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depletions in HFSEs, similar to arc volcanic rocks. Their 
initial 87Sr/86Sr ratios range from 0.721356 to 0.722521 
and εNd(t) values from −7.63 to −7.62 with Nd model 
ages of 2.06–2.10 Ga. Integration of ages and geochemi-
cal data with available geological observations, we pro-
pose the presence of Ordovician magmatism related to 
proto-Tethyan evolution in SW Yunnan and the metaigne-
ous rocks formed in an island-arc setting. They were part 
of a regional accretionary orogen that extended along the 
northern margin of Gondwana during Neoproterozoic to 
early Paleozoic period.

Keywords Metaigneous rocks · Lancang Group · Late 
Ordovician · Proto-Tethyan evolution · SW Yunnan

Introduction

Early Paleozoic igneous rocks, ranging in age from 525 
to 460 Ma, exposed within the Himalayan Orogen Belt in 
NW India, Nepal, South Tibet and SW China (Bhanot et al. 
1979; DeCelles et al. 1998, 2000, 2004; Godin et al. 2001; 
Xu et al. 2005; Liu et al. 2006; Gehrels et al. 2006; Cawood 
et al. 2007; Chen et al. 2007; Song et al. 2007; Zhang et al. 
2008; Dong et al. 2009; Liu et al. 2009; Qi et al. 2010; Shi 
et al. 2010; Wang et al. 2011, 2012, 2013b; Li et al. 2012; 
Zhu et al. 2012a, b; Xing et al. 2015). In addition, Cam-
brian and Ordovician sequences are separated by an angular 
unconformity in NW India, Nepal and South Tibet (Brook-
field 1993; Valdiya 1995; Le Fort et al. 1994; Hughes 2002; 
Liu et al. 2002; Zhou et al. 2004; Myrow et al. 2006a, b). 
In the early Paleozoic, these regions constituted part of 
the northern margin of Gondwana facing the proto-Tethys 
ocean. However, the detailed geological evolution of these 
regions during this time has poorly been established due to 

Abstract SW Yunnan of China constituted part of the 
northern margin of Gondwana facing the proto-Tethys 
ocean in the early Paleozoic. However, the evolution of 
the region and its relationship with the accretionary oro-
genism have been poorly established. This paper reports 
a set of new zircon U–Pb age data and whole-rock major 
oxides, elemental and Sr–Nd isotopic data for early Pale-
ozoic metavolcanic rocks from the previously defined 
Lancang Group and reveals the development of an Ordo-
vician suprasubduction zone in SW Yunnan. Zircon U–Pb 
ages of 462 ± 6 and 454 ± 27 Ma for two representa-
tive samples indicate eruption of the volcanic rocks in the 
Late Ordovician. Geochemical data for the metavolcanic 
rocks together with other available data indicate a calc-
alkaline affinity with high Al2O3 (13.04–18.77 wt%) and 
low TiO2 (0.64–1.00 wt%). They have Mg-numbers rang-
ing from 62 to 50 with SiO2 of 53.57–69.10 wt%, compo-
sitionally corresponding to the high-Mg andesitic rocks. 
They display enrichments in LREEs and LILEs with sig-
nificant Eu negative anomalies (δEu = 0.20–0.33), and 
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the hinder of late Paleozoic disruption and Cenozoic tec-
tonothermal reworking associated with Tethys closure and 
Himalayan orogenic formation, respectively (e.g., Dewey 
et al. 1988; Metcalfe 1996, 2002, 2006, 2011, 2013; Yin 
and Harrison 2000; Yi et al. 2011; Pan et al. 2012; Cawood 
et al. 2013). Two end-member tectonic models have been 
proposed for the early Paleozoic orogenic event involving: 
(a) Pan-African orogeny associated with either the breakup 
of an earlier supercontinent or the final assembly of Gond-
wana (Murphy and Nance 1991; Miller et al. 2001; Xu 
et al. 2005; Yang et al. 2012); and (b) Andean-type orog-
eny following Gondwana assembly, caused by subduction 
of the proto-Tethyan Ocean beneath the Indian Craton and 
its adjacent micro-continental blocks (Cawood et al. 2007; 
Zhang et al. 2008, 2012b; Dong et al. 2010; Wang et al. 
2011, 2012, 2013b; Zhu et al. 2012a).

