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Introduction

The identification of major high strain zones is a long-
standing challenge in investigations of fold-thrust belt 
geology. By 1890, geologists had documented regional-
scale thrusts in many orogens (Callaway 1883; Lapworth 
1883; McConnell 1887; Tornebohm 1888; Hayes 1891). 
Controversies about the existence, definition, location, and 
tectonic significance of some of these high strain zones 
erupted only a few years after they were first proposed 
(e.g., Murchison 1860; Nicol 1861). Decades of research 
resolved these first debates, but newer disputes persist (e.g., 
Mazur et al. 2015, 2016; Narkiewicz and Petecki 2016). In 
the Himalaya, the definition and location of the Main Cen-
tral Thrust (MCT) remain continuing sources of conflict.

The MCT accommodated more than 90 km of offset 
(e.g., Schelling and Arita 1991; Long et al. 2012, 2016; 
Webb 2013; Robinson and Martin 2014) and has been 
mapped continuously along the entire Himalayan fold-
thrust belt (Fig. 1; Martin 2016). Most workers there-
fore consider it to be one of the major thrusts in the oro-
gen (Fig. 2). The MCT figures prominently in models of 
the Cenozoic tectonic development of the Himalaya, both 
because of the large amount of Cenozoic shortening accom-
modated by the thrust and due to the implications for exhu-
mation and burial, and resulting metamorphism, of hang-
ing wall and footwall rocks (e.g., Le Fort 1975; Searle et al. 
1992; Harrison et al. 1998; Jamieson et al. 2004; Celerier 
et al. 2009a; Long et al. 2011a; Rubatto et al. 2013). Fur-
ther, some articles interpret the structurally higher South 
Tibet Detachment, another tectonically important high 
strain zone in the orogen, to have branched from the MCT 
in the up-dip (south) direction (Caby et al. 1983; Yin 2006; 
Webb et al. 2007, 2011a; He et al. 2015) or in the down-dip 
(north) direction (Burchfiel and Royden 1985; Burchfiel 
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et al. 1992; Grujic et al. 1996; Dubey and Bhakuni 2007). 
Although most geologists agree on its importance, we face 
a challenge in identifying the MCT because it is just one of 

many thrusts in the Himalayan fold-thrust belt. How do we 
decide which thrust to designate as the MCT? 
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Fig. 1  Geologic map of the Himalayan orogen and surrounding regions Modified from Webb (2013)

Fig. 2  Balanced cross section 
through the frontal half of the 
Himalaya in western Bhutan. 
Gross structural architecture is 
similar along-strike Modified 
from McQuarrie et al. (2014)
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Opposing workers answer this question differently 
through the use of unrelated definitions of the MCT (Fig. 3; 
Table 1). The original definition of the MCT was structural 
and metamorphic: The MCT is the thrust that produced a 
marked break in metamorphic grade between higher-grade 
hanging wall and lower-grade footwall rocks (Heim and 
Gansser 1939). Searle et al. (2008) reviewed the multiple 
definitions of the MCT employed by Himalayan geologists 
in the following 70 years, concluding that a metamorphic-
rheological definition is the best choice. Subsequently, 
Webb et al. (2013) proposed a new definition based on the 
age of thrusting and Martin (2016) advanced a modified 

version of an older definition of the MCT as both a high 
strain zone and a protolith boundary. The merits and short-
comings of these three definitions have not been compared.

The competing definitions of the MCT place the high 
strain zone in locations that differ by up to 5 km of struc-
tural distance (Valdiya 1980; Martin et al. 2005; Robinson 
et al. 2006; Yakymchuk and Godin 2012; Parsons et al. 
2016a, b, c). This lack of agreement on location hinders 
comparison of maps, cross sections, and tectonic models. 
For example, proximal hanging wall rocks according to one 
definition become distal footwall rocks in a different study. 
Tectonic models that explain the metamorphism of these 

Fig. 3  Contrasting definitions 
of the MCT. a Metamorphic-
rheological definition (Searle 
et al. 2008). b Definition based 
on age of thrust motion (Webb 
et al. 2013). The listed ages are 
typical for thrusts along the oro-
gen in general; the listed ages 
do not indicate actual times of 
motion in any particular loca-
tion. c Protolith boundary-struc-
tural definition (Martin 2016). 
The South Tibet Detachment is 
not shown for clarity
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rocks as either in the footwall or hanging wall of the MCT 
consequently vary considerably (c.f. Robinson et al. 2006 
versus Yakymchuk and Godin 2012; or Martin et al. 2010 
and Corrie and Kohn 2011 versus Parsons et al. 2016b). 
The problem is so severe that some recent articles avoided 
the issue, refraining from using any definition of the MCT 
at all (e.g., Larson et al. 2013; From et al. 2014; Larson and 
Cottle 2014; Cottle et al. 2015; He et al. 2015; Larson et al. 
2015). Consensus on a definition would advance tectonic 
research in the Himalaya by enabling direct comparison of 
maps, cross sections, and tectonic models.

