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Cambrian, and (par-)autochthonous Ordovician, and Devo-
nian units were studied, while 772 of them were analysed 
for their U–Th–Pb isotopes by LA-ICP-MS. Mesoprote-
rozoic zircon contents of more than 10% in the Cambrian 
sediments exclude the West African Craton (WAC) as 
exclusive source area. Thus, at least one additional exter-
nal source is suggested. This is likely the western Adrar 
Souttouf Massif with its significant Mesoproterozoic zircon 
inheritance, or comparable, yet unknown sources. Decreas-
ing Mesoproterozoic zircon age populations in Ordovician 
sediments are thought to be linked to the rifting of the ter-
ranes in the course of the Rheic Ocean opening and a pre-
dominant supply of WAC detritus. The Devonian sediments 
likely contain reworked material from the Cambrian silici-
clastics, which is shown by the zircon age distribution pat-
tern and the zircon morphologies. Therefore, multiple shifts 
in the direction of sedimentary transport are indicated.

Abstract  Detrital zircon provenance studies are an estab-
lished tool to develop palaeogeographic models, mostly 
based on zircon of siliciclastic rocks and isotope data. But 
zircon is more than just istopes and features well defin-
able morphological characteristics. The latter may indicate 
single grain transport histories independent of the indi-
vidual grade of concordance. This additional tool for pal-
aeogeoraphic reconstructions was tested on zircon from 
siliciclastic and carbonate sedimentary rocks of Palaeozoic 
age from the Aoucert and Smara areas of the Souttoufides, 
while findings of zircon in limestone generally open new 
archives for sedimentary provenance analysis. The mor-
phologies—length, width, roundness, grain surfaces—
of 834 detrital zircons from sediments of allochthonous 
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Introduction

The West African Craton (WAC) is subject of detailed 
research since the last 100 years and still is a wide field for 
numerous investigations (Jessel and Liégeois 2015). There 
are countless publications concerning the stratigraphy and 
fossil record of the early Palaeozoic sedimentary succes-
sions throughout the WAC (e.g. Beuf et  al. 1971; Gevin 
1960; Ghienne et al. 2007a; Sougy 1964; Trompette 1973; 
Wendt and Kaufmann 2006). Although sedimentary rocks 
of Ordovician to Devonian age occur widespread along 
the western margin of the WAC (Fig. 1), there is a signifi-
cant lack of corresponding provenance studies. Compa-
rable investigations in this area are either focussed on the 
(post-)Mesozoic (Pratt et al. 2015, 2016), or the (pre-)Cam-
brian (Abati et  al. 2010; Avigad et  al. 2012; Walsh et  al. 
2012; Blein et  al. 2014), which applies even in adjacent 

regions like Libya (Altumi et  al. 2013; Meinhold et  al. 
2013). Exceptions are given by Linnemann et  al. (2011a) 
and Meinhold et  al. (2014) who provide zircon data from 
the Ordovician and Devonian of Algeria and Lybia. Some 
provenance studies from the peri-Gondwanan terranes, e.g. 
Iberia, the Rhenohercynian Zone, and the Bohemian Mas-
sif, also include detrital zircon data from this period and 
suppose some input from the WAC or its vicinity (Drost 
et al. 2011; Eckelmann et al. 2014; Linnemann et al. 2008, 
2011b; Shaw et al. 2014).

To unravel the sedimentary transport and provenance at 
the western margin of the WAC in post-Cambrian Palaeo-
zoic times, five samples of Ordovician to Devonian sedi-
mentary rocks were collected from the Smara-Zemmour 
Massif (D209, D211) and the Dhloat Ensour unit (MS11, 
MS12, MS13) of the Souttoufide belt sensu Villeneuve 
et al. (2015). One likely Cambrian sediment (MS15) from 
the westernmost Sebkha Matallah unit of the Adrar Sout-
touf Massif was sampled for comparison. The zircons of 
all samples were investigated with respect to their age dis-
tribution pattern and some morphological features. There-
fore, the obtained data is thought to close a gap in the 

Fig. 1   a Overview of outcropping Cambro-Ordovician to Devonian 
sediments at the West African Craton (modified from Choubert and 
Faure-Muret 1988), b general geologic setting and sample localities 

at the Smara (modified from Rjimati et al. 2002c) and c Aoucert areas 
(modified from Rjimati et al. 2002a)
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Ordovician to Devonian detrital zircon record of the north-
west African realm of Gondwana. Finally, the zircon grains 
from the Dhloat Ensour unit might also give some informa-
tion about geologic evolution of the polyphase and complex 
Adrar Souttouf Massif with its exotic units (Gärtner et al. 
2013a, 2015a) during Ordovician to Devonian times.

Geological setting

Two areas in the Souttoufide belt (Villeneuve et al. 2015) 
were studied with respect to their Early to Mid-Palaeozoic 
sedimentary provenance. The Dhloat Ensour unit in the 
south is located between the Adrar Souttouf Massif, whose 
oldest yet detected rocks are of Neoproterozoic age (Gärt-
ner et  al. 2013a, 2016), and the Tiris Complex and Tasi-
ast-Tijirit Terrane of the southwestern Reguibat Shield 
(Michard et al. 2010; Villeneuve et al. 2006). The latter is 
of Neo- to Mesoarchaean age (Chardon 1997; Gärtner et al. 
2013a; Key et al. 2008; Montero et al. 2014; Schofield et al. 
2012) and locally shows some Siderian intrusions (Bea 
et al. 2013, 2014). Situated in the northern part of the Sout-
toufide belt, the Smara Group is a part of the Zemmour-
Smara Massif, which itself lies between the southern Neo-
proterozoic to Early Palaeozoic Tindouf basin, the Sfariat 
Region of the Reguibat Shield, and the Meso-Cenozoic 
Layoune coastal basin. In contrast to the Archaean Regui-
bat basement that forms the foreland of the Adrar Souttouf 
Massif, the igneous rocks of the Sfariat region are mostly of 
Rhyacian–Mid-Palaeoproterozoic-age (Meyer et  al. 2006; 
Schofield et al. 2006) and were interpreted to be linked to 
the Eburnean orogeny (Schofield et al. 2006; Schofield and 
Gillespie 2007).

The Dhloat Ensour unit

The Palaeozoic sediments of the southern Souttoufide belt 
are termed the Dhloat Ensour unit (Villeneuve et al. 2006) 
and trend from SSW to NNE. They occur as a thin, 2–10 km 
width band over a distance of approximately 200 km. The 
units of the Adrar Souttouf Massif were thrusted onto the 
Dhloat Ensour unit, and therefore also onto the basement 
of the Reguibat Shield. This was first concluded by Sougy 
(1962), who also recognised an involvement of Devonian 
limestones and linked this thrusting to the Variscan orog-
eny. The hypothesis was corroborated by several stud-
ies (e.g. Bronner et  al. 1983; Rjimati et  al. 2002a; Sougy 
and Bronner 1969). Therefore, the Silurian and Devonian 
parts of this Palaeozoic sedimentary succession are inter-
preted as parautochthonous element between the allochtho-
nous Adrar Souttouf Massif and the autochthonous base-
ment of the Reguibat Shield. The Ordovician sediments 
are regarded as autochthonous cover sequence above the 

Adrar Souttouf Massif and the Reguibat basement. The 
Dhloat Ensour unit comprises the Dhloat Ensour Forma-
tion, including the Ordovician as well as the Silurian rocks, 
and the Devonian Bou Leriah Formation (Villeneuve et al. 
2015). Rjimati et al. (2002a) introduced an alternative sub-
division that distinguishes between the Dlo’ al Koursiya 
Group in the south and the Zamlat al Foula Group in the 
north of the Awsard-Agalmin Twarta area. The Zamlat al 
Foula Group is made up of the “lower” (Ordovician), “mid-
dle” (Silurian), and “upper” (Devonian) formations, which 
are similar to the tripartite subdivision presented by Sougy 
(1962). Although there are no further partitions for the Dlo’ 
al Koursiya Group, both groups show almost the same geo-
logic structure. The rocks of the Dhloat Ensour unit are 
from base to top as follows (Fig. 2).