The Sanjiang (also named Nujiang-Lancangjiang-Jin-
shajiang in Chinese literature) area in SW Yunnan (SW 
China) is an important area of the eastern Tethyan tectonic 
belt and preserved numerous geological relicts, which is 
associated with the final closure of the proto-Tethys ocean 
(e.g., Zhang et al. 1985; Cong et al. 1993; Zhong 1998; 
Wang et al. 2010, 2012; Liu et al. 2009). Early Paleozoic 
granitic rocks, gneiss and amphibolite with age around 
499–462 Ma are recently identified within the Gongshan, 
Tengchong-Baoshan and Shan-Thai blocks in SW Yunnan 
(Chen et al. 2007; Song et al. 2007; Liu et al. 2009; Li et al. 
2012; Yang et al. 2012; Wang et al. 2013b). These rocks 
are benefit for better understanding the tectonic setting of 
the area and tectonic affinity of the Gongshan, Tengchong-
Baoshan and Shan-Thai blocks. For example, Fang et al. 
(1990) suggested that there is no affinity between the Teng-
chong-Baoshan Block and Gondwana. However, more and 
more data show the Tengchong-Baoshan and Shan-Thai 
Blocks are the micro-segments of the Gondwana (Metcalfe 
1996; Zhong 1998; Liu et al. 2009; Wang et al. 2013b; Nie 
et al. 2014; Xing et al. 2015). The systematic works for the 
associated early Paleozoic igneous are required for prob-
ing the petrogenesis and tectonic setting of SW Yunnan. In 
this study, we reported Laser Ablation Induction Coupled 
Plasma Mass Spectroscopy (LA-ICP-MS), Sensitive High-
Resolution Ion Microprobe (SHRIMP II) zircon U–Pb 
ages and geochemical data of the metaigneous rocks in the 
previously defined Lancang Group to constrain the source 
characteristics of the magma and discuss the tectonic impli-
cation on the accretionary orogenic history of the northern 
margin of Gondwana.

Geological background and petrography

Southwest Yunnan is one of the important branches of east-
ern Tethyan tectonic belt. The Tethyan–Alpine orogenic 

system has a change in direction from the Himalayan 
segment (WNW-trending) to the Southeast Asian seg-
ment (northerly trending) in SW Yunnan (Fig. 1a; Hutch-
ison 1989; Metcalfe 1996, 2002, 2013; Zhang et al. 2008, 
2012b; Wang et al. 2013b). The area includes Simao/Indo-
china, Baoshan/Shan-Thai and Tengchong blocks (Fig. 1a) 
which were separated by the Changning–Menglian and 
Longling–Ruili faults, respectively. The Simao/Indochina 
Block consists of a Proterozoic metamorphosed succes-
sion of pyroclastic rocks and carbonates (Zhong 1998), 
unconformably overlain by a Paleozoic package of carbon-
ate and siliciclastic rocks with typical Cathaysia flora and 
fauna (Yunnan BGMR 1990; Zhong 1998; Feng 2002). 
The Baoshan, Tengchong and Shan-Thai blocks are com-
ponents of the Sibumasu continental fragment and display 
stratigraphic and paleontological affinities to Gondwana 
continent (Fig. 1a, b; Fan and Zhang 1994; Metcalfe 1996, 
2002; Zhong 1998; Feng 2002; Fontaine 2002; Wang et al. 
2013b).

The Lancang Group is a set of metamorphic volcano-
sedimentary cycles, mainly exposed in Baoshan and 
Shan-Thai Blocks. The stratigraphic package includes pre-
Mesozoic high-grade metamorphic rocks and Mesozoic–
Cenozoic sedimentary and igneous rocks (Yunnan BGMR 
1990; Zhong 1998; Wang et al. 2013b). Previous study 
considered this group consisting of four formations, which 
are in ascending order the Mengjingshan, Manlai, Huimin 
and Nankenghe Formations (Fig. 1c; Yunan BGMR 1979). 
The Mengjingshan Formation with thickness of over 300 m 
is mainly composed of light quartzite, granulite, sericite 
schist and sericite quartz schist in its upper part. The typical 
flysch sedimentary rocks indicate that the stratum is a pro-
duction of high-speed accumulation with the crust subsid-
ence intensely. The Manlai Formation consists of subdivide 
cycles from coarse to fine grains. The lower cycle is about 
1400 m thick, and the upper cycle is nearly 1300 m thick; 
they predominantly consist of feldspathic quartz sandstone, 
gray sericite microcrystalline schist, sericite quartz schist, 
mica schist and metavolcanic rocks (Wei et al. 1984; Wu 
et al. 1984; Yunnan BGMR 1990; Shen et al. 2008). The 
Huimin Formation, 2500 m thick, comprises metamorphic 
basalt, andesite, andesitic tuff, rhyolitic tuff, and a few Fe-
siliceous slate inbedding chlorite phyllite, sericite phyllite, 
chlorite schist, siderite layer and marble lens. The strata of 
Nankenghe Formation are mainly low metamorphic rocks, 
the structure and construction are less destroyed. The Nan-
kenghe Formation is characterized by silica quartz sand-
stone, sericite quartz sandstone and microcrystalline schist 
in about 1000 m thick (Wei et al. 1984; Wu et al. 1984; 
Yang et al. 2012; Nie et al. 2014).