In this article, I discuss pros and cons of the three recent 
MCT definitions and propose a working resolution to the 
definition conflict. The discussion focuses on the part of the 
Himalayan orogen between the western and eastern syn-
taxes, in Pakistan, India, Nepal, Bhutan, and Tibet (Fig. 1).

Definition of terms and geologic framework

Strain is a tensorial quantity that describes dilation and/or 
distortion of rocks (Passchier and Trouw 2005; Davis et al. 
2012). Strain can accrue via brittle, ductile, or a combina-
tion of both processes. Throughout the article, compass 
directions are given using modern orientations. Brittle faults 
and ductile shear zones share similar geometries in that both 
occupy a volume of deformed rock, and this volume typi-
cally is tabular—much smaller in one dimension than the 
other two (e.g., Childs et al. 2009; Rennie et al. 2013; Sul-
livan et al. 2013). Further, some aspects of the kinematics 
of brittle faults and ductile shear zones are alike: both types 
of high strain zone accommodate shear offset of one side of 
the high strain zone relative to the other side. Based on these 
similarities, and for simplicity and consistency, throughout 
the article I use the general term “high strain zone” to refer 
to a tabular structure that accommodated shear offset via 
brittle or ductile mechanisms, or both.

The Himalaya is the orogen that formed at the leading 
edge of the broad region of deformation that has resulted 
from continuing convergence between India and Asia (Jade 
et al. 2007; Yin 2010). Initial collision between Indian con-
tinental crust and more northern terranes began in Middle 
or Late Paleocene time (DeCelles et al. 2014; Hu et al. 
2015). The rear and frontal boundaries of the Himalayan 
orogen are the Indus-Yarlung Suture and the Main Fron-
tal Thrust, respectively (Fig. 1; Martin 2016). The western 
edge of the orogen is the left-slip Chaman Fault (located in 
Afghanistan and Pakistan) and the eastern limit is the right-
slip Sagaing Fault (located in Myanmar).

The MCT stretches at least from the western to the east-
ern syntaxis, an along-strike distance of approximately 
2500 km (Fig. 1). Estimates of the thickness of the MCT 
range from approximately 100 m to 10 km (Vannay et al. 
2004; Yin et al. 2010; Law et al. 2013; Mukherjee 2013; 
Gibson et al. 2016; He et al. 2016; Long et al. 2016). This 
large span stems both from along-strike differences in the 
geology and from the application of different definitions of 
the MCT. Regardless of which MCT definition they pre-
fer, most geologists agree that the MCT accommodated 
offset of at least 90 km (Schelling and Arita 1991; Long 
et al. 2012, 2016; Webb 2013; Robinson and Martin 2014) 
between ca. 23 and 10 Ma (Yin et al. 2010; Corrie and 
Kohn 2011; Webb et al. 2011b; Tobgay et al. 2012; Mot-
tram et al. 2015; see also Larson and Cottle 2014). Most 
of this deformation occurred in the ductile regime (Martin 
et al. 2005; Larson and Godin 2009; Mukherjee and Koyi 
2010; Law et al. 2013; Mukherjee 2013; Gibson et al. 2016; 
He et al. 2016; Long et al. 2016; Parsons et al. 2016b). 
Some high strain zones near or overlapping the MCT were 
active after ca. 10 Ma; this late offset was brittle in some 
locations (Whipple et al. 2016; review in Mukherjee 2015). 
In nearly all locations, the documented post-10 Ma offset 
was less than a few km (Mukherjee 2015).

Most geologists utilize the name “Lesser Himalayan” 
for rocks in the footwall of the MCT and “Greater Hima-
layan” or “Higher Himalayan” for hanging wall rocks 
(e.g., see reviews by Hodges 2000; Yin 2006; Dhital 2015). 
Unfortunately, different geologists use these terms to indi-
cate disparate aspects of the fold-thrust belt: elevation, 
structural position, metamorphic grade, or stratigraphic and 
intrusive relationships. The resulting confusion is untenable 
for clear discussion of definitions of the MCT. The current 
article achieves the requisite disambiguation by following 
Martin (2016) in using the label “assemblage” to refer to 
a rock package with depositional or intrusive relationships 
between members of the assemblage. That is, the contact 
between adjacent members of an assemblage originally 
was either depositional or intrusive, not a high strain zone. 
In the Himalaya, there are two such assemblages with 
members that most geologists agree shared depositional 

Table 1  Key MCT definition articles discussed in text

Authors Year

Metamorphic-rheological definition

 Heim and Gansser (1939)

 Sinha-Roy (1982)

 Searle et al. (2008)

 Gibson et al. (2016)

Age of motion-structural definition

 Yin (2006)

 Webb et al. (2013)

Protolith boundary-structural definition

 Ahmad et al. (2000)

 Martin (2016)
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or intrusive relationships, Himalayan Assemblage A and 
Himalayan Assemblage B (Fig. 1). Martin (2016) addition-
ally argued that Assemblage A did not share depositional 
relationships with Assemblage B until the Early Cretaceous 
Epoch, a more controversial interpretation (cf. DeCelles 
et al. 2000; Myrow et al. 2003 versus Martin 2016). The 
resolution of this controversy is irrelevant for the discus-
sion of MCT definitions in the current article. This article 
does not employ the terms Lesser Himalayan, Greater Him-
alayan, or Higher Himalayan except in reference to histori-
cal usage of these expressions.