Ordovician

The base of these non-fossiliferous sediments consists of 
sandy conglomerates, that presumably represent the Hir-
nantian (Late Ordovician) tillite (Destombes et  al. 1969; 
Lécorché et  al. 1991; Michard et  al. 2010; Rjimati et  al. 
2002a; Sougy 1969), which itself is covered by cross-
bedded sandstones (Rjimati et  al. 2002a; Sougy 1962). 
The succession’s middle and upper parts mainly comprise 
quartzitic sandstones and whitish quartzites with some 
intercalated vesicular quartzites (Rjimati et al. 2002a). With 
thicknesses between 20 and 50 m the Ordovician sediments 
unconformably overly the crystalline basement rocks of the 
Tiris Complex and the Tasiast-Tijirit Terrane (Rjimati et al. 
2002a) of the southern Reguibat Shield.

Silurian

The Silurian succession begins with greyish, ferruginous, 
bioturbidated sandstones (Rjimati et  al. 2002a). They are 
overlain by intensively fractured pelitic rocks. The upper 
parts are made of bluish sandstones, whereas the topmost 
level consists of dark blue, locally bituminous, limestones 
(Rjimati et  al. 2002a; Sougy 1962). Alia Medina (1950) 
was the first who described Gotlandian (Silurian) Ortho-
ceras, which are supplemented by Cardiola interrupta and 
some crinoids (Rjimati et  al. 2002a; Sougy 1962). Con-
trary to the map, the Silurian does not crop out between 
the Ordovician and Devonian rocks in several places. This 
is likely caused by a more pelitic composition of the local 
Silurian rocks, which therefore may have acted as poten-
tial surface of gliding during the Variscan thrusting pro-
cesses (Michard et  al. 2010). Thus, the recent maximum 
thickness of the Silurian deposits is about 100 m (Rjimati 
et  al. 2002a) with a suggested pre-orogenic thickness of 
50–150 m (A. Michard, pers. commun. Dec. 2016).
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Devonian

The base of the Devonian sediments comprises an interca-
lation of sandy pelites, banks of limestone, and quartzitic 

sandstone and is characterised by a N-S striking schis-
tosity at its contact to the overlying upper part (Rjimati 
et al. 2002a). A tectonic doubling of both parts can not be 
excluded, as they have similar lithologies (Rjimati et  al. 
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Fig. 2   Generalised stratigraphies of the Late Ediacaran to Early 
Cambrian sediments of the eastern Sebkha Matallah unit (compiled 
from Rjimati et al. 2002b and own data), the Late Ordovician to Mid-
Devonian Dhloat Ensour unit (Rjimati et al. 2002b; Villeneuve et al. 

2015), and the Ordovician (Rjimati et al. 2011b), as well as the Devo-
nian sediments (Rjimati et al. 2011b; Wendt and Kaufmann 2006) of 
the Smara area. The numbers indicate the stratigraphic levels of the 
samples
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2002a). Fossil findings include brachiopods (Acrospiri-
fer, Tropidoleptus), crinoids, and Orthoceras. Based on 
this biocenosis, Sougy (1962) attributed these rocks to the 
Lochkovian, which can be regarded as an analogy to the 
adjacent Zemmour (Sougy 1964), the Tindouf basin, or 
the eastern Anti-Atlas (Becker et al. 2004; Hollard 1967). 
These 100–200 m thick sediments are tectonically overlain 
by the likely Cambrian Tisnigaten Group sediments (Gärt-
ner et al. unpublished data and sample MS15 of this work) 
of the eastern Sebkha Matallah unit (Rjimati et al. 2002a).

The easternmost Sebkha Matallah unit of the Adrar 
Souttouf Massif

The easternmost parts of the Sebkha Matallah unit sensu 
Villeneuve et al. (2006) are widely characterised by meta-
morphosed siliciclastic sediments that form the Amzili 
Tiznig Formation within the Tisnigaten Group (Rjimati 
et al. 2002a, b, 2011a). This more than 1000 m thick suc-
cession comprises eight members termed Nam1 to Nam8 
(Rjimati et  al. 2002a). They consist of alternating meta-
quartzites, metagreywackes, metapelites, and chlorite-seric-
ite schists of variable thicknesses and frequencies (Fig. 2). 
Secondarily grown biotite, chlorite, and sericite in some 
schists are interpreted to result from the Variscan thrust-
ing of the Sebkha Matallah unit over the Dhloat Ensour 
unit (Rjimati et al. 2002a). The lack of fossils led Rjimati 
et al. (2002b) to assume a Neoproterozoic age of these sedi-
ments. Preliminary data presented by Gärtner et al. (2015b) 
and data of sample MS15 indicate an Early Cambrian age 
(see Discussion below).

The Zemmour‑Smara Massif

The Zemmour-Smara Massif is part of the northern Sout-
toufides (Villeneuve et  al. 2015) and can be subdivided 
into the Zemmour (S) and the Smara (N) areas (Belfoul 
2005). Palaeozoic sediments cover large areas and occur 
in a syncline with a Late Devonian core and Devonian to 
Ordovician flanks (Service géologique du Maroc 1985). 
The Palaeozoic realm of the massif itself can be devided 
into deformed and undeformed parts. The deformed SSW-
NNE striking Dhlou-Sekkem belt is situated in the west 
(Villeneuve et  al. 2015) and comprises six units that are 
separated from each other by thrust faults (Belfoul 2005; 
Dacheux 1967). Bordered by the Saguiet el Hamra River 
north of Smara and the Guelta Zemmour to the south, the 
approximately 600 km long belt, rarely exceeds 25 km in 
width. Its units form the western flank of the syncline and 
are interpreted to have been thrusted onto the core domain 
and the eastern flank of the syncline southeast and east of 
Smara during the Variscan orogeny (Lécorché et al. 1991; 
Michard et al. 2010; Villeneuve et al. 2015). The latter area 

and the Sfariat region of the Reguibat Shield represent the 
foreland of the Dhlou-Sekkem belt (Villeneuve et al. 2015). 
The well-exposed southern flank of the Tindouf basin rep-
resents the northern and northeastern border of the foreland 
units. Only few detailed studies about the Zemmour-Smara 
Massif (e.g. Dacheux 1967; Sougy 1961, 1964; Ratschiller 
1971) are available. Rjimati et al. (2002c, 2011b) presented 
a new 1:100,000 geological map, which complements the 
earlier works. All following descriptions of the main geo-
logical characteristics refer to the northern Dhlou-Sekkem 
belt and the area around the city of Smara, where all Pal-
aeozoic rocks belong to the Smara Group (Rjimati et  al. 
2002c). A more detailed description of the entire Zem-
mour-Smara Massif is given by Villeneuve et al. (2015).