The Huimin Formation mainly exposed in Huimin and 
Manlai areas. Our study focuses on the Huimin Forma-
tion in both areas, and sampling locations are displayed in 
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Fig. 1b, c. The represent samples (11ML-57B, -57F and 
-57H and DX-56) are andesites metamorphosed to lower-
greenschist facies. They are dark-green in color with a 
schistose fabric and composed of feldspar, albite and chlo-
rite along with the accessory mineral phases of titanite, 
apatite, zircon and Fe–Ti oxides. The major oxides and 
trace elemental data of the samples for the volcanic rocks 
in the Huimin Formation in the current study have been 
documented in Shen et al. (2008) and Nie et al. (2014).

Analytical methods

Zircon U–Pb LA‑ICP‑MS method

Zircons were separated using conventional heavy liquid 
and magnetic techniques and then purified by handpicking 
under a binocular microscope. After mounting in epoxy, 

polishing and coating of grains with carbon, the samples 
were photographed in transmitted and reflected light. The 
internal textures of zircons were examined using cathodolu-
minescence (CL) imaging prior to U–Pb isotopic analyses 
at the Institute of Geology and Geophysics (IGG), Chinese 
Academy of Sciences (CAS). U–Pb isotope analysis was 
conducted by Nu Plasma HR MC-ICPMS (Nu Instruments) 
with ArF-193 nm laser-ablation system (Resolution M-50) 
in the University of Hong Kong (11ML-57H). The instru-
mental settings and detailed analytical procedures have 
been described in Wu et al. (2006), Geng et al. (2014) and 
Gong et al. (2014). We used standards GJ-1 and 91500 to 
determine the elemental fractionation during sputter ioniza-
tion. Off-line selection and integration of background and 
signals, time-drift correction and quantitative calibration 
were conducted by ICPMSDataCal (Liu et al. 2010). Zir-
con U–Pb age concordia and weighted average plots were 

Fig. 1  a Tectonic outline of Southeast Asian, b simplified geological map revised from 1:200,000 geological map of Cangyuan in SW Yunnan 
and c Stratigraphic column of the Lancang Group (revised from 1:200,000 geological map of Jinghong, Yunnan)
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Table 1  LA-ICP-MS and SHRIMP zircon U–Pb dating results of the previously defined Lancang Group metavolcanic rocks

Samples Th/U Isotopic ratio Apparent age (Ma)

207Pb/206Pb ±% 207Pb/235U ±% 206Pb/238U ±% 207Pb/206Pb ±1σ 207Pb/235U ±1σ 206Pb/238U ±1σ

11ML-57 (LA-ICP-MS zircon U–Pb dating)

