon 42.27° 112.46° This study
D03 Phyllite U-Pb zircon 42.26° 112.55° This study
D10 Chlorite-sericite schist U-Pb zircon 43.31° 113.40° This study
D11 Quartz schist U-Pb zircon 43.24° 113.31° This study
PM101TW21-1 Albite schist U-Pb zircon 42.24° 112.52° This study
PM101TW21-2 Albite schist U-Pb zircon 42.24° 112.52° This study
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Fig. 3  The stratum sections of the Ondor Sum complex and Carboniferous strata which outcrop in the Tulinkai area (a), and Erdaojing meta-
morphic rocks that outcrop in the Erdaojing area (b)
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subhedral to euhrdral finer grained ranging from 0.02 to 
0.20 mm in diameter. The aligned chlorites and sericites are 
typically scaly, averaging <0.1 mm in size. This chlorite-
sericite schist is penetratively deformed by the development 
of schistosity. The foliation is defined by a minor amount 

of eclongated quartz grains bounded by foliation-parallel 
sericite (Fig. 5a), which is largely recrystallized and carry 
large quantities of chlorite or other platy minerals.

Quartz schist (Sample D11) The lower-medium 
grade metamorphic schist retains a fine greywacke to 
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siltstone-like sedimentary texture and is mostly composed 
of clasts, which was collected from a weakly foliated meta-
morphic complex at the Erdaojing area (Fig. 4d). The basic 
mineralogical assemblage of this schist sample is 75% 

quartz, 15% chlorite + sericite, 10% calcite. Accessory 
minerals include a small amount of tourmalines and zircon 
grains. The monocrystalline quartzes are typically subhe-
dral to euhrdral finer grained ranging from 0.02 to 0.20 mm 
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in diameter. The aligned chlorites and sericites are typically 
scaly, averaging <0.1 mm in size. The calcite is typically 
subhedral to euhrdral finer grained ranging from 0.02 to 
0.25 mm in diameter. This schist is penetratively deformed 
by the development of schistosity. The foliation is defined 
by a minor amount of eclongated quartz and calcite grains 
bounded by foliation-parallel sericite, which is also largely 
recrystallized and carry large quantities of chlorite or other 
platy minerals (Fig. 5b).

Albite schist (Sample PM101TW21) The Sample 
PM101TW21-1 and Sample PM101TW21-2 are a same 
sample collected from a weakly foliated metamorphic com-
plex at the Tulinkai area (Fig. 4e, f). However, two different 
color zircons (pink for Sample PM101TW21-1 and purple 
for Sample PM101TW21-2) are found from this sample, 
therefore, we divided it into two parts and give them dif-
ferent sample number. These lower-medium grade meta-
morphic schists are medium- to coarse- foliated, which is 
lightly recrystallized but do not carry large quantities of 
mica or other platy minerals. The foliations are character-
ized by alternating darker and lighter colored bands. These 
schist samples consist of albite (75%), quartz (5%), chlo-
rite (20%). The albites and rare quartzs are typically sub-
hedral to euhrdral finer grained ranging from 0.1 to 0.2 mm 
in diameter, whereas the aligned chlorites are typically 
scaly and averaging <0.1 mm in size. Accessory minerals 
include a small amount of apatite and zircon (Fig. 5c).

Phyllite (Sample D03) The lower-grade metamorphic 
phyllite retains a fine greywacke to siltstone-like sedimen-
tary texture and is mostly composed of clasts, which was 
collected from a weakly foliated metamorphic complex at 
the Tulinkai area (Fig. 4c). The basic mineralogical assem-
blage of this phyllite sample is 65% quartz + felspar, 35% 
chlorite + sericite, and rare calcite minerals. Accessory 
minerals include a small amount of zircons. The monocrys-
talline felsic minerals are typically subhedral to euhrdral 
finer grained ranging from 0.05 to 0.15  mm in diameter. 
The aligned chlorites and sericites are typically scaly, aver-
aging <0.2 mm in size. The calcite is typically subhedral 
to euhrdral finer grained ranging from 0.02 to 0.4  mm in 
diameter. The foliation is defined by a minor amount of 
eclongated quartz and calcite grains bounded by foliation-
parallel sericite, which is also largely recrystallized and 
carry large quantities of chlorite or other platy minerals 
(Fig. 5e, f).