Ordovician

All Ordovician sedimentary rocks in the investigated area 
belong to the up to 560  m thick Asken Formation of the 
Dhlou-Sekkem belt (Destombes et al. 1969; Rjimati et al. 
2002c, 2011a, b). The lowermost part of the tripartite 
Asken Formation is the Angrat Asken Member, which is 
made of an alternating sequence of differently coloured 
massive and layered quartzites that are topped by a micro-
conglomeratic layer (Rjimati et  al. 2011b). The overlying 
Oued Larmat Member begins with massive greyish quartz-
ites, followed by quartzitic schists, massive quartzites, and 
alternating layers of sandstones and pelites. In its middle 
and upper parts, this member comprises an intercalation of 
sandstones, quartzitic sandstones, quartzites, and locally 
occurring microconglomeratic layers (Rjimati et al. 2011b). 
Some of these rocks bear fossils, mostly brachiopodes. The 
Asken Formation terminates with the Fadrat Al Ghardeg 
Member, a thick succession of massive quartzites above 
thin layer of microconglomerates (Destombes et  al. 1969; 
Rjimati et al. 2002c, 2011b).

Silurian

There are no Silurian outcrops in the area of the 1:100,000 
geological map of Smara. However, they were found in a 
core drilled in the west of Smara (Rjimati et  al. 2011b). 
In adjacent areas, the Silurian only occurs in some tens of 
metres thick layers of graptolite shales (Wendt and Kauf-
mann 2006).

Devonian

Up to 180 m thick Devonian rocks of the Smara area are 
subdivided into the Middle Devonian (Eifelian-Givetian) 
Laasallien and the Late Devonian (Frasnian-Fammenian) 
Wad Grizim Formations. From bottom to top, the first com-
prises five members: Wad Mirane, Acli Bou Karch, Wad 
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Rbyeb Bilaw, Gwirat Al Hyssan, and Jbilat Win Selwan 
(Rjimati et  al. 2011b). Therein, Wendt and Kaufmann 
(2006) could indentify a sequence of up to six Givetian reef 
complexes. The Wad Mirane Member comprises alternat-
ing gypsiferous pelites and biotubidated sandstones with 
brachiopods. Coral reef deposits, including polyps, brachi-
opods, and crinoids form the base of the Acli Bou Karch 
Member. Its upper parts are composed of intercalated 
sandstones, pelites and limestones (Rjimati et  al. 2011b). 
The Wad Rbyeb Bilaw Member begins with a thick layer 
of fosiliferous reddish limestones, similar to the underly-
ing Acli Bou Karch Member. The following sequence is 
dominated by sandstones and marls. Again, a fossil coral 
reef, overlain by pelites, marks the base of the next member 
(Gwirat Al Hyssan). The Laasallien Formation terminates 
with the Jbilat Win Selwan Member, which is characterised 
by an intercalation of sandstones and pelites (Rjimati et al. 
2011b). No subdivision has been made for the Wad Grizim 
Formation. The base of the latter consists of reddish lime-
stones with goniatites and is covered by gypsiferous pelites 
(Rjimati et al. 2002c, 2011b).

Methods

Standard methods for detrital zircon separation and selec-
tion were employed for all samples. Detrital zircon ages 
were obtained by LA-ICP-MS dating at the GeoPlasma Lab 
at the Senckenberg Naturhistorische Sammlungen Dresden, 
Germany. Statistical analyses and data processing were 
done using an EXCEL® spread sheet and Isoplot/Ex 2.49 
(Ludwig 2001). Frequency as well as relative probability 
plots were generated via AgeDisplay (Sircombe 2004). For 
zircons older than 1  Ga, 207Pb/206Pb ages were taken for 
interpretation, the 206Pb/238U ages for younger grains. For 

further details see paragraphs 3.1 and 3.2 in the supplemen-
tary data.

In order to separate zircon from the Devonian limestone 
sample MS13, 1011 kg of this rock was dissolved in acetic 
acid (25%). The residues total weight was 5 g, which were 
subsequently treated like the other samples of this study.

Results

Six sedimentary samples were studied for their detrital zir-
con record. Beside the radiogenic age determination of 772 
grains, of which 417 yielded age values with a concord-
ance between 90 and 110% (=concordant grains), a num-
ber of 834 zircons were also investigated with respect to 
their morphological features. This includes width, length, 
surface characteristics and roundness as introduced by 
Gärtner et al. (2013b; Figs. 3, 4, 5), but also the morphol-
ogy according to Pupin (1980; Fig.  6). The Th–U values 
given below refer to concordant measurements. All val-
ues obtained by the U–Th–Pb LA-ICP-MS measurements 
including the morphological features of each grain can 
be found in supplementary table  1, while supplementary 
Fig. 1 shows examples of analysed zircon grains. Both are 
available from the journal homepage. A summary the main 
characteristics is given in Table 1. Results of age determi-
nation are depicted in Fig. 7.

D209, N26°41′48.72″, W11°47′04.80″, Middle Devonian 
red pelites, Smara Group, Laasalien Formation, Wad 
Rbyeb Belaw Member

A well sorted, red pelite (D209) exhibits parallel bedding 
and secondary calcite veinlets. The beds dip 75°E with an 
angle of 65°. The 145 zircon grains from this sample have 

Fig. 3   a Length and width 
values of each zircon grain 
analysed in this study, b average 
zircon sizes and indication of 
the standard deviation black 
crosses of each sample (SDL 
standard deviation length, SDW 
standard deviation width)
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mean lengths and widths of 53 and 32  µm, respectively. 
About 77% of the grains are fairly to very well rounded, 
but the spectrum comprises all classes except 1. Crystal 
surfaces are mainly smooth and lack any grains which are 
totally covered by collision marks. Most of the 61 defin-
able zircon morphotypes are S23, S24, and S25. Forty-
one of 102 analysed zircon grains yielded concordant ages 
between 504 ± 13 and 2357 ± 48 Ma, with the largest group 
(37%) between 537 and 758  Ma. Eight zircons (~20%) 
show Mesoproterozoic ages, while 32% are older. Th–U 
values range from 0.01 to 1.15.

D211, N26°32′48.24″, W11°54′42.72″, Early Ordovician 
quartzitic sandstone, Smara Group, Asken Formation, 
Angrat Asken Member

The greyish, highly mature, well sorted quartzitic sand-
stone D211 shows imprints of brachiopods and remnants 
of parallel bedding. The 140 extracted zircons exhibit mean 
lengths and widths of 93 and 61  µm, respectively. Of all 
grains, 78% are rounded to almost completely rounded, 
while classes 3–10 were found. Abundance of collision 
marks grows with increasing roundness. Most of all grains 
have nearly smooth to scarcely pitted surfaces. Dominant 
morphotypes are S19 and S22–S25, comprising more than 
60% of the 38 definable zircons. Of 128 zircons analysed 
for their U–Th–Pb isotopic composition, 59 gave concord-
ant ages between 480 ± 14 and 3188 ± 14  Ma, with about 
49% of them between 547 and 709 Ma. Four Mesoprotero-
zoic grains could be obtained, while further subpeaks are 
at 1763–1866 and 1999–2211  Ma. Most Th–U elemental 

ratios are below 0.60 with seven zircons <0.10 but four 
grains >1.00.