 11ML-57-01 0.55 0.0541 0.30 0.5598 3.10 0.0748 0.24 376 119 451 20 465 15

 11ML-57-02 0.54 0.0597 0.32 0.6018 3.23 0.0728 0.24 591 112 478 20 453 14

 11ML-57-03 0.69 0.0594 0.32 0.6170 3.26 0.0750 0.25 583 115 488 20 466 15

 11ML-57-04 0.77 0.0563 0.27 0.5836 2.75 0.0741 0.24 465 99 467 18 461 14

 11ML-57-05 0.58 0.0606 0.31 0.6252 3.21 0.0736 0.24 633 110 493 20 458 15

 11ML-57-07 0.72 0.0540 0.31 0.5646 3.22 0.0752 0.25 372 128 455 21 468 15

 11ML-57-08 0.59 0.0553 0.25 0.5679 2.59 0.0739 0.24 433 104 457 17 459 14

 11ML-57-09 0.73 0.0521 0.25 0.5394 2.60 0.0744 0.24 300 109 438 17 462 14

 11ML-57-10 0.74 0.0576 0.27 0.5888 2.80 0.0736 0.24 517 104 470 18 458 14

 11ML-57-11 0.55 0.0515 0.26 0.5364 2.75 0.0748 0.24 265 117 436 18 465 15

 11ML-57-12 0.50 0.0536 0.29 0.5514 3.02 0.0739 0.25 354 119 446 20 460 15

 11ML-57-13 0.67 0.0509 0.25 0.5149 2.57 0.0727 0.23 235 112 422 17 452 6

 11ML-57-14 0.75 0.0539 0.28 0.5531 2.83 0.0741 0.25 365 119 447 19 461 15

 11ML-57-15 0.52 0.0520 0.30 0.5406 3.05 0.0747 0.25 287 131 439 20 464 15

 11ML-57-16 0.60 0.0544 0.27 0.5718 2.86 0.0752 0.24 387 82 459 18 467 15

 11ML-57-17 0.61 0.0523 0.29 0.5380 2.96 0.0741 0.24 298 126 437 20 461 15

 11ML-57-18 0.65 0.0531 0.27 0.5541 2.78 0.0743 0.24 345 113 448 18 462 14

 11ML-57-19 0.71 0.0515 0.29 0.5406 2.95 0.0756 0.25 261 128 439 19 470 15

 11ML-57-20 0.57 0.0517 0.29 0.5361 3.05 0.0746 0.25 333 97 436 20 464 15

 11ML-57-21 0.59 0.0540 0.30 0.5553 3.08 0.0742 0.25 369 131 448 20 462 15

 11ML-57-22 0.83 0.0543 0.27 0.5599 2.74 0.0740 0.24 383 83 451 18 460 14

 11ML-57-23 0.60 0.0543 0.31 0.5580 3.22 0.0741 0.24 389 126 450 21 461 15

 11ML-57-24 0.50 0.0523 0.34 0.5380 3.31 0.0752 0.25 302 148 437 22 468 15

 11ML-57-25 0.71 0.0531 0.30 0.5503 3.15 0.0741 0.24 332 130 445 21 461 15

DX-56 (SHRIMP zircon U–Pb dating)

 DX56-2 0.57 0.1591 0.46 7.6162 1.81 0.3472 1.75 2446 8 1809 32 1921 29

 DX56-3 1.32 0.0667 3.39 1.1904 4.06 0.1295 2.23 827 71 784 17 785 16

 DX56-4 1.03 0.0685 2.15 1.5462 2.85 0.1636 1.88 885 44 981 18 977 17

 DX56-5 0.47 0.0555 3.06 0.5536 3.53 0.0724 1.77 430 68 451 8 451 8

 DX56-6 1.53 0.0649 2.29 1.0756 2.87 0.1202 1.74 771 48 731 12 732 12

 DX56-7 1.25 0.1623 1.50 10.440 2.69 0.4666 2.24 2480 25 2464 65 2469 46

 DX56-8 0.40 0.0668 3.06 1.4670 3.66 0.1592 2.01 832 64 957 19 953 18

 DX56-9 1.37 0.1046 1.66 4.5891 2.61 0.3182 2.02 1708 30 1791 36 1781 31

 DX56-10 0.81 0.1626 0.77 10.977 2.48 0.4896 2.36 2483 13 2610 77 2569 50

 DX56-11 0.57 0.0640 0.76 1.1453 1.87 0.1299 1.71 741 16 788 13 787 13

 DX56-12 0.73 0.0552 3.50 0.5323 3.99 0.0700 1.91 420 78 436 8 436 8

 DX56-13 1.26 0.0743 2.26 1.7207 2.94 0.1680 1.89 1050 46 999 18 1001 17

 DX56-14 0.72 0.0722 0.97 1.7372 2.03 0.1746 1.78 991 20 1039 18 1037 17

 DX56-15 0.59 0.0557 2.62 0.5630 3.26 0.0733 1.94 440 58 456 9 456 9

 DX56-16 2.17 0.0557 3.69 0.5993 4.15 0.0780 1.91 442 82 485 9 484 9

 DX56-17 1.52 0.0707 5.18 1.5575 5.59 0.1597 2.09 950 106 955 19 955 19

 DX56-18 0.87 0.0976 0.67 3.8674 1.85 0.2873 1.73 1579 13 1634 28 1628 25

 DX56-19 0.33 0.0613 1.59 0.9419 2.33 0.1114 1.70 651 34 681 11 681 11

 DX56-20 0.93 0.0532 3.11 0.5413 3.57 0.0738 1.75 337 70 461 8 459 8

 DX56-21 0.04 0.0655 0.73 1.2700 1.84 0.1407 1.69 790 15 850 14 848 13

 DX56-22 0.49 0.0583 2.48 0.6086 3.07 0.0757 1.81 540 54 470 8 471 8

 DX56-23 0.46 0.0500 6.18 0.4802 6.46 0.0696 1.90 197 143 437 8 434 8
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made by Isoplot (Ludwig 2003). The analytical results are 
listed in Table 1.