Metamorphic diorite (Sample D02) This sample was 
collected from the Tulinkai area of the Ondor Sum complex 
(Fig.  4a). The diorite intruded into the ultramafic–mafic 
rocks. The basic mineralogical assemblage of this slightly 
metamorphic diorite sample is ca. 95% plagioclase, 5% 
melanocratic minerals (biotite and amphibole), and rare 
quartz minerals. The monocrystalline plagioclase min-
erals are typically subhedral to euhrdral finer grained 

ranging from 0.2 to 1.0 mm in diameter. The quartz miner-
als are typically euhrdral finer grained ranging from 0.05 to 
0.35 mm in diameter. The sample shows the characteristic 
of obviously broken (Fig. 5d).

Analytical methods

All samples were collected from medium grained, with 
each sample weighing ~5 kg. Once samples collected, the 
schist samples were sent to the Institute of Hebei Regional 
Geology and Mineral Survey in Langfang, Hebei Province, 
for mineral separation. The samples were first crushed to 
pass a 60 mesh (250 μm) sieve. Manual washing with water 
and then alcohol was performed carefully for multiple ali-
quots of the crushed material to get the denser component 
of various grain sizes. An electromagnetometer was then 
used to remove magnetic minerals. Heavy liquid separation 
was used to concentrate heavy minerals, and the remaining 
non-zircon minerals were picked out by hand under a bin-
ocular, leaving only zircon grains in the sample. The zircon 
grains were mounted randomly in epoxy resin and polished 
close to one-third of individual grain diameters. Sample 
mounts were photographed in reflected and transmitted 
light. In order to guide laser ablation isotope analysis, grain 
growth structures were later depicted as cathodolumines-
cence (CL) images (Fig. 6). CL imaging was employed to 
investigate the rim-core relationships. For grains with cores 
and rims, we analyzed only the rims, as their ages record 
the most recent thermal events.

It is believed that at least 60 randomly selected grains 
should be measured to reduce the probability of missing 
one population comprising >5% of the total at a 95% sig-
nificance level based on the standard binomial probability 
formula (Dodson et al. 1988). Both statements refer to the 
analysis of concordant ages. In this study, we aimed at ana-
lyzing at least 75 grains from each sample. Simultaneous 
analyses of U-Pb of detrital-zircon grains from 5 samples 
and one diorite sample were carried out at the Isotopic Lab-
oratory, Tianjin Institute of Geology and Mineral Resources 
using an Agilent 7500a multicollector–inductively coupled 
plasma–mass spectrometer (MC-ICP-MS) and a Neptune 
MC-ICP-MS equipped with a 193-nm excimer ArF laser-
ablation system. Each analysis was composed of an ~30 s 
background measure ment with laser off and a 60 s meas-
urement of peak intensities. The ablation pits varied at 40, 
50, and 60 μm in diameter, which depended on the size of 
sample grains, and at ~30–40  μm in depth. The ablated 
material was carried in helium into the Q-ICP-MS and 
MC-ICP-MS for simultaneous determination of U-Pb age. 
The analytical method used in this study follows Li et  al. 
(2009).

Standard zircon 91,500 was employed to correct for 
mass bias affecting 207Pb/206Pb, 206Pb/238U, 207Pb/235U 



2736 Int J Earth Sci (Geol Rundsch) (2017) 106:2727–2746

1 3

Fig. 6  Representative cathodoluminescence (CL) images of zircons dated in this study. Black circles are analyzed spots for U-Pb dating. The 
numerals are ages in Ma. Scale bar in each applies showing in all panels
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(235U = 238U/137.88), and 208Pb/232Th ratios. NIST SRM 
610 glass was used for concentration information and the 
U/Th ratio determination. The fractionation correction and 
results were calculated using GLITTER 4.0 (Macquarie 
University), and common Pb was corrected following the 
method described by Andersen (2002). The analytical data 
for U-Pb zircon dating are shown in Appendix Data. The 
total age probability density distribution of each sample 
was calculated by assuming a Gaussian error distribution 
for each single age and its respective 1σ error. Single age 
probability density distributions were summed to obtain 
the probability density distribution of the sample, and then 
normalized by the number of total analyses of each sam-
ple. The interpreted U/Pb ages are based on 206Pb*/238U for 
grains younger than 1.0  Ga and 207Pb*/206Pb* for grains 
older than 1.0 Ga, with uncertainties both at the 1σ level. 
The concordia plots used a log–log scale in order to ade-
quately visualize the entire age spectrum of a sample in a 
single plot. The unlikeliness that errors of each of the two 
isotope ratios reach simultaneously their maximum value 
has been taken into account by drawing error ellipses based 
on a 95% confidence level (2σ).