MS11, N22°40′45.4′′, W14°23′05.5′′, Late Ordovician 
(Hirnantian) quartzite, Dhloat Ensour unit, Dhloat 
Ensour Formation/“lower” Formation, respectively

The brownish-grey, high mature quartzite MS11 lies 
above the Hirnantian tillite and partly shows cross-bed-
ding, which hints to shallow marine environments. Other 
parts exhibit features of beach lamination. The beds dip 
266°W with angle of 7°. The 154 separated zircos show 
mean lengths and widths of 126 and 69 µm, respectively. 
About 65% of the grains are rounded to very well-rounded 
within classes 4–10. Their surfaces are mainly smooth or 
show only few collision marks. Some more rounded grains 
have large numbers of collision marks. The most abundant 
morphotypes among the 64 definable zircons are S24, S23, 
and S19. Of 151 zircon grains analysed for their U–Th–Pb 
isotopic composition, 109 yielded concordant ages from 
495 ± 10 to 2705 ± 21  Ma. About 65% of all concordant 
grains have ages between 536 and 727 Ma with a maximum 
around 633 ± 3  Ma. Three zircons show Mesoproterozoic 
ages, while two subpeaks can be found between 1726 and 
1847  Ma, as well as in the range of 1968 and 2199  Ma. 
Th–U values range from 0.08 to 1.90 with a remarkable 
amount of almost 25% of those grains with values above 
1.00.

MS12, N22°40′52.6′′, W14°23′20.5′′, Late Ordovician 
(Hirnantian) quartzite, Dhloat Ensour unit, Dhloat 
Ensour Formation/“lower” Formation, respectively

Quartzite MS12 from the uppermost part of the Ordovician 
sequence is very similar to MS 11. This rock is sheared but 
exhibits remnants of cross-bedding. Its beds dip 243°W 
with an angle of 4°. The 153 zircons show mean lengths 
and widths of 125 and 72  µm, respectively. Covering all 
classes of roundness from 2 to 10, 74% of the zircons are 
rounded to almost completely rounded. Most crystals show 
no or few collision marks on their surfaces, while more 
rounded grains generally tend to more pitted surfaces. Mor-
photypes defined on 59 crystals were mostly S19, S23, 
and S25. Of these 153 grains, 86 gave concordant ages 
in a range of 514 ± 11–3159 ± 46  Ma, with 56% of them 
between 530 and 725 Ma (maximum at 614 ± 4 Ma). Five 
zircons of Mesoproterozoic age were found. Most of the 
older grains are grouped around subpeaks between 1758 
and 1839 Ma, as well as 1945 and 2178 Ma. Th–U elemen-
tal ratios are between 0.09 and 1.41 with only few grains 
>1.00 and <0.20.
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Fig. 4   Distribution and mean values of roundness classes in each 
sample
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MS13, N22°40′57.8″, W14°23′30.7″, Early Devonian 
limestone (Lochkovian), Dhloat Ensour unit, Bou 
Leriah Formation/“upper” Formation, respectively

Reddish-grey limestone MS13 contains abundant fossils 
of orthoceras and shows irregular veinlets of secondary 
calcite. Residual material of the limestone is dominated 
by iron oxide particles, pyrite, few rounded quartz and 
zircon grains. The beds dip 239°W with an angle of 5°. 
The 100 zircos have mean lengths and widths of 87 and 
57 µm, respectively. Of all grains, 59% belong to classes 
6–8, which means rounded to well-rounded. Beside one 
zircon from class 1, all the other grains belong to classes 

3–10. Abundance of surficial collision marks and pits 
is low, although increasing with proceeding roundness. 
Morphotypes were identified at 38 grains with S18, 
S23, and S24 as mainly occurring types. Sixty of 104 
analyses resulted in concordant ages between 530 ± 13 
and 2855 ± 53 Ma. The largest peak ranges from 530 to 
711 Ma and comprises about 33% of the overall concord-
ant zircon grains. Nine zircons (15%) yielded Mesoprote-
rozoic ages, while most of the older ages cluster between 
1950 and 2250  Ma. Higly variable Th–U ratios range 
from 0.15 to 3.82. A comparatively high number of 16 
grains have values above 1.00, with nine of them dated 
between 560 and 671 Ma.
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4 Grains with numerous collision marks on the surface,
 almost the whole crystal looks roughened.

3 Grains with a medium amount of collision marks
 on the surface, there are some relicts of sharp edges 
 or smooth crystal faces.

2 Grains with some collision marks on the surface,
 some parts of the crystal faces show surface de-
 fects.

1 Grains without or only very few collision marks on
 the surface, the entire crystal surface is smooth.

Fig. 5   Distribution of surficial collision marks versus the classes of roundness obtained for each sample



2755Int J Earth Sci (Geol Rundsch) (2017) 106:2747–2769	

1 3

MS15, N22°40′15.9′′, W14°24′42.9′′, Early Cambrian 
metapelite, Sebkha Matallah unit, Amzili Tiznig 
Formation, Nam2 Member

Greenish-grey chloritised metapelite MS15 is not as 
mature as the other samples, although feldspar is lacking 
and well-rounded quartz grains are abundant. Addition-
ally, there are often microclasts composed of clay-size 
particles. The beds dip 292°W with an angle of 17°. Ana-
lysed zircons (142) have mean lengths and widths of 88 
and 56 µm, respectively. About 63% of the zircons show 
roundness classes of 6–8, while the remaining grains are 
from classes 4–10. Any crystals with totally pitted sur-
faces are lacking. Similar to the other samples, the surfi-
cial roughness increases with the roundness. Morpho-
types could be distinguished from 38 zircons, with S19, 
S24, and S25 as most abundant ones. Sixty-two of 134 
grains gave concordant ages in a range between 530 ± 10 
and 3059 ± 15  Ma. The main peak occurs between 530 
and 723 Ma including ca. 37% of all concordant zircons. 
Nine (15%) Mesoproterozoic ages were found. The vast 
majority of the remaining grains yielded ages from 1993 
to 2220  Ma. Th–U values vary from 0.05 to 0.95, with 
most of the grains in between 0.20 and 0.70.

Discussion

New U–Pb analyses on zircon indicate that the sediments 
of the easternmost Sebkha Matallah unit are not of Neo-
proterozoic age as proposed by Rjimati et  al. (2002a, b). 
Instead, they seem to have been deposited in the Early 
Cambrian or slightly later, as indicated by their youngest 
zircons (530 ± 10 Ma). However, fossils have not yet been 
described from these rocks, which hamper any biostrati-
graphic correlation. The six Palaeozoic sediments collected 
from the Aoucert and Smara areas comprise 2.8–19.5% 
of Mesoproterozoic zircon (Fig.  8). Such ages are not 
yet known from zircon of igneous rocks within the WAC 
(Ennih and Liégeois 2008; Fig.  9) and imply an exter-
nal source for those grains. The majority of the remain-
ing zircon age populations belong either to a Cryogenian-
Ediacaran (‘pan-African’) or to a Mid-Palaeoproterozoic 
(‘Eburnean’) peak. Beside the source of the Mesoprote-
rozoic zircons, the origin of a sub-peak at around 1.8 Ga, 
an age which is also rare at the WAC, has to be identified. 
Aiming for a model of Palaeozoic sedimentary fluxes along 
the western margin of the WAC, a combination of isotopic 
and morphologic features of the analysed zircon grains, as 
well as a large zircon database of west and northwest Africa 
are applied. The use of morphological characteristics is 
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particularly useful to distinguish between multiply recycled 
sediments and newly input material.