Zircon U–Pb SHRIMP method

The treatment processes of zircons before instrument tests 
are the same as we have introduced above. The zircons 
were analyzed for Pb–Th–U isotopes using the SHRIMP 
II ion microprobe at the Curtin University (DX-56), Aus-
tralia. The instrumental conditions and data acquisition 
procedures are similar to those described by Williams and 
Claesson (1987) and Williams (1998). The SHRIMP runs 
in a primary ion beam of ca. 1.6–3.0 nA, 10 kV of O2−. 
Spots size range between 20 and 30 μm and each analy-
sis site is rastered over 120 μm for 2 min to reduce any 
common Pb on the surface or contamination from the gold 
coating. The instrumental settings and detailed analytical 
procedures have been described in Williams (1998), Black 
et al. (2003) and Zi et al. (2012a, b). To maintain preci-
sion, one TEMORA analysis was performed after every 
three or four spots on the sample zircons during data col-
lection. The common lead correction was applied using the 
measured 204Pb value (Compston et al. 1984). Errors for 
individual analyses are at 1σ level, unless otherwise stated. 
Uncertainties are quoted with 95 % confidence limits. Sites 
for dating were selected on the basis of CL and microscope 
images. Software SQUID 1.0 and Isoplot (Ludwig 2003) 
were used for data processing. The analytical results are 
listed in Table 1.

Geochemistry method

Samples were crushed and powdered to less than 200 mesh 
for whole-rock geochemical analysis at Langfang Integ-
rity Geological Ltd., Hebei Province. Major oxides were 
determined by a XRF-100e spectrometry in the Guangzhou 
Institute of Geochemistry (GIG), CAS. Analytical error 
is usually <1 %, and detection limit is <0.05 % for most 
major elements. For trace elements, the rock powders were 
first digested by HF + HNO3 in Teflon bombs and then 
analyzed on IsoProbe MC-ICPMS in the GIG, CAS. Ana-
lytical precision is generally better than 5 % for most ele-
ments. Detailed sample-processing digesting procedure and 
analytical precision and accuracy for major elements and 
trace elements are described by Ma et al. (2014) and Liang 
et al. (2003), respectively. The analytical results for major 
and trace elements are shown in Table 2.

Sr and Nd isotopic ratios were measured by MCICP-
MS at the GIG, CAS. The analytical procedures are the 
same as reported by Wei et al. (2002). The total procedure 
blanks are in the range of 200–500 pg for Sr and <50 pg 
for Nd. The mass fractionation corrections for Sr and 
Nd isotopic ratios were based on 86Sr/88Sr = 0.1194 and 

146Nd/144Nd = 0.7219, respectively. The measured 87Sr/86Sr 
ratio of (NIST) SRM 987 standard and the 143Nd/144Nd 
ratio of the La Jolla standard are 0.710265 ± 12 (2σ) 
and 0.511862 ± 10 (2σ), respectively. 143Nd/144Nd and 
147Sm/144Nd ratios of CHUR at the present time used for 
calculating εNd value are 0.512638 and 0.1967, respec-
tively. 87Rb/86Sr and 147Sm/144Nd ratios were calculated 
using the Rb, Sr, Sm and Nd abundances measured by ICP-
MS. The measured and age-corrected 87Sr/86Sr and εNd(t) 
are listed in Table 2.

Results

Zircon U–Pb geochronology

Zircon U–Pb dating was undertaken on samples 11ML-
57H and DX-56 with the former analyzed by LA-ICP-MS 
and the latter by the SHRIMP method. The data are shown 
in Table 1 and Fig. 2.

The zircon grains from 11ML-57H are mostly euhedral 
and short-columnar in morphology, transparent and color-
less, and generally small in size (60–100 μm, 1:1-2:1 for 
length/width; Fig. 2a). Th/U ratios of twenty-four grains 
are in the range of 0.46–0.83 (Table 1). These analyses 
cluster around 460 Ma (Fig. 2a), yielding a weighted mean 
206Pb/238U age of 462 ± 6 Ma with MSWD = 0.1 (n = 24; 
Fig. 2b). The CL images reveal oscillatory zonation with 
low to variable luminescence (Fig. 2a), together with high 
Th/U ratios, indicating an igneous origin (Hoskin and 
Black 2000; Wu and Zheng 2004). The age of 462 ± 6 Ma 
is interpreted as the eruption age of the sample.