The following brief summary of Assemblage A and 
Assemblage B sedimentation, intrusion, and metamor-
phism was adapted from Martin (2016). Along the entire 
northern margin of India, Assemblage A strata were depos-
ited during Paleoproterozoic to early Mesoproterozoic 
and latest Cretaceous to Quaternary time, and additionally 
during late Carboniferous to Permian time in the eastern 
half of the margin. Paleoproterozoic granite and gabbro 
intruded the basal Assemblage A deposits. Neoprotero-
zoic to Ordovician strata are present in the eastern part of 
Assemblage A. Assemblage B is a Neoproterozoic through 
Quaternary supracrustal succession, intruded by granite 
in Neoproterozoic, late Cambrian to middle Ordovician, 
Permian, and Cenozoic time. In both assemblages, depo-
sitional environments for most units were continental or 
shallow marine, on the continental shelf or slope. Both suc-
cessions therefore mostly consist of interlayered mudstone, 
sandstone, and limestone, plus much less voluminous fel-
sic and mafic volcanic and intrusive rocks. Where exposed 
in medial positions of the fold-thrust belt, Assemblage A 
and Assemblage B rocks contain evidence for Cenozoic 
metamorphism.

Metamorphic‑rheological definition

The original method for identifying the MCT among the 
other high strain zones in the Himalayan orogen was rec-
ognition of the thrust that produced a marked contrast in 
metamorphic grade between high-grade hanging wall and 
lower-grade footwall rocks. Working with Auden (1937), 
Heim and Gansser (1939, p. 78) described a key geologic 
relationship in the region of the border between northwest-
ern India and western Nepal:

“With a sharp contact, called the Main Central Thrust, 
the crystalline Rocks at Darchula rest upon the meta-
morphic limestone series.”

Heim and Gansser identified the hanging wall crystal-
line rocks as orthogneiss, augengneiss, and schist (p. 78), 
whereas the proximal footwall rocks are “slightly meta-
morphic” limestone and quartzite (p. 90). To facilitate 

application of the metamorphic-structural definition along 
the Himalaya, Sinha-Roy (1982) modified the original defi-
nition to place the MCT at the base of the package of rocks 
that exhibit inverted metamorphism.

Building on the work of Stephenson et al. (2000, 2001) 
in northwestern India, Searle et al. (2008) added rheol-
ogy to the definition because Searle et al. (2008) viewed 
a wholly metamorphic definition as an inappropriate basis 
on which to define a structure such as a high strain zone 
(Fig. 3a). Note, however, that the Heim and Gansser (1939) 
definition was not completely metamorphic because Heim 
and Gansser (1939) called the contact a thrust, which is a 
structure that carries geometric and kinematic significance. 
Instead, Heim and Gansser (1939) utilized the metamor-
phic part of the definition to recognize and label a par-
ticular thrust among others in the orogen. Nevertheless, 
responding in part to the use of the metamorphic definition 
by more recent articles, Searle et al. (2008, p. 532) wrote 
that the definition of the MCT is:

“The base of the large-scale zone of high strain and 
ductile deformation, commonly coinciding with the 
base of the zone of inverted metamorphic isograds, 
which places Tertiary metamorphic rocks of the 
Greater Himalayan Sequence over unmetamorphosed 
or low-grade rocks of the Lesser Himalaya”.

In most sectors of the orogen, the position of the MCT 
indicated by the Heim and Gansser (1939) definition lies 
structurally higher than and hindward of the locations des-
ignated by the Sinha-Roy (1982) and Searle et al. (2008) 
definitions; the Sinha-Roy (1982) and Searle et al. (2008) 
locations are similar.

Many subsequent articles followed the Searle et al. 
(2008) definition nearly exactly (e.g., Larson et al. 2010, 
2011; Searle 2010; Streule et al. 2010; Yakymchuk and 
Godin 2012; From and Larson 2014). Others empha-
sized the rheological part of the definition (e.g., Larson 
and Godin, 2009; Parsons et al. 2016a, b, c). Gibson et al. 
(2016) removed most of the metamorphic aspects from 
the definition, adopting an almost purely rheological defi-
nition. A wholly rheological definition could be written: 
“The MCT is the fossil brittle–ductile transition in quartz 
that currently outcrops on the foreland side of exposed duc-
tilely deformed rocks.” This rheological definition essen-
tially maintains the position of the MCT delineated by the 
Searle et al. (2008) definition. For the purpose of identify-
ing the location of the MCT, the brittle–ductile transition is 
taken as the edge of the zone of dynamically recrystallized 
quartz, including by workers such as Parsons et al. (2016b) 
who also examined calcite, dolomite, plagioclase, and 
alkali feldspar. I treat the metamorphic and rheological def-
initions together in this section because they are formally 
linked in the Searle et al. (2008) definition, and even when 
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not so formally linked (Gibson et al. 2016), the identified 
locations of the MCT are nearly identical.