As this study is limited to detrital zircon, all the interpre-
tation refers to potential sedimentary fluxes derived from 
zircon bearing source rocks. Further possible source rocks 
depleted in zircon may not be detected. This is also valid for 
already eroded rock formations, which potentially provided 
material. The almost 46% discordant grains of all dated zir-
con grains are probably a result of the polyorogenic history 
of the potential source areas, which likely caused recur-
rent Pb-loss (Gärtner et  al. 2013a; Bea et  al. 2013, 2014; 
Montero et al. 2014; Schofield et al. 2012). However, this is 
not in conflict to the recommended number of detrital zir-
con—117 (Vermeesch 2004)—that should necessarily be 
dated to achieve a 95% certainty not to miss an age fraction 
≥0.05 of the total sample, assuming that also discordant 
age populations bear some relevant information (Reimink 
et al. 2016). The latter seems to be valid when applied to 
large datasets as given in Fig. 9. Further, partly controver-
sal discussion of the statistical side of this topic is given in 
several publications (e.g. Andersen 2005; Fedo et al. 2003; 
Vermeesch 2004). Additional effects, like sampling, zircon 
fertility of host rocks or naturally induced bias of the zircon 
record are discussed elsewhere (e.g. Cawood et  al. 2003; 
Moecher and Samson 2006; Sláma and Košler 2012).

Detrital zircon morphologies and their significance 
to sedimentary provenance

Several parameters of detrital zircon surface texture are 
thought to have a significant meaning for provenance analy-
ses (Gärtner 2011, 2013b, c; Mallik 1986; Moral Cardona 
et  al. 2005; Tejan-Kella et  al. 1991). In order to test this 
hypothesis, 834 zircons were analysed with respect to their 
morphological characteristics. Mean zircon sizes from 
the six samples show three clearly distinguishable groups 
(Fig.  3). Although showing different values, the standard 
deviations for length (23.7–29.1%) and width (21.1–27.4%) 
within the single samples are almost the same. This is 
interpreted as a result of well-defined clusters and relatively 
good sorting. With respect to the sample localities, there 
are significant differences in the grain size distribution. As 
the latter is dependent from the energy of the depositing 
medium (e.g. Allen 1971; McLaren and Bowles 1985; Wat-
son et al. 2013), there seem to have been different environ-
ments of sedimentation. The smallest zircons were found 
in Middle Devonian red pelites (D209) of the Smara area 
which show mean lengths and widths of 58 and 32  µm, 
respectively. Those of the Early Cambrian metapelite 
MS15 of the easternmost Sebkha Matallah unit, the Early 
Ordovician quartzitic sandstone D211 from the Smara area, 
and the Devonian limestone from the Dhloat Ensour unit 
show similar mean lengths between 87 and 90  µm, while 

mean widths range from 56 to 61  µm. Both of the Lat-
est Ordovician quartzites from the Dhloat Ensour unit are 
indistinguishable within the errors of their mean lengths of 
125 and 126 µm as well as their mean widths of 69–72 µm. 
These similarities between particular samples are also pre-
sent with respect to other morphological features.

The ten classes of zircon grain roundness in terms of 
Gärtner et  al. (2013b) are thought to correlate with the 
energetic dimension that was present during the entire 
transport process (Köster 1964; Dietz 1973). Accordingly, 
the roundness of zircon grains is linked to the medium and 
the distance of their transport achieved during one or more 
sedimentary cycles (Gärtner et  al. 2013b, c; Zoleikhaei 
et  al. 2016). Notably, there are numerous possibilities of 
rounding independent of any transport. For example, phys-
icochemical processes (Deer et  al. 1997; Mager 1981; 
Tichomirowa et al. 2005), corrosion effects from transport-
ing magmas prior to erosion (Gärtner et al. 2016, and refer-
ences therein), or pre-rounded grains in S-type granitoids 
(Roger et al. 2004; Tichomirowa et al. 2001). However, the 
amount of such grains in sediments is regarded to be rather 
low (Gärtner et al. 2013b, and references therein). Average 
roundness values between 6.99 and 7.39 and the distribu-
tion of the single classes of roundness are more or less the 
same for all samples except for D209 (Fig.  4). The latter 
sample contains only few completely rounded grains and 
yielded an average roundness of 6.23. Therefore, it has to 
be assumed that major components of pelite D209 were 
derived from sources in a closer distance than those in the 
other samples.

Zircon shows a broad variety of surface characteristics 
(Gärtner et al. 2013b; Moral Cardona et al. 2005; and ref-
erences therein). Nevertheless, there are only few studies 
considering such features (e.g. Tomaschek et  al. 2003). 
Some of them, like collision marks, may have some sig-
nificance with respect to the medium of transport (Gärt-
ner 2011, 2013b). This applies in particular for zircon 
grains whose surfaces are almost completely roughened 
by numerous collision marks (class 4), and which occur 
preferentially in source areas with eroding glacial depos-
its (Gärtner 2011; supplement of; Gärtner et  al. 2013c). 
Such features are present in samples D211, MS11, MS12, 
and MS13 (Fig. 5). All of them, except D211, occur strati-
graphically above the Hirnantian tillite (Fig. 2), a fact that 
corroborates the hypothesis. All grains with extremely 
pitted surfaces from sample D211 may have been derived 
from some older—Ediacaran—glacigenic sediments (e.g. 
Deynoux et al. 2006; Trompette 1973; Vernhet et al. 2012), 
which likely were subsequently recycled or exposed during 
the Lower Ordovician. The distribution patterns follow the 
already mentioned trend. Thus, D209 is significantly dif-
ferent from D211, while MS11 and MS12 are very simi-
lar. Except for the extremely pitted grains, the distribution 
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patterns of MS13 and MS15 are also the same (Fig. 5). The 
absence of grains with a very high number of pits or col-
lision marks in sample MS15 is interpreted to be a result 
from its stratigraphic position below the Hirnantian tillite 
level, and lacking exposure or sedimentary input of older 
glacial sediments during the time of deposition.