Twenty-two spots on 22 grains were analyzed from sam-
ple DX-56. Zircons are mostly euhedral and short-colum-
nar with well-developed oscillatory zoning, typical of a 
magmatic origin (Fig. 2c). Two major age peaks are present 
at around 456 and 794 Ma (Fig. 2c). Three spots give older 
ages around 2480 Ma. Only one spot has a Th/U ratio value 
of less than 0.1 (DX-56-21), whereas the other twenty-one 
spots have U and Th concentration of 25–703 ppm and 
28–632 ppm, respectively, with the Th/U ratios ranging 
from 0.33 to 2.17 (Table 1). Thus, these ages with more 
than 790 Ma can be interpreted as inherited grains. Seven 
of twenty-two spots yield a weighted mean 206Pb/238U age 
of 454 ± 27 Ma with MSWD = 0.2 (n = 7; Fig. 2d), inter-
preted as the formation age of the sample.

Geochemical characteristics

Our geochemical data, together with the published data 
for the Huimin metavolcanic rocks (Shen et al. 2008; Nie 
et al. 2014), are used to constrain their petrogenesis and 
tectonic settings of Ordovician magmatic rocks along the 
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Table 2  Major oxides (wt%), trace element (ppm) and Sr–Nd isotopic analyses for the Ordovician metavolcanic rocks in SW Yunnan