Pros of the metamorphic‑rheological definition

1. The metamorphic-rheological definition of the MCT is 
similar to common definitions of the structurally higher 
South Tibet Detachment, which include separation of 
higher-grade rocks in the footwall from lower-grade 
rocks in the hanging wall (e.g., Searle and Godin 2003; 
Martin 2016). This correspondence of definitions can 
simplify interpretations of the tectonic evolution of the 
two high strain zones and the rocks that contain them 
(e.g., Streule et al. 2010; Parsons et al. 2016b, c; Soucy 
La Roche et al. 2016).

2. If multiple Himalayan thrusts moved at the same time, 
the definition would remain useful and valid.

Cons of the metamorphic‑rheological definition

 1. The Searle et al. (2008) definition of the MCT is 
inconsistent with these authors’ reason for reject-
ing older definitions that traced a metamorphic iso-
grad. Searle et al. (2008, p. 523) argued that an iso-
grad should not be used to define a structure such as 
a thrust because isograds provide information about 
metamorphic reactions, not structures. However, the 
part of the Searle et al. (2008) definition that specifies 
metamorphic rocks placed over unmetamorphosed 
or low-grade rocks in fact follows an isograd. The 
boundary between low-grade and higher-grade meta-
morphism is an isograd.

 2. Law et al. (2013) attempted to apply the Searle et al. 
(2008) definition in northwestern India. Law et al. 
(2013) successfully applied this definition in frontal 
parts of the orogen, but found the definition inade-
quate in hinterland positions (p. 26). In the hinterland, 
Law et al. (2013) reverted to the MCT definition of 
Vannay et al. (2004), which labeled one thrust among 
many based on metamorphic grade, but used a higher 
metamorphic grade than the Searle et al. (2008) 
definition. Using the Vannay et al. (2004) definition 
situated the MCT structurally higher than called for 
by the Searle et al. (2008) definition, thereby plac-
ing ductilely deformed, amphibolite facies rocks in 
the footwall of the MCT (Caddick et al. 2007). The 
inability of experts such as Law et al. (2013) to apply 
the Searle et al. (2008) definition consistently in both 
frontal and hinterland positions within the same sec-
tor of the orogen indicates a deficiency in the defini-
tion.

 3. All high strain zones, brittle and ductile, consist of 
a volume of strained rock (e.g., Childs et al. 2009; 

Rennie et al. 2013; Sullivan et al. 2013). Neverthe-
less, unless discussing high strain zone processes, 
most authors depict a high strain zone as a line on 
maps and cross sections, even when the spatial scale 
would allow marking the volume of rocks deformed 
by motion on the high strain zone. Drawing the line 
that represents the MCT at the edge of the ductilely 
strained rocks places that line at a location that 
accommodated little displacement between proxi-
mal hanging wall and footwall rocks, even though 
the MCT as a whole accommodated offset of more 
than 90 km (e.g., Schelling and Arita 1991; Long 
et al. 2012, 2016; Webb 2013; Robinson and Martin 
2014).

 4. The Searle et al. (2008) definition utilizes only one 
component of the total strain, the ductile strain, and 
geologists who apply this definition likewise measure 
only ductile strain, not both brittle and ductile strain 
(e.g., Larson and Godin 2009; Larson et al. 2010; 
Yakymchuk and Godin 2012; Law et al. 2013; From 
and Larson 2014; Gibson et al. 2016; Parsons et al. 
2016b). These authors place the MCT at an exposed 
steep gradient in recorded ductile strain in quartz: 
zero ductile, only brittle strain toward the foreland 
and some ductile strain in the hinterland (Fig. 3a). 
This location is thus an exhumed fossil brittle–ductile 
transition in quartz. For any chosen mineral, by defi-
nition, there is a steep gradient in ductile strain at the 
brittle–ductile transition in an orogen, from no duc-
tile strain above the transition to some ductile strain 
below (Fig. 4). However, the brittle–ductile transition 
is not necessarily a high strain zone; the steep gradi-
ent in ductile strain does not necessarily indicate off-
set across the brittle–ductile transition (Fig. 4). It is 
impossible to determine whether a high strain zone 
exists at the location of the exhumed fossil brittle–
ductile transition if the definition of the high strain 
zone, and measurements to recognize it, include only 
ductile strain. One means of exposing a fossil brittle–
ductile transition that is not itself a high strain zone 
is shown in Fig. 5. In this scenario, the outcropping 
fossil brittle–ductile transition dips toward the fore-
land. Users of the Searle et al. (2008) definition of 
the MCT assume that the fossil brittle–ductile transi-
tion in quartz dips toward the hinterland, but there are 
no data that support this supposition. Note that brit-
tle shear strain is present near the MCT in many sec-
tors of the Himalaya (e.g., Mukherjee and Koyi 2010; 
Mukherjee 2013). Some of this brittle deformation 
overprints the ductile deformation, but it is possible 
that some preserved footwall brittle shear strain also 
occurred at the same time as some of the ductile shear 
strain. 
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Amount of ductile strain
in quartz