Results of U-Pb dating

The remaining ages are shown on U–Pb concordia dia-
grams and relative age-probability diagrams generated 
using Isoplot 4 (Ludwig 2008). The interpreted ages of zir-
con grains are shown on the relative age probability dia-
grams (Fig.  7) and 207Pb/235U-206Pb/238U concordia dia-
gram (Fig. 8). Age-probability diagrams show each age and 
its uncertainty (for measurement error only) as a normal 
distribution, and sum all ages from a sample into a single 
probability density function.

Chlorite-sericite schist (Sample D10) Zircon crystals 
extracted from this sample are mostly euhedral, 100 zir-
con grains were analyzed, of which 87 passed the concord-
ance filters (Fig. 7a). U-Pb dating indicates that major age 
populations lie in the range of 420–504 Ma, with the major 
age peak centered at ca. 461 Ma and ca. 475 Ma, respec-
tively (Fig. 7a). A single zircon grain with a U-Pb age of 
ca. 420 Ma is the youngest zircon age of this sample. Also, 
two other single zircon grains with the U-Pb ages of ca. 
1843 Ma and ca. 1846 Ma are the oldest zircon ages of this 
sample.

Quartz schist (Sample D11) Zircon crystals extracted 
from this sample are mostly euhedral, 100 zircon grains 
were analyzed, of which 100 passed the concordance fil-
ters (Fig. 7b). U-Pb dating indicates that major age popula-
tions lie in the range of 447–504 Ma, with the major age 
peak centered at ca. 471 Ma and ca. 451 Ma, respectively 
(Fig. 7b). Two single zircon grains with a U-Pb age of ca. 

398 Ma and ca. 418 Ma are the youngest zircon ages of this 
sample. Also, two other single zircon grains with the U-Pb 
ages of ca. 1587 Ma and ca. 1965 Ma are the oldest zircon 
ages of this sample. Additional ages of ca. 520–539 Ma are 
source from the western extension of the Baolidao Arc, as 
the existence of the magmatic record in the Hadaaobao plu-
ton of the Siziwangqi area.

Albite schist (Sample PM101TW21-1) Pink zircon crys-
tals extracted from the sample are mostly euhedral. 60 zir-
con grains of sample PM101TW21-1 were analyzed, of 
which 39 passed the concordance filters (Fig.  7c). U-Pb 
dating indicates that major age populations lie in the range 
of 264-–269 Ma, with the major age peak centered at ca. 
265  Ma and ca. 630  Ma, respectively (Fig.  7c). A single 
zircon grain with a U-Pb age of ca. 239 Ma is the young-
est zircon age of this sample. The rest of the zircon grains 
yielded ages from ca. 991 Ma to ca. 2588 Ma without any 
obvious age clustering. Also, the single zircon grain with 
the U-Pb age of ca. 2588 Ma is the oldest zircon age of this 
sample.

Albite schist (Sample PM101TW21-2) Purple zircon 
crystals extracted from the sample are mostly euhedral. 100 
zircon grains of sample PM101TW21-2 were analyzed, of 
which 96 passed the concordance filters (Fig.  7d). U-Pb 
dating indicates that major age populations lie in the range 
of 1043  Ma–2546  Ma, with the major age peak centered 
at ca. 1850 Ma and ca. 2200 Ma, respectively (Fig. 7d). A 
single zircon grain with a U-Pb age of ca. 1043 Ma is the 
youngest zircon age of this sample. Also, two single zircon 
grains with the U-Pb age of ca. 3378 Ma and ca. 3617 Ma 
are the oldest zircon ages of this sample.