Sample Manlai Huimin* Manlai*

11ML-57B 11ML-57F 11ML-57H D008 D009 D010 D011 H4 H5 H9 H10

SiO2 62.74 62.94 55.42 63.88 65.01 53.88 53.57 63.35 59.63 54.96 69.10

TiO2 0.66 0.64 0.87 0.66 0.77 0.72 0.72 1.00 0.97 0.92 0.90

Al2O3 16.34 16.18 17.04 14.58 17.40 13.72 13.68 16.85 15.32 18.77 13.04

FeOt 6.72 6.34 8.58 6.30 7.31 11.32 11.66 8.20 9.02 13.24 8.61

MnO 0.10 0.10 0.14 0.08 0.06 0.16 0.16 0.14 0.16 0.25 0.12

MgO 3.60 3.21 5.91 3.74 4.16 7.30 7.58 4.37 4.32 9.12 3.76

CaO 4.88 5.03 6.06 6.37 0.51 10.04 9.92 0.52 7.74 0.19 1.03

Na2O 3.28 3.32 3.40 1.03 0.35 1.30 1.13 4.52 0.88 1.05 0.49

K2O 1.55 2.14 2.45 3.21 4.27 1.33 1.35 0.78 1.62 1.35 2.25

P2O5 0.11 0.11 0.12 0.15 0.16 0.23 0.22 0.26 0.34 0.14 0.70

LOI 2.19 1.94 2.45 7.92 4.38 3.30 3.36 3.87 3.51 6.81 3.90

Total 99.79 99.81 99.63 99.29 98.81 98.88 98.74 99.66 99.20 99.23 99.36

Mg-number 55 54 62 58 57 60 60 55 53 62 50

Sc 14.40 15.40 19.20 16.85 22.31 37.28 37.39 41.80 47.40 51.50 36.20

V 102 99 159 89 117 222 223 308 340 380 303

Cr 53 41 113 161 198 547 551 197 357 1236 971

Co 14.6 15.2 22.9 35.9 46.6 84.4 91.5 42.2 48.1 1070 72.4

Ni 34.3 30.0 70.7 63.3 75.4 173 181 46.7 73.2 597. 337

Rb 68 87 97 110 164 65 66 41 100 87 134

Sr 266 307 288 94 10 536 539 58 436 55 70

Y 23.00 21.70 25.10 25.25 27.06 21.47 21.92 43.70 37.50 15.20 27.10

Zr 95 94 95 141 162 91 90 233 180 170 137

Nb 6.90 6.76 6.05 10.45 12.46 5.36 5.38 13.00 11.20 8.27 7.62

Ba 384 603 521 594 883 660 804 279 593 1124 2075

La 26.90 20.90 20.30 21.51 22.89 15.26 15.62 54.50 32.00 14.30 23.30

Ce 51.30 43.90 41.70 46.61 51.22 31.80 32.66 101.00 63.90 28.70 38.60

Pr 6.05 5.15 5.00 5.21 5.80 3.94 3.98 13.50 7.78 3.55 6.44

Nd 23.30 20.40 20.30 20.80 23.07 16.26 16.64 54.10 32.20 14.20 27.70

Sm 5.10 4.54 4.99 4.42 4.99 3.62 3.79 10.10 6.97 3.16 6.11

Eu 1.15 1.06 1.28 0.94 0.98 0.98 1.01 2.12 1.64 0.99 1.91

Gd 4.92 4.41 4.86 4.35 4.61 3.62 3.79 8.71 6.69 2.85 5.45

Tb 0.83 0.77 0.82 0.73 0.77 0.59 0.62 1.43 1.13 0.44 0.89

Dy 5.12 4.72 5.06 4.46 4.70 3.68 3.92 7.84 6.50 2.65 5.10

Ho 0.91 0.86 0.97 0.90 0.98 0.75 0.78 1.60 1.31 0.57 1.00

Er 2.60 2.43 2.75 2.60 2.92 2.25 2.42 4.56 3.79 1.83 2.74

Tm 0.40 0.37 0.41 0.40 0.45 0.36 0.38 0.67 0.54 0.28 0.38

Yb 2.45 2.21 2.50 2.52 2.76 2.35 2.43 4.40 3.61 2.47 2.49

Lu 0.40 0.37 0.42 0.36 0.40 0.34 0.34 0.67 0.51 0.41 0.39

Hf 3.21 3.28 3.02 4.02 4.80 2.52 2.48 6.79 4.97 4.94 3.91

Ta 0.65 0.62 0.55 0.88 1.09 0.43 0.43 0.95 0.75 0.49 0.37

Th 12.4 10.4 8.51 11.77 14.46 6.60 6.61 21.50 7.26 7.26 7.59

Eu* 0.23 0.24 0.26 0.21 0.20 0.27 0.27 0.23 0.24 0.33 0.33

ΣREE 170.69 148.08 148.55 157.75 173.96 116.82 119.82 338.14 219.05 104.29 161.47

(La/Yb)N 7.88 6.79 5.83 6.12 5.94 4.66 4.61 8.89 6.36 4.15 6.72

(Nb/La)N 0.25 0.31 0.29 0.47 0.52 0.34 0.33 0.23 0.34 0.56 0.32
143Nd/144Nd 0.512054 0.512060

2σ 7 6
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proto-Tethyan margin of Gondwana continent. Loss on 
ignition (LOI) values for the samples range from 1.94 to 
7.92 wt% (Table 2), suggesting that these rocks might have 
undergone some degree of low-temperature alteration (Rol-
land et al. 2002). In the plots of Zr and incompatible ele-
ments (Fig. 3a–f), these samples show linear correlation, 
suggestive of the insignificant mobile during the low-tem-
perature alteration. Thus, only concentrations and ratios of 
the immobile elements (e.g., HFSEs and REEs) are used.

The metaigneous rocks contain 53.57–69.10 wt% SiO2 
and 0.11–0.70 wt% P2O5 and are characterized by low 
TiO2 (0.64–1.00 wt%) and high Al2O3 contents (13.04–
18.77 wt%). The samples plot in the fields of basaltic 
andesite and andesitic rocks on the Nb/Y–Zr/TiO2 × 10−4 
plot (Fig. 4a; Winchester and Floyd 1977). Their MgO 
contents range from 3.21 to 9.12 % with Mg-numbers of 
50–62, higher than those of normal arc volcanic rocks (e.g., 
NE Japan arc) at comparable SiO2 (Table 2; Fig. 4b). Thus 

Data for Huimin* and Manlai* are from Shen et al. (2008) and Nie et al. (2014)