0 increasing
Amount of total strain

(brittle + ductile) in quartz

0 increasing

Fig. 4  Diagram of the quartz brittle–ductile transition in a fold-thrust 
belt. By definition, the brittle–ductile transition is the location of 
a steep gradient in ductile strain, whether or not a high strain zone 
is present at the brittle–ductile transition. Measuring only ductile 
strain, not both brittle and ductile strain, it is not possible to deter-
mine whether a high strain zone is present at the brittle–ductile transi-
tion. In the case depicted here, the brittle–ductile transition is not the 
location of a high strain zone; the brittle and ductile strain depicted 
in the footwall of the thrust results only from motion on that thrust 

and structurally overlying high strain zones. In Figs. 4, 5, 6 and 7, the 
depicted thrusts represent structural architecture in general; they do 
not show structural geometry in any particular sector of the Himala-
yan fold-thrust belt. In these figures, the geometry of the brittle–duc-
tile transition was inspired by, but does not replicate, the numerical 
modeling results of Bollinger et al. (2006). The figures do not depict 
the geometry of the brittle–ductile transition in any particular sector 
of the Himalayan fold-thrust belt

Fig. 5  One mechanism to 
expose a fossil brittle–ductile 
transition in quartz in which the 
fossil brittle–ductile transition 
is not a high strain zone. a–c 
Exhumation is constant across 
the cross section for simplicity. 
Spatially variable exhuma-
tion, though more geologically 
realistic, would not change the 
mechanism of exposure of the 
fossil brittle–ductile transition. 
d Exhumation is greater above 
the duplex than elsewhere

(D) Time 4: Exhumation Until 0 Ma

(C) Time 3: Growth of Underlying Duplex

(B) Time 2: Continued High Strain Zone Motion

(A) Time 1: Initial High Strain Zone Motion
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 5. The choice of quartz rather than another mineral when 
applying the Searle et al. (2008) or Gibson et al. (2016) 
definition is arbitrary from a structural perspective. 
Instead, quartz is chosen for the following two prac-
tical reasons. (A) Except in carbonate units, quartz is 
present throughout the exposed Himalayan rocks. (B) 
Quartz deforms ductilely over much of the range of 
temperature conditions of interest in the evolution of 
orogenic crust (Stockhert et al. 1999). Choosing plagi-
oclase, white mica, or another mineral instead of quartz 
would change the location of the MCT identified by the 
Searle et al. (2008) and Gibson et al. (2016) definition. 
None of the possible locations using different minerals 
inherently carries structural or tectonic significance.

 6. The Searle et al. (2008) definition is difficult to use in 
carbonate units. Quartz rheology is minimally or not 
applicable because many carbonate units in the Hima-
laya contain very little quartz. Similarly, the meta-
morphic part of the definition is difficult to employ 
because carbonate units lack the mineral assemblages 
necessary for traditional thermobarometry. The peak 
or deformation temperature experienced by carbon-
ate units can be estimated using non-traditional geo-
thermometers (e.g., Parsons et al. 2016b). However, 
uncertainties on these temperature estimates make 
recognition of potential temperature discontinui-
ties challenging. Accordingly, geologists essentially 

ignore carbonate units when applying the Searle 
et al. (2008) definition to locate the MCT (Larson 
and Godin 2009; Larson et al. 2010; Yakymchuk and 
Godin 2012; Law et al. 2013; Gibson et al. 2016; Par-
sons et al. 2016a, b, c). It is thus difficult, and in prac-
tice effectively impossible, to test whether the MCT 
is present within a carbonate unit using the Searle 
et al. (2008) definition. One consequence is shown 
in Fig. 6. If the MCT passed in a lateral, oblique, 
or frontal ramp from a quartz-rich to a quartz-poor 
lithology, geologists would not be able to recognize 
the ramp or the high strain zone within the carbonate 
unit, instead drawing the MCT structurally too low 
or too high. This problem is relevant in the Himalaya 
because both Assemblage A and Assemblage B con-
tain several thick carbonate successions along all of 
the orogen between the syntaxes (Martin 2016). Some 
layers within these successions are nearly devoid of 
quartz. This drawback to the Searle et al. (2008) defi-
nition was described by Yin et al. (2010) and Webb 
et al. (2013).

 7. The Searle et al. (2008) definition of the MCT does 
not work in down-dip locations where both hanging 
wall and footwall rocks deformed ductilely and were 
metamorphosed beyond “low-grade” (Fig. 7).

 8. Likewise, if hanging wall rocks that did not deform 
ductilely are preserved at the frontal tip of the MCT, 

Fig. 6  Illustration that the 
Searle et al. (2008) definition 
is blind to the presence of the 
MCT in quartz-poor rocks such 
as carbonate units. Offset on the 
high strain zones is not depicted

Actual position of MCT

Other high strain zones (shown schematically)

Fig. 7  Depiction of the MCT 
during motion. The Searle 
et al. (2008) definition is only 
applicable to one part of the 
high strain zone; the definition 
fails in up-dip and down-dip 
segments
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it is impossible to recognize the MCT there using the 
Searle et al. (2008) definition (Fig. 7).