Phyllite (Sample D03) Zircon crystals extracted from 
this sample are mostly euhedral, 100 zircon grains were 
analyzed, of which 89 passed the concordance filters 
(Fig. 7e). U-Pb dating indicates that major age populations 
lie in the range of 272 Ma-500 Ma, with the major age peak 
centered at ca. 472 Ma (Fig. 7e). One single zircon grain 
with a U-Pb age of ca. 272 Ma is the youngest zircon age 
of this sample. Also, two other single zircon grains with the 
U-Pb ages of ca. 3054 Ma and ca. 3131 Ma are the oldest 
zircon ages of this sample.

Metamorphic diorite (Sample D02) Zircon in this sam-
ple displays oscillatory zonation (Fig. 8). In total, 34 zircon 
grains were analyzed, with each grain sampled at one spot. 
Among the analyzed grains, 31 spots were collected from 
the zircon rims, which yield two age peaks at ca. 434.2 Ma 
and ca. 482.0  Ma (Fig.  8). The cores of the rest of the 
three grains yielded ages of ca. 2484  Ma, ca. 2425  Ma, 
ca. 2294 Ma, respectively (Fig. 8). One single zircon grain 
with a U-Pb age of ca. 237 Ma is the youngest zircon age 
of this sample. The wide range of zircon ages is likely a 
result of incorporation of older wall rock into the ascending 
magma from which the diorite sample dated in this study 
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Fig. 7  Relative probability 
plots of detrital zircon U-Pb 
ages and zircon 207Pb/235U-
206Pb/238U concordia diagrams 
for the para metamorphic rocks 
from this study
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was derived. Thus, we interpret the younger rim age of ca. 
434.2  Ma to represent the emplacement age of the dated 
diorite rock sample and the older core ages to represent the 
ages of inherited zircon dating of the diorite sample can be 
found in Appendix Data.

Discussion and conclusions

Provenance blocks of the Ondor Sum and Erdaojing 
complexes

Provenance analysis of Paleozoic metasedimentary com-
plex along the Tulinkai and Erdaojing areas could provide 
an important insight into the role of major tectonic units 
as sedimentary provenance blocks during the evolution of 
the Paleo-Asian Ocean. Their relative contributions can be 
identified and defined by their characteristic age probability 
density distributions (Fig. 7).

The Bainaimiao arc located in the northern margin of 
the North China Craton to the south of the Ondor Sum 
complex, while the Baolidao arc to the north of the Erdao-
jing complex represent the most likely provenance blocks 
due to their close geographic location to the study region. 
Other provenance blocks such as the Siberian craton, Tarim 
craton, Gondwana-derived fragments within the east-
ern CAOB, and a Pan-African orogenic block (Songliao 
block) located in northeast China (Zhou et  al. 2012) are 

less likely to have influenced the sedimentary system in 
the study region and will only be briefly discussed here. 
A detailed geochronological summary and discussion of 
most of these provenance blocks have been provided by 
Rojas-Agramonte et al. (2011, and references therein). As 
pointed out by Rojas-Agramonte et  al. (2011), Gondwana 
fragments are generally characterized by a Pan-African 
age peak (650–550  Ma) and a Mesoproterozoic age gap 
(~1.75–1.0 Ga). The Siberian craton is characterized by a 
larger population of Archean to Early Paleoproterozoic ages 
(Rojas-Agramonte et al. 2011). Zircon U-Pb ages originat-
ing from the North China Craton generally range from ~3.8 
to ~1.6 Ga, with major age peaks at 2.8–2.6, 2.4–2.35, and 
2.1–1.85 Ga. For details see Fig. 9.

Our Erdaojing schist samples (sample D10 and sample 
D11) located in the Erdaojing complex are dominated by 
ca. 451 Ma, ca. 461 Ma, ca. 471 Ma and ca. 501 Ma zir-
con ages (Fig.  9), also, four other zircon grains with the 
U-Pb ages of ca. 1587 Ma, ca. 1843 Ma, ca. 1846 Ma and 
ca. 1965 Ma are detected from the age spectrum of these 
two samples. The former can be related to the Baolidao arc 
rocks in the north, whereas the latter can be related to the 
Proterozoic arc exposed in the crystalline basement com-
plex of the Xilinhot Complex in the north (Sun et al. 2013a, 
b; Xu et  al. 2014; Li et  al. 2014; Wu et  al. 2016). The 
absence of > 2.0  Ga zircons in these samples and a pau-
city of ages between 1.8 and 2.0 Ma indicate that the North 
China Craton is an unlikely source.