Although the morphotypes according to Pupin (1980) 
are mostly used for the characterisation of igneous rocks 
(e.g. Siebel et  al. 2006; Sturm 2010), there is a growing 
number of applications for detrital zircon (Anani et  al. 
2012; Dunkl et al. 2001; Gärtner et al. 2013c; Loi and Dab-
ard 1997; Schäfer and Dörr 1997). Obtained distribution 
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patterns of the morphotypes are comparable in all samples, 
with the S18, S19, S23, S24, and S25 types as most abun-
dant variations (Fig. 6). Crystals exhibiting such shapes are 
assumed to be derived from orogenic granitoids of crustal 
and/or mantle origin (Belousova et al. 2006) and relatively 
hot melts with approximate temperatures between 800 and 
850 °C (Pupin 1980). Zircon grains that are indicative for 
lower temperatures of crystallisation and mainly crustal 
origin, e.g. S2, S7, S8 (Belousova et al. 2006; Pupin 1980), 
were also found in all samples, although less abundant in 
MS15 (Fig.  6). If linked to the zircon ages, the morpho-
types plot in three age-dependent fields (Fig. 10). Notably, 
the patterns characterised by very large spreads of mor-
photypes correlate quite well with the Eburnian and Neo-
proterozoic-Palaeozoic orogenic phases of the WAC. The 
third, Mesoproterozoic field is dominated by zircons that 
formed under high temperatures and some mantle contri-
bution (Belousova et al. 2006). There are only few studies 
that suggest a connection between morphotype distribution 
pattern and age (Klötzli et al. 2004), but none of them gives 
data for sedimentary rocks. However, the present data lead 
to the assumption of at least three main sources: (1) a Neo-
proterozoic-Palaeozoic (‘pan-African’) orogenic realm, (2) 
a Mesoproterozoic source with significant mantle contribu-
tion, (3) a Palaeoproterozoic area, which likely was affected 
by the Eburnean orogeny.

Summarising the observations of surface textures and 
morphotypes, it has to be inferred that the samples D209 
and D211 from the Smara area likely had partially dif-
ferent source rocks, whereas MS11 and MS12, as well as 
MS13 and MS15 are almost indistinguishable from each 
other. Nevertheless, the Late Ordovician samples of the 
Dhloat Ensour unit (MS11, MS12) are different from the 
Earliest Cambrian (MS15) and Devonian (MS13) samples. 

All of the studied sediments contain large amounts of very 
rounded and surficially pitted zircon grains, which indicate 
a recycling from older sediments with only minor input 
from freshly eroded igneous rocks.

Potential source areas for different zircon age 
populations

Based on the morphological studies of the detrital zircon 
grains (5.1), it is highly likely that the oldest samples of 
each working area represent recycled material from some-
what older sediments. Therefore, the following analysis 
of potential source areas does not reflect the sedimentary 
transport during the Cambrian to Devonian deposition of 
the investigated sediments, but gives hints to Precambrian 
source to sink dynamics at the western margin of the WAC. 
However, such Precambrian reconstructions cannot be part 
of the present study and will be discussed elsewhere.

Youngest obtained zircons are, with one exception at 
480 ± 14  Ma (D211), from the Cambrian. Correspond-
ing occurrences of magmatic rocks are known from the 
Anti-Atlas (e.g. Compston et  al. 1992; Landing et  al. 
1998; Maloof et al. 2005, 2010) as well as from the Seb-
kha Matallah unit of the Adrar Souttouf Massif (Bea et al. 
2016). Thus, the influence of Anti-Atlas material is sug-
gested to be dominant in the Smara area, while the input 
from the Adrar Souttouf Massif is supposed as the main 
contribution in the Dhloat Ensour unit, assuming the exist-
ence of volcanic equivalents to the rift-related granitoids of 
the Sebkha Matallah unit described by Bea et  al. (2016). 
With the beginning opening of the Rheic Ocean in Late 
Cambrian to Early Ordovician times (Nance and Linne-
mann 2008, Nance et  al. 2010, 2012), the Oued Togba 
and Sebkha Gezmayet units are supposed to have started 
to rift away from the WAC (Gärtner et  al. 2013a, 2016). 
Therefore, the plutonic rocks of these units that formed 
or underwent metamorphism during the Late Cambrian 
(Gärtner et  al. 2013a) may have not provided any zircons 
for the sediments of this study, because they were likely not 
exposed at the surface at this time. Nevertheless, it cannot 
be excluded that some, not preserved, volcanic equivalents 
of the mentioned plutonic rocks may have contributed few 
zircons to the Cambrian sediments, e.g. via ash falls, etc.

The Neoproterozoic zircon record of the WAC shows 
at least two periods. Ediacaran to Mid-Cryogenian zircon 
ages from igneous and sedimentary rocks of almost all 
types are quite abundant along the western margin of the 
WAC (Fig. 9). Thus, they likely represent the preferential 
host rocks for such zircon grains in both of the studied 
areas. In contrast, Early Cryogenian to Tonian zircon ages 
around 800–1000 Ma are only known from some parts of 
the Anti-Atlas belt (e.g. Kouyaté et  al. 2013; Fig.  9) and 
as detrital component in the Volta Basin (Kalsbeek et  al. 
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rozoic zircon populations inferred from Bradley et al. (2015), Gärtner 
et al. (2015b) and unpublished data. The cited literature for this com-
pilation is given in the supplement
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2008). Zircon grains of comparable age form also a very 
small subpopulation in the (meta-)igneous rocks of the 
Oued Togba unit of the Adrar Souttouf Massif (Gärtner 
et al. 2013a) and in the West Avalonian terranes in general 
(Gärtner et al. 2015a, and references therein).

Mesoproterozoic zircon is very rare at the WAC (Ennih 
and Liégeois 2008). However, some evidence for scarce 
magmatic or metamorphic activity was recently found in 
igneous rocks on other minerals than zircon (El Bahat et al. 
2013; Gärtner et al. 2016; Söderlund et al. 2013) and other 
isotopic systems than U–Pb (Rooney et  al. 2010) at some 
localities in and around the WAC. Several occurrences 
comprising some Mesoproterozoic zircon of highly vari-
able abundance are known from the western parts of the 
Adrar Souttouf Massif (Gärtner et al. 2013a, 2015b, 2016), 
the Neoproterozoic of the Taoudeni Basin around Atar as 
well as the neighbouring parts of the Mauritanides (Brad-
ley et  al. 2015), the Bou-Regreg Corridor (Tahiri et  al. 
2010), and the lower Middle Cambrian of the Anti-Atlas 
(Avigad et  al. 2012). Recent studies of Meso- and Ceno-
zoic sediments in the Rif, the Middle Atlas, and the South 
Rifean Corridor gave evidence for further Mesoproterozoic 
zircon occurrences in northwest Africa (Pratt et  al. 2015, 
2016). Similar ages are also known from the southern parts 
of the craton, e.g. very sparsely from the Leo-Man Shield 
(De Waele et al. 2015; Kristinsdóttir 2013; Tapsoba et al. 
2013) and, more abundant from Neoproterozoic sediments 
of the Volta Basin as well as the Dahomeyides (Kalsbeek 
et al. 2008). In both of the latter areas, the Mesoproterozoic 
zircons may are of potential Amazonian provenance (Kals-
beek et al. 2008, 2012). This is in contrast to the northern 
parts of the WAC, and the Adrar Souttouf Massif in par-
ticular. There, a Cryogenian-Ediacaran accretion of Avalo-
nia-like terranes is proposed (Gärtner et  al. 2013a, 2016). 
Furthermore, the West Avalonian terranes contain a signifi-
cant amount of Mesoproterozoic zircon (e.g. Gärtner et al. 