 9. Along much of the orogen between the syntaxes, 
exposed proximal footwall rocks to the MCT as 
defined by Searle et al. (2008) experienced green-
schist facies metamorphism, so these footwall rocks 
are not unmetamorphosed (Kohn 2014; note that 
Kohn did not use the Searle et al. definition of the 
MCT). “Low-grade” or “slightly metamorphosed” are 
left undefined.

 10. This definition does not guarantee that different seg-
ments of the MCT along strike moved at the same 
time.

Age of motion‑structural definition

Building on the conclusions of Yin (2006) and Webb et al. 
(2011a, b, 2013) proposed to label as the MCT the Hima-
layan thrust that accommodated foreland-vergent motion in 
early to middle Miocene time (Fig. 3b).

Pros of the age of motion‑structural definition

1. Applying this definition guarantees that all along-
strike segments of the MCT experienced at least one 
episode of motion at approximately the same time, ca. 
23–14 Ma.

2. Geologists can choose to draw a line that represents the 
high strain zone on a map or cross section at the loca-
tion of the most intense deformation within the volume 
of the high strain zone.

Cons of the age of motion‑structural definition

1. In many parts of the Himalaya, there are at least two 
separate early to middle Miocene thrusts that offset 
amphibolite facies metasedimentary rocks (Larson 
et al. 2015). Using a definition based on the age of 
motion, it is impossible to decide which of these high 
strain zones to label as the MCT.

2. Further, there are numerous foreland-vergent thrusts in 
the orogen (e.g., Webb 2013; McQuarrie et al. 2014; 
Robinson and Martin 2014). Picking one of these 
thrusts to call the MCT because that thrust moved in 
a selected time range is arbitrary; consequently, the 
choice does not necessarily carry tectonic significance.

Protolith boundary‑structural definition

France-Lanord et al. (1993), Parrish and Hodges (1996), 
and Whittington et al. (1999) utilized whole-rock 

neodymium and strontium isotopic values along with 
detrital zircon uranium/lead ages to show that most parts 
of Assemblage A and Assemblage B were deposited at dif-
ferent times and received sediment from at least partially 
different sources. Note that these authors employed the 
term “Lesser Himalaya” instead of “Himalayan Assem-
blage A” as well as “Tethyan Himalaya” and “Greater 
Himalaya” in place of “Himalayan Assemblage B.” Build-
ing on the conclusions from these articles, Ahmad et al. 
(2000) identified the MCT among the other Himalayan 
thrusts as the foreland-vergent thrust that juxtaposed 
these two rock packages that have different sedimentary 
provenance, depositional ages, or igneous crystallization 
ages. Using this definition, the MCT is a protolith bound-
ary in addition to a thrust-sense high strain zone (see also 
Schmid et al. 1989). Many subsequent workers applied 
essentially this definition (e.g., DeCelles et al. 2000; Rob-
inson et al. 2001; Kohn et al. 2004; Martin et al. 2005; 
Pearson and DeCelles 2005; Richards et al. 2005; Imay-
ama and Arita 2008; Corrie and Kohn 2011; Long et al. 
2011b; Mottram et al. 2014; Robinson and Martin 2014). 
Martin (2016) used the protolith boundary as a terrane 
boundary, proposing to label as the MCT the foreland-
vergent thrust that accommodated Cenozoic motion and 
juxtaposed Himalayan Assemblage B against Himala-
yan Assemblage A or other units of the Indian Shield 
(Fig. 3c). Assemblage A constitutes the footwall between 
the syntaxes, the focus region for this article. The loca-
tion of Assemblage B prior to the Cenozoic Era is contro-
versial (Fuchs and Willems 1990; DeCelles et al. 2000; 
Myrow et al. 2003; van Hinsbergen et al. 2012; Huang 
et al. 2015; Martin 2016). The resolution of these con-
troversies is irrelevant for this definition of the MCT. If 
Assemblage B were not exotic and never separated from 
Assemblage A and northern India, the thrust at the non-
exotic protolith boundary would remain the MCT using 
this definition. Mottram et al. (2014) argued for a 5-km-
thick zone of structurally interleaved MCT hanging wall 
and footwall rocks near their contact in Sikkim. This pro-
posed zone of protolith mixing lies within the volume 
of deformed rock that is the MCT. This result does not 
affect the protolith boundary-structural definition of the 
MCT: the MCT remains the high strain zone that sepa-
rates Assemblage A from Assemblage B, regardless of the 
extent of mixing near their contact.

Pros of the protolith boundary‑structural definition

1. The position of the MCT employing this definition 
is consistent along- and across-strike: it is always the 
thrust at the protolith contact. The location of the MCT 
does not change depending on lithology, metamorphic 
grade, deformation temperature, deformation mecha-
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nisms, up-dip or down-dip position of observation, or 
the age of high strain zone motion.

2. If multiple Himalayan thrusts moved at the same time, 
the definition would remain valid for identifying the 
MCT among other thrusts.