Fig. 8  Zircon 207Pb/235U-
206Pb/238U concordia diagrams 
of metamorphic diorite sample 
(D02). MSWD mean square of 
weighted deviates
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The sedimentary rock suite is characteristic of a higher 
quartzose but less detrital content compared with the vol-
canic rock suite. These observations suggest short trans-
port distances from the major source regions and the 
sedimentary basins, with a certain degree of sedimentary 
reworking.

Our Tulinkai metamorphic rock samples located in the 
Ondor Sum complex are dominated by ca. 269 Ma and ca. 
1875  Ma zircon ages (Fig.  9). The Paleoproterozoic age 
peaks (~2497 and ~1844 Ma) detected in this study region 
are similar to those from the North China Craton (e.g., 
Darby and Gehrels 2006). The Siberian craton is unlikely 
to have contributed to the study region. The Tarim Cra-
ton reveals a very heterogeneous age distribution with a 
distinct Neoproterozoic population (~788  Ma), neither 
of which is observed in the study area. Recently, Ge et al. 
(2013) reported abundant 2.5 and 1.85 Ga ages, similar to 
those of the North China Craton. As pointed out by Rojas-
Agramonte et al. (2011), Gondwanan fragments are gener-
ally characterized by a Pan-African age peak (650–550 Ma) 
and a Mesoproterozoic age gap (~1.75–1.0 Ga). These age 
peak and gap are absent in the analyzed samples in this 
study. They, thus, are not considered as provenance sources 
of the study region. Also, e.g., Zhou et al. (2012) and Han 
et  al. (2012) proposed that the Erguna, Xing’an, Jiamusi-
Khanka, and Songliao blocks in northeast China have Pan-
African basement and represent fragments that rifted from 
northern Gondwana, and may have influenced sedimentary 
systems in the region during Late Paleozoic. Taking into 
account the proximity to the study region, the North China 
Craton might be identified as a significant provider of sedi-
mentary detritus to the Tulinkai metamorphic complex.

Therefore, other source terranes need to be considered to 
explain the dominant occurrence of Early and Late Paleo-
zoic age populations (~436 and ~269  Ma, respectively) 
detected in the study area. An Early Paleozoic arc along 
the northern margin of North China Craton existed (Xiao 
et al. 2003), termed the Bainaimiao arc by Jian et al. (2008, 
2010) and Wu et  al. (2016). Early Paleozoic activity and 
collision with the Hunshandake microcontinent along the 
Ondor Sum Subduction-Accretion Complex were recently 
reported (Xiao et al. 2003; Shi et al. 2013; Xu et al. 2013). 
Phengites in blueschists from the Ondor Sum Subduction-
Accretion Complex gave Ar/Ar ages of 453.2 ± 1.8 and 
449.4 ± 1.8 Ma (De Jong et al. 2006). Zircons from a bio-
tite-plagioclase gneiss sample collected from the Xilinhot 
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complex yielded upper and lower intercept ages of 437 ± 3 
and 316 ± 3  Ma, respectively (Shi et  al. 2003). Addition-
ally, Cope et  al. (2005) considered that a continental arc 
existed along the northern margin of the North China Cra-
ton from ~400 to ~275 Ma based on detrital zircon analysis 
of Carboniferous to Permian nonmarine strata. These lines 
of evidence suggest that the Early and Late Paleozoic zir-
cons in the arc basins originated most likely from a major 
Paleozoic provenance terrane along the northern margin of 
North China Craton. Also, the provenance of clastic sedi-
ments within a single depositional system can shift dramat-
ically over a short period of time simply as a function of 
the shifting of sediment delivery systems such as rivers. A 
dramatic demonstration of this sort of geologic history is 
given by Dumitru et al. (2013).