2015a, and references therein) and may have been derived 
from the peri-Baltica realm (Gärtner et al. 2015a; Hender-
son et  al. 2015; Keppie and Keppie 2014; Thompson and 
Bowring 2000; Thompson et al. 2012). With respect to the 
assumed geotectonic evolution of the Adrar Souttouf Mas-
sif until the Cambrian, it is highly likely that the majority 
of the Mesoproterozoic zircon inheritance of the investi-
gated sediments results from erosion of the Cryogenian-
Ediacaran (‘pan-African’) orogen, which also included the 
Oued Togba unit with its significant Mesoproterozoic zir-
con population (Gärtner et al. 2013a, 2015b). A source for 
the sediments of the Smara area is very difficult to deter-
mine, whereas the lack of knowledge about the local Cam-
brian sediments as well as their zircon record hampers any 
comparison. Bradley et  al. (2015; Fig.  9) describe likely 
Ediacaran sediments with remarkable amounts of Meso-
proterozoic zircon that cover the Reguibat Shield. There-
fore, these rocks are interpreted to be the potential source 
for at least the Mesoproterozoic zircon age population. A 
contribution from the Cambrian rocks of the Anti-Atlas is 
considered as not very likely. The latter have an average 
Mesoproterozoic zircon inheritance of ca. 2.8% (Avigad 
et al. 2012), which is only comparable to the value of 2.8% 
reported for the Late Ordovician sample MS11. However, 
these values are far away from the Cambrian one of 14.5% 
(MS15) of the Dhloat Ensour unit or the Ordovician value 
of 6.8% (D211) of the Smara area (Fig.  8). Nevertheless, 
the Cambrian sediments of the Anti-Atlas cannot fully be 
excluded as potential source for Mesoproterozoic zircon 
inheritance for the Smara area.

Late Palaeoproterozoic, i.e. Statherian zircon ages are 
as rare as Mesoproterozoic ones all over the WAC, except 
for the sediments of the Volta Basin and the Dahomeyides 
(Fig.  9). However, few zircons around 1.6  Ga are present 
in metapelite MS15, whereas ages at approximately 1.8 Ga 
occur in all samples of this study (Fig.  7). Few igneous 
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Fig. 10   Distribution of zircon morphotype groups of different temperature indication (Pupin 1980) versus the obtained zircon age
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bodies of that age have been found yet in the Anti-Atlas 
(Kouyaté et al. 2013; Youbi et al. 2013). But such ages are a 
typical component of the West Avalonian terranes as com-
piled by Gärtner et al. (2015a), and were found in the Oued 
Togba unit of the Adrar Souttouf Massif as well (Gärtner 
et  al. 2013a). Therefore, the latter unit is the preferen-
tial source area for these Statherian grains, at least for the 
Aoucert area. A significant age peak at about 2.0–2.2  Ga 
was found in all investigated sediments and is mostly 
interpreted to be a result of the Eburnean orogeny, which 
affected large parts of the WAC (Baratoux et  al. 2011; 
Egal et  al. 2002; Schofield et  al. 2006). Eburnean base-
ment occurs at the eastern part of the Reguibat Shield (Peu-
cat et al. 2005; Schofield et al. 2006) and in several of the 
Anti-Atlas inliers that are located south of the Anti-Atlas 
Major Fault (e.g. Gasquet et al. 2004; Kouyaté et al. 2013; 
Walsh et al. 2002). Further outcrops of this age are known 
in the Kédougou-Kéniéba Inlier (Dia et  al. 1997; Hirdes 
and Davis 2002) and on large parts of the Leo-Man Shield 
(e.g. De Kock et al. 2011; Hirdes et al. 1996; Tapsoba et al. 
2013), but not in the vicinity of the Adrar Souttouf Massif. 
Nevertheless, ‘Eburnean’ zircons were found in many sedi-
mentary rocks around the studied areas, particularly in the 
Anti-Atlas (Fig. 9), as well as inherited component in the 
western units of the Adrar Souttouf Massif (Gärtner et al. 
2013a). Accordingly, the 2.0–2.2 Ga zircon age population 
in the Smara area is interpreted to originate either from the 
neighbouring areas of the Reguibat Shield (Schofield et al. 
2006) or from sediments containing detrital zircons from 
the ‘Eburnean’ Anti-Atlas Inliers (e.g. Gasquet et al. 2004; 
Walsh et al. 2002), while the source of such grains in the 
Aoucert area may have been additionally derived from the 
Western units of the Adrar Souttouf Massif (Gärtner et al. 
2013a). All older zircon grains of the entire sample set 
are supposed to have a Reguibat Shield provenance. This 
is because of ages between 2.4 and 3.2  Ga that are well 
known from the neighbouring Tiris and Tasiast-Tijirit com-
plexes (Bea et  al. 2013, 2014; Gärtner et  al. 2013a; Key 
et al. 2008; Montero et al. 2014; Schofield et al. 2012), but 
are not yet reported from the Anti-Atlas and other neigh-
bouring regions of the study areas. Few of such zircon ages 
have been reported by Gärtner et al. (2013a) from the Oued 
Togba and Sebkha Gezmayet units of the Adrar Souttouf 
Massif and may also provide some minor contribution.

Implications for the Early and Mid‑Palaeozoic 
palaeogeography and sedimentary transport processes

The morphological features of the zircon grains and the 
high maturity of the investigated rocks hint to a dominant 
reworking of sediments and only minor input from freshly 
weathered igneous sources. Striking similarities between 
the morphological features of detrital zircon in samples 

MS15 (Early Cambrian) and MS13 (Devonian), as well as 
MS11 (Late Ordovician) and MS12 (Latest Ordovician) 
led to the assumption of analogue provenance or rework-
ing of the same material, respectively. Samples D209 (Mid-
Devonian) and D211 (Early Ordovician) show some simi-
larities, but not as distinct as the other ones. These relations 
were also found in the zircon age record and are expressed 
using the Kolmogorov–Smirnov (K–S) test, where a value 
of difference (D) is correlated to a value of sample size-
dependent probability (P). If P is >0.05, it is assumed that 
the compared samples have more or less identical sources 
(Lovera et al. 2008; Shaw et al. 2014; Fig. 11). Except for 
the Tonian, Mesoproterozoic, and Statherian zircon grains, 
all the other age groups can be found in the vicinity of the 
studied areas (Fig. 9). However, the former mentioned age 
populations are interpreted to indicate some sedimentary 
input from the Oued Togba and Sebkha Gezmayet units of 
the Adrar Souttouf Massif, as they are very close. Other 
potential sorces for Mesoproterozoic zircon are the Toudeni 
basin around Atar, the Mauritanides, the Neoproterozoic 
cover of the Reguibat Shield (Bradley et al. 2015), or simi-
lar, yet unknown equivalents.

A general model of the early Palaeozoic sedimentary 
transport for the Aoucert area starts in the Early Cam-
brian (Fig.  12). At this time, erosion of the sedimentary 
cover of the Cryogenian-Ediacaran (‘pan-African’) orogen 
including the proto-Oued Togba and proto-Sebkha Gez-
mayet units likely provided significant Mesoproterozoic, 
but also considerable WAC zircon age populations (Gärt-
ner et  al. 2013a, 2015b) to the foreland basin represented 
by the Sebkha Matallah and Dhloat Ensour units. Ongoing 
erosion of the WAC, which may had a sedimentary cover 
comparable to the Taoudeni Basin (Bradley et  al. 2015; 
Lahondère et  al. 2003; Rooney et  al. 2010; Trompette 
1973), presumably delivered many of the characteristic 
zircon age groups older than 1.8 Ga (Figs. 7, 9). A result 
of this basin fill from at least two sources is an assumed 

D209 D211 MS13 MS12 MS11I

D209 0.254 0.254 0.039 0.008 0.089

D211 0.254 0.096 0.768 0.451 0.101

MS13 0.254 0.096 0.026 0.001 0.894

MS12 0.039 0.768 0.026 0.823 0.026

MS11 0.008 0.451 0.001 0.823 0.002

MS15 0.089 0.101 0.894 0.026 0.002

MS15

Fig. 11   P values of the Kolmogorov–Smirnov test for all studied 
samples. Note that P < 0.001 is characteristic for a statistically signifi-
cant difference, 0.05 > P > 0.001 identifies no statistically significant 
difference, while samples with P > 0.05 are interpreted to show a sta-
tistically significant similarity
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decrease of Mesoproterozoic zircon inheritance in the Early 
Cambrian sediments towards the east, caused by increasing 
dominance of typical WAC detritus.