3. Geologists can choose to draw a line that represents the 
high strain zone on a map or cross section at the loca-
tion of the most intense deformation within the high 
strain zone volume that juxtaposes Himalayan Assem-
blage B against Assemblage A.

Cons of the protolith boundary‑structural definition

1. In areas where there is no chemical, depositional age, 
or igneous crystallization age difference between Him-
alayan Assemblage B and Neoproterozoic or Paleozoic 
members of Assemblage A, and additionally the origi-
nal contacts between members within each assemblage 
have been obscured, it would be difficult to distinguish 
the two rock packages.

2. This definition does not ensure that all along-strike 
segments of the MCT moved at the same time.

Discussion

None of the three definitions of the MCT considered in 
this article is flawless; each can fail in some circumstances. 
Failures of the metamorphic-rheological definition are 
ubiquitous. In every sector of the Himalaya, there is no way 
to test whether the brittle–ductile transition is a high strain 
zone if geologists only account for ductile strain (Fig. 4). 
Both the metamorphic and the rheological aspects of the 
definition fail in the down-dip direction across the entire 
orogen (Fig. 7). Meta-limestone units are present in both 
Assemblage A and Assemblage B along nearly the entire 
fold-thrust belt, confounding both the metamorphic and 
rheological facets of the definition (Fig. 6). Likewise, the 
problems with the age of motion-structural definition occur 
commonly. In many sectors of the Himalaya, geologists 
have recognized at least two major thrusts that moved in 
early to middle Miocene time (Larson et al. 2015), and it is 
impossible to label just one of these thrusts the MCT using 
the age of motion-structural definition (Fig. 3b).

In contrast, the potential flaws in the protolith bound-
ary-structural definition rarely materialize. West of central 
Nepal, Assemblage A does not contain Neoproterozoic or 
Paleozoic strata, and it is straightforward to distinguish the 
Paleoproterozoic-lower Mesoproterozoic and uppermost 
Cretaceous-Cenozoic Assemblage A deposits from Assem-
blage B rocks based on depositional age, crystallization 
age, and/or geochemical characteristics (e.g., Whitting-
ton et al. 1999; Ahmad et al. 2000). In and east of central 

Nepal, Neoproterozoic–Ordovician and upper Carbonif-
erous–Permian Assemblage A strata share depositional 
ages, and in many cases geochemical characteristics, with 
members of Assemblage B. Paleoproterozoic–lower Meso-
proterozoic Assemblage A strata were juxtaposed directly 
against Assemblage B strata in some eastern areas of the 
orogen such as the Kathmandu area, Tamar Khola Window, 
and Sikkim, and differentiating the assemblages there is as 
straightforward as west of central Nepal (e.g., Parrish and 
Hodges 1996; Imayama and Arita 2008; Mottram et al. 
2014; Khanal et al. 2015). In other eastern areas, Neopro-
terozoic or Paleozoic Assemblage A strata were juxtaposed 
against Assemblage B, and it is difficult to distinguish the 
assemblages near their contact based on geochemistry or 
detrital zircon age spectra alone. For example, in Bhutan 
the Paleozoic Jaishidanda Formation is exposed directly 
structurally below undisputed Assemblage B rocks, and 
depositional ages and geochemical characteristics do not 
permit discrimination of the Jaishidanda Formation from 
Assemblage B deposits (McQuarrie et al. 2013). These and 
other authors interpreted the basal boundary of the Jaishi-
danda Formation to be depositional on incontrovertible 
Assemblage A members, whereas the top contact of the 
Jaishidanda Formation is a high strain zone against Assem-
blage B strata. This depositional relationship establishes 
the Jaishidanda Formation as part of Assemblage A. If the 
depositional contact were not exposed, it would not be 
clear whether to place the MCT structurally above or below 
the Jaishidanda Formation. Although the protolith bound-
ary-structural definition does not guarantee movement of 
different along-strike segments at the same time, in prac-
tice geologists have found that the thrust at the Assemblage 
A–Assemblage B contact was active in early to middle 
Miocene time everywhere they have dated its motion (e.g., 
Kohn et al. 2005; Celerier et al. 2009b; Yin et al. 2010; 
Corrie and Kohn 2011; Long et al. 2012; Tobgay et al. 
2012; Mottram et al. 2015). Thus despite its possible fail-
ures, the protolith boundary-structural definition appears to 
be the best of the three choices because its potential draw-
backs are not actual problems in nearly every sector of the 
Himalaya, whereas the fatal defects in the other two defini-
tions exist throughout the orogen.