In summary, we consider that at least two different prov-
enance terranes contributed to the Erdaojing and Tulinkai 
areas located in the Erdaojing complex to the north and the 
Ondor Sum complex to the south, respectively: (1) the Pre-
cambrian basement of the North China Craton and Paleo-
zoic Bainaimiao Arc along the northern margin of North 
China in the south are the provenance rocks of the schists 
in the Tulinkai area, and (2) the Precambrian basement of 
the Xilinhot complex and Paleozoic Baolidao arc in the 
north are the provenance rocks of the schists in the Erdao-
jing area. So, the Erdaojing complex to the north and the 
Ondor Sum complex to the south belong to the different 
tectonic units, which sourced from the different material of 
the remnants of oceanic crust. Based on our regional data 
analysis, we infer that the existence of the ocean between 
the the Erdaojing complex and the Ondor Sum complex in 
the Early Paleozoic in accordance with the results of this 
study. The youngest zircon age of 239 Ma from the albite 
schist sample located in the Tulinkai area indicates that the 
depositional age and formation age of the Onder Sum com-
plex are less than 239 Ma and the Ocean should still exist at 
ca. 239 Ma, so the accurate age of the Onder Sum complex 
is the key to constrain the closure time of the ocean basin. 
But it remains unclear whether it was a wide ocean, a nar-
row ocean, a relict marginal basin, or a Red Sea-type basin.

Timing of the closure of the Paleo-Asian Ocean

A number of Late Paleozoic zircon ages in the Ondor Sum 
complex to the south may also have been contributed to 
the arc basins by the active Northern Accretionary Oro-
gen (Jian et al. 2008, 2010; Wu et al. 2016) during the final 
stages of ocean closure. However, their contribution to the 
Late Permian age population in the Linxi basin would be 
indistinguishable from those of the Southern Accretion-
ary Orogen (Jian et al. 2008, 2010; Eizenhöfer et al. 2014; 
Wu et al. 2016). Furthermore, the detrital zircon age spec-
trum of the Ondor Sum Complex to the south in this study 

is dominated by the Precambrian and Late Paleozoic ages 
of the North China Craton and the Paleozoic ages of the 
Southern Accretionary Orogen (e.g., Bainaimiao Arc). 
Shi et al. (2003) suggested that Carboniferous ages should 
commonly occur within the Northern Accretionary Orogen 
(e.g., in the Xilinhot Complex).

Eizenhöfer et al. (2014) reported that an andesitic pyro-
clastic rock in the southern shoreline of the Xar Moron 
River formed between the Early and Middle Triassic, 
which was interpreted as the timing of latest volcanic 
activity related to the southward subduction of the Paleo-
Asian Oceanic lithosphere. Also, an undeformed felsic dike 
intruding the Middle Permian Huanggangliang Formation 
between the Early Triassic and Middle Triassic is inter-
preted to have recorded a period of latest magmatic activity 
and thus giving a constraint on the minimum depositional 
age of the Middle Permian strata (Eizenhöfer et al. 2014). 
The dominant age peaks in both igneous rocks, however, 
are located in the Early Triassic (240–250 Ma). Note that 
magmatic zircons from a biotite-plagioclase schist and an 
intrusive syncollisional granite of the Shuangjing Complex 
located along the northern banks of the Xar Moron River 
yielded ages of 298 ± 2 and 272 ± 2 Ma, respectively, sug-
gesting that the final closure of the Paleo-Asian ocean has 
occurred at some time after 298 ± 2 and 272 ± 2 Ma, not in 
the Early Paleozoic (e.g., Li et al. 2007, 2011; Y. L.).