The proto-Oued Togba and proto-Sebkha Matallah units 
are supposed to have been already rifted away from the 
WAC margin during the opening of the Rheic Ocean (Gärt-
ner et al. 2013a, 2016). Bea et al. (2016) do also report Late 
Cambrian rift-related magmatism in the Derraman complex 
of the Sebkha Matallah unit. Accordingly, the 511–517 Ma 

intrusions and potential metamorphic overprint at about 
506 Ma (Bea et al. 2016; Gärtner et al. 2013a) on both sides 
of the Adrar Souttouf Massif narrow the time of rifting 
down to Late Cambrian times. This is in line with the gen-
eral view of the post-pan-African geotectonic evolution of 
Avalonia and Meguma (Landing 2005; Murphy et al. 2010; 
Nance et al. 2012; Satkoski et al. 2010). Thus, the supply 
with material of these two units was terminated at this time. 
There are no known outcrops or drillings in the Smara area 

Fig. 12   Possible model for 
the Palaeozoic sedimentation 
in the Aoucert area: a Early 
Cambrian: erosion of the Edi-
acaran ‘pan-African’ orogeny 
and deposition of the Amzili 
Tiznig Formation on top of the 
Sebkha Matallah unit and likely 
further east. Initial rifting of the 
proto-Oued Togba and proto-
Sebkha Gezmayet units took 
place in the Late Cambrian. 
b Ordovician: reworking of 
distal Cambrian sediments and 
accumulation of material from 
the West African Craton; ero-
sion of potential remnants of the 
rifted precursor of the Sebkha 
Gezmayet and Oued Togba 
units. c Silurian: deposition of 
marine pelites and sandstones 
of yet not known provenance 
and areal distribution. d Early 
Devonian transgression onto the 
West African Craton, deposition 
of shallow marine limestones 
with detritus likely derived from 
reworked Cambrian sediments. 
e Variscan orogeny, thrusting of 
the Sebkha Matallah unit over 
the Dhloat Ensour unit. f Recent 
situation

Meso-Cenozoic coastal 
basins: sediments

Oued Togba unit (Avalonia 
affinity): granitoids, quartzites,
orthogneisses
Sebkha Gezmayet unit (Megu-
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that indicate the presence of Cambrian sediments (Rjimati 
et al. 2011b; Villeneuve et al. 2015), and even in the vicin-
ity there is no clear evidence for such rocks (Sougy 1964). 
The oldest Palaeozoic sediments belong to the Early Ordo-
vician Angrat-Asken member (Figs.  1, 2). Therefore, an 
erosive event at the Early Ordovician is supposed for the 
Smara area. As its sediments directly overly the Archaean 
basement of the Reguibat Shield (Rjimati et al. 2002a, b), 
the Hirnantian glaciation (Delabroye and Vecoli 2010; Ghi-
enne 2003, 2007b) may have abraded the (thin?) cover of 
older sediments in the Aoucert area. This is corroborated 
by the hypothesised direction of sedimentary transport dur-
ing the glaciation, which was directed to the margins of the 
WAC and likely was caused by glacio-eustatic lowstand 
(Ghienne et al. 2007b; Saltzman and Young 2005). Under 
this assumption, the Ordovician sediments would have 
been derived from the interior of the WAC and recycled the 
Cambrian deposits, which were distal of the Adrar Souttouf 
Massif and depleted in Mesoproterozoic zircon. The Ediac-
aran cover sequence of the Reguibat Shield (Bradley et al. 
2015) does not seem to have distributed major amounts of 
sediments at this time, as the amount of Mesoproterozoic 
zircon is comparatively low. Such a shift in provenance 
with respect to the Cambrian and Devonian sediments is 
also visible in the morphology (Figs.  3, 4, 5, 6) and the 
similarity of the zircon age distribution patterns (Figs.  7, 
11).

As no absolutely certain Silurian rocks were identi-
fied during the fieldwork, we can not give any model 
approach for that interval of time. The Early and Middle 
Devonian is characterised by widespread transgression 
and deposition of shallow marine sediments in numer-
ous places along WAC western margin (Guiraud et  al. 
2005; Wendt and Kaufmann 2006), and particularly in 
the investigated area. However, those areas that were 
affected by processes which led to platform dislocation 
during the Early-Middle Devonian were characterised 
by deeper marine sedimentary conditions (Baidder et al. 
2008, 2016; Frizon de Lamotte et  al. 2013; Michard 
et al. 2008; Wendt 1985). In the course of this transgres-
sion there likely was some reworking of the Cambrian 
sediments in the Aoucert area (Fig. 12), as well as some 
input of comparable material to the Smara area. This can 
be deduced from the very similar zircon morphological 
features and the extremely high conformity of the zircon 
age spectra in samples MS15 and MS13, and, with some 
more variation, even in sample D209. The recent situa-
tion with an overthrusting of the eastern Sebkha Matallah 
unit onto the Dhloat Ensour unit is a result of the Vari-
scan-Alleghanian tectonics (Fig. 12).

Conclusion

The Palaeozoic sediments at the western margin of the 
WAC are a well preserved archive for geotectonic, palaeo-
geographic, and sedimentological processes. Therefore, 
morphological and isotopic investigations on detrital zircon 
from siliciclastic sediments and limestone of the Aoucert 
and Smara areas led to a model of sedimentary transport 
for the marginal regions of the northwestern part of Gond-
wana. In the Aoucert area, a significant amount of detrital 
zircon was likely transported from the western Oued Togba 
and Sebkha Gezmayet units as well as from the WAC to 
a basin in between both of the hypothesised main source 
areas during the Cambrian. Overlying Ordovician sedi-
ments clearly show the disappearance of the likely Ava-
lonia and Meguma related terranes of the Adrar Souttouf 
Massif as detrital zircon source in the course of the pro-
ceeding opening of the Rheic Ocean. A reworking of the 
Cambrian sediments is suggested in the course of Devonian 
transgression onto the WAC. This is also a potential model 
for the Smara area. However, lacking Cambrian sediments 
with absence of any detrital zircon information hamper a 
more detailed reconstruction.

The present study shows that not only siliciclastic sedi-
ments are suitable for provenance studies. The Devonian 
limestones of the Dhlaot Ensour unit may represent an 
exception with respect to the concentration of detrital zir-
con. Nevertheless, the general feasibility of limestones for 
detrital zircon studies is obvious and opens many new pos-
sibilities for palaeogeographic and sedimentary flux recon-
structions. Finally, the extension of zircon studies to mor-
phological features of many individual grains is regarded 
as a valuable tool to obtain additional information on sedi-
mentary provenance and recycling.
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