Searle et al. (2008) objected to the use of the protolith 
boundary-structural definition largely because all along- 
and across-strike segments of the MCT did not follow one 
particular stratigraphic horizon; the definition is unten-
able if some parts of the MCT cut, rather than paralleled, 
a stratigraphic horizon that originally was the protolith 
boundary. The proposition that Cenozoic motion on the 
MCT reactivated a pre-Cenozoic high strain zone offers 
a resolution to the potential problem identified by Searle 
et al. (2008). In this scenario, the MCT followed an ancient 
high strain zone that separated protoliths with different 
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provenances; this protolith division then was maintained 
during Cenozoic offset on the MCT. Numerous authors 
proposed that the MCT reactivated a pre-Cenozoic high 
strain zone, though there is disagreement about the older 
sense of motion. Yin (2006), Dubey and Bhakuni (2007), 
and Mottram et al. (2014) postulated pre-Cenozoic normal-
sense motion, DeCelles et al. (2000) suggested Late Cam-
brian to Early Ordovician thrusting, and Brookfield (1993) 
and Martin (2016) proposed Late Jurassic to Early Creta-
ceous strike-slip on a high strain zone that was reactivated 
as the MCT during the Cenozoic Era. Regardless of which 
sense of ancient motion is correct, Cenozoic reactivation of 
a preexisting high strain zone could resolve the objection 
raised by Searle et al. (2008).

It is important to state explicitly that this article is not 
arguing that a south-vergent thrust does not exist at the 
position indicated by the Searle et al. (2008) definition. 
If there is a thrust at the Searle et al. (2008) location, the 
thrust should be labeled with a name other than the Main 
Central Thrust unless that position also corresponds to the 
contact between Himalayan Assemblage A and Assem-
blage B.

The observed dissimilarities in detrital zircon age spec-
tra and geochemical characteristics between most members 
of Assemblage A and Assemblage B resulted from prov-
enance differences. Whereas derivation of sediment from 
India alone can explain the ages of detrital zircon in Paleo-
proterozoic–lower Mesoproterozoic Assemblage A deposits 
(DeCelles et al. 2000; Gehrels et al. 2011; McKenzie et al. 
2011), the sources of Neoproterozoic to Jurassic Assem-
blage B detritus comprised all major sectors of East Gond-
wana including Australia, East Antarctica, India, and East 
Africa or Arabia (DeCelles et al. 2000; Yoshida and Upreti 
2006; Cawood et al. 2007; Myrow et al. 2010; Gehrels 
et al. 2011; McKenzie et al. 2011; McQuarrie et al. 2013). 
The eastern Himalayan Neoproterozoic to Ordovician and 
upper Carboniferous to Permian Assemblage A deposits 
are the Assemblage A rocks most geochemically similar to 
broadly coeval Assemblage B strata (Gehrels et al. 2011; 
McQuarrie et al. 2013). This similarity can be explained by 
a combination of the following factors. (1) Eastern India, 
and thus eastern Assemblage A, was adjacent to western 
Australia and East Antarctica in Gondwana (Torsvik and 
Cocks 2013). (2) Sediment sources at the times of deposi-
tion included nearly all of East Gondwana, and the result-
ing detritus was nearly homogeneous along the northern 
continental margin of East Gondwana (Myrow et al. 2010; 
Gehrels et al. 2011).

Some authors labeled multiple high strain zones in the 
same transect the MCT using variations such as MCT-I 
and MCT-II or Upper MCT and Lower MCT (e.g., Maruo 
et al. 1979; Arita 1983; Harrison et al. 1998; Sachan et al. 
2001; Searle and Godin 2003; Catlos et al. 2004; Imayama 

and Arita 2008; Bhattacharyya and Mitra 2009; Mitra et al. 
2010; Nandini and Thakur 2011). It is confusing to assign 
essentially the same name to multiple different high strain 
zones. Accordingly, I recommend applying the MCT label 
to only one high strain zone, and employing dissimilar 
names for other high strain zones (e.g., Valdiya 1980; Guru-
rajan and Choudhuri 2003; Pearson and DeCelles 2005; 
Long et al. 2011b; McQuarrie et al. 2014; Khanal et al. 
2015). The appellations do not change the geometric, kin-
ematic, or mechanical properties of the high strain zones, 
but different labels do facilitate organization and discussion 
of different high strain zones as well as the rocks that con-
tain them. Further, mapping one thrust within a high strain 
zone and also a second thrust at the edge of the same high 
strain zone is misleading because such a practice gives the 
appearance that there are two high strain zones when in fact 
there is only one.

Larson et al. (2015) elucidated the Cenozoic structural 
development of the MCT and nearby thrusts without defin-
ing or even identifying one particular thrust as the MCT. 
These authors implied that labeling one thrust as the MCT 
may no longer be constructive. If the name is not useful, 
perhaps it should be abandoned. Larson et al. (2015) and 
other authors such as Robinson et al. (2006), Webb (2013), 
McQuarrie et al. (2014), He et al. (2015), and Khanal et al. 
(2015) made compelling cases that there is nothing special 
about the Cenozoic geometry, kinematics, or mechanics of 
the MCT compared to other thrusts exposed in medial parts 
of the Himalayan orogen. However, from an organizational 
viewpoint, it is convenient to assign a name to the high 
strain zone that separates Himalayan Assemblage A from 
Assemblage B. In this article, I retain the historical term 
“Main Central Thrust,” although any appellation that desig-
nates the thrust contact between the two assemblages could 
be acceptable. I leave the ultimate decision about applying 
a new name to this assemblage-bounding thrust to future 
workers.
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