The existence of ocean floor in the Permian in west-
ern Inner Mongolia is suggested (Shang 2004; Jian et al. 
2010; Li et al. 2011, 2014). A recent paleomagnetic study 
indicates that the existing ocean was a small remnant sea 
in the Late Paleozoic after the closure of Paleo-Asian 
Ocean in the Late Devonian (Zhao et al. 2013). There is 
a substantial body of evidence indicating that the final 
suturing of the Solonker zone occurred between the Late 
Permian and earliest Triassic (Xiao et  al. 2003, 2009a, 
b; Miao et  al. 2008; Jian et  al. 2010; Li et  al. 2011, 
2014), which may be related to the closure of the Per-
mian oceanic basin in western Inner Mongolia (Li et al. 
2011). Specifically, the 234 ± 7 Ma zircon U–Pb age from 
Halatu post-collisional granite (Chen et al. 2009) and the 
222 ± 4  Ma zircon U–Pb age from Sonid Zuoqi A type 
granites (Shi et al. 2007) then record the post-collisional 
relaxation after the final suturing of the Solonker zone. In 
additional, Li et al. (2014) suggested that the final sutur-
ing of the Solonker zone occurred from 269 to 231  Ma 
according to their geochronology and geochemistry data. 
The youngest major age peak observed in the Ondor Sum 
Complex metasedimentary rock samples in this study is 
at ~265 Ma (a single zircon age of ~239 Ma is the young-
est age of the samples), which defines the maximum 
depositional age of sedimentary rocks in the arc basins 
(Dickinson and Gehrels 2009; Dumitru et  al. 2010). So, 
the still existence of ocean at ca. 239  Ma is suggested 
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Fig. 10  Models for the Late 
Precambrian to Late Paleozoic 
geologic history of Xing’an-
Mongolia Orogenic Belt in the 
eastern CAOB that conforms 
to our present understanding of 
the Palezo-Asian Ocean. Note 
that the scale is relatively and 
changes between panels. See 
text for details
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in this study. In this study, one single zircon grain with 
a U-Pb age of ca. 237 Ma is the youngest zircon age of 
the dated diorite sample. Because there is no informa-
tion on the geochemistry of this diorite dike, its origin is 
uncertain.

Taken together, our new data suggest that the final clo-
sure of the Paleo- Asian Ocean along the Solonker Suture 
Zone most likely occurred in the period between 239 and 
222 Ma. Also, previous published data from other areas 
in vicinity of the region required that the Solonker Suture 
Zone developed in the Late Paleozoic or Triassic (e.g., 
Xiao et al. 2003, 2009a, b; Li et al. (2006); Windley et al. 
2007; Jian et  al. 2008, 2010), in accordance with the 
result of this study.

Late Neoproterozoic-Late Paleozoic tectonic evolution 
of eastern CAOB

Based on the data collected from this study and the 
regional published works, we propose a self-consistent 
tectonic model for the Late Neoproterozoic to Late Paleo-
zoic geologic history of Xing’an-Mongolia Orogenic Belt 
in the eastern CAOB that conforms to our present under-
standing of the Palezo-Asian Ocean (Fig. 10). There was 
an Ulan arc (Xiao et al. 2003) to the north of the northern 
margin of the North China Craton within the Paleo-Asian 
Ocean in the Late Neoproterozoic. On the southern mar-
gins of the Ulan arc, the Ondor Sum accretionary com-
plex was developed (Xiao et  al. 2013; Xu et  al. 2013). 
The southward subduction of the Paleo-Asian Ocean 
started from the Ordovician and create the Early Paleo-
zoic Bainaimiao arc within the northern margin of the 
North China Craton (Fig. 10a). The sediments of Precam-
brian detrital zircon grains in the Ondor Sum accretionary 
complex derived from the North China Craton (Fig. 10a), 
also, the Bainaimiao arc is the source of the Early Paleo-
zoic zircon grains. The blocks of Precambrian gneiss at 
Xilinhot block rifted from the Siberian Craton that were 
then accreted from the south, and the Baolidao island 
arc was attached to the collage in the Late Carbonifer-
ous (Fig.  10b). The Hegenshan ophiolite was developed 
in the southern segment of the Ulaistai active margin is 
evidence for the occurrence of the narrow Hegenshan 
Ocean northward subduction (Fig.  10b). The sediments 
of Precambrian detrital zircon in the Erdaojing accretion-
ary complex derived from the Xilinhot block, also, the 
Baolidao arc is the source of the Paleozoic zircon grains 
(Fig. 10b). Our detrital zircon U-Pb age data allow us to 
infer the still existence of Paleo-Asian ocean before ca. 
239  Ma. A ~222  Ma A-type granite that outcrop Sonid 
Zuoqi (Shi et al. 2007) record the post-collisional relaxa-
tion, represents that the final closure of the Paleo-Asian 

Ocean should have occurred after ca. 239 Ma but before 
ca. 222 Ma along the Solonker suture zone (Fig. 10c).
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