Table 2  continued

Sample Manlai Huimin* Manlai*

11ML-57B 11ML-57F 11ML-57H D008 D009 D010 D011 H4 H5 H9 H10

87Sr/86Sr 0.721356 0.722521

2σ 14 11
87Sr/86Sr(i) 0.716492 0.717149

εNd(t) −7.63 −7.62

TDM (Ga) 2.06 2.10

Fig. 2  Zircon U–Pb age concordia and weighted average plots for 11ML-57H (a, b) and DX-56 (c, d), respectively. The sampling locations are 
shown in Fig. 1b, c
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these samples can be classified as high-Mg rocks accord-
ing to the classification scheme of Kelemen (1995), as 
shown in Fig. 4b. They display geochemical characteristics 
similar to those of the Archean calc-alkaline sanukitoids 
of the Superior, Finland, Dharwar and Amazonian cratons 
(Fig. 4c; Shirey and Hanson 1984, 1986; Stern et al. 1989; 
Smithies and Champion 2000; Moyen et al. 2003; Halla 
2005; Tatsumi 2008; Oliveira et al. 2009). These metaig-
neous samples have similar MgO and Na2O contents to 
those of the sanukitoid high-Mg andesite in the Japanese 
volcanic belt and low-silica adakite at comparable SiO2 
(Fig. 4c; Tatsumi 2001, 2006, 2008; Moyen et al. 2003). 
On the Sr/Y–Y diagram (Fig. 4d; Kamei et al. 2004), they 
are generally plotted in the range of the sanukitoid high-
magnesium andesite. Al2O3, FeOt, CaO and MgO generally 
show negative correlations with SiO2, but little correlations 
exist between SiO2 and TiO2 and P2O5 (Fig. 5a–f). 

The samples show similar chondrite-normalized REE 
patterns (Fig. 6a) and have moderately fractionated light 
rare-earth elements (LREEs) relative to heavy rare-
earth elements (HREEs), with (La/Yb)N = 4.15–8.89 

(Table 2). All the samples show negative Eu anomalies 
with Eu* = 0.20–0.33. On the primitive mantle-normal-
ized incompatible element spider diagram (Fig. 6b), these 
samples are characterized by subparallel spiky patterns 
with enrichment in LILEs and depletion in HFSEs with 
significantly negative Nb–Ta anomalies [(Nb/La)N = 0.23–
0.56] but insignificantly negative Zr–Hf anomalies [(Hf/
Sm)N = 0.87–2.25]. Three samples from Manlai area show 
weakly negative Sr anomalies, contrary to typical adakite 
with pronounced positive Sr anomalies. Such patterns, irre-
spective of SiO2 content, are similar to those of the typical 
arc volcanic rocks.

Two samples (11ML-57B and 11ML-57H) were ana-
lyzed for Sr–Nd isotopic compositions. The measured 
87Sr/86Sr ratios are 0.721356 and 0.722521, respectively. 
The 143Nd/144Nd values are 0.512054 and 0.512060, 
respectively. The initial Sr isotopic ratios back-calculated 
to 460 Ma are 0.7165 and 0.7171, and εNd(t) values are 
−7.63 and −7.62. The corresponding TDM values are 2.06 
and 2.10 Ga for 11ML-57B and 11ML-57F (Table 2), 
respectively.

Fig. 3  Zr (ppm) versus a TiO2 (wt%), b Y (ppm), c Hf (ppm), d Th (ppm), e Nb (ppm) and f La (ppm) for the Ordovician metavolcanic rocks in 
the previously defined Lancang Group (SW Yunnan)
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Discussion

Formation age of the Lancang metavolcanic sequence

The Lancang Group is composed of a metamorphic vol-
canic-sedimentary package, predominantly constituted by 
quartzite-schist, sandstone-volcanics, volcanics-schist and 
sandstone-schist, respectively. Previous estimations about 
the age of the package range from Mesoproterozoic to 
Paleozoic. Yunnan BGMR (1982) had assumed it to be the 
Mesoproterozoic sequence. These rocks were mapped as 
the Neoproterozoic sequence in the geological map of Jin-
ghong and Menghai (Yunnan BGMR 1990). Zhong (1998) 
ascribed it as part of the Yangtze basement on the basis of 
a whole-rock Sm–Nd isochron age of 1982 ± 41 Ma from 
the Huimin Formation of the Lancang Group. Zhai et al. 
(1990) concluded that the Huimin volcanic rocks erupted 
during early Paleozoic based on a whole-rock Rb–Sr 
isochron age of 519 Ma. Shen et al. (2008) stated that the 
Huimin Formation was pre-Devonian sequence.

Our samples from the previously defined Lancang 
Group yielded weighted mean 206Pb/238U zircon ages of 
462 ± 6 (n = 24) and 454 ± 27 Ma (n = 7), respectively. 

The CL structures of these grains have typical oscillatory 
zonation, and Th/U ratios range from 0.33 to 2.17 (except 
spot DX-56-21 with Th/U value of 0.04). Thus these ages 
can be interpreted as the eruption age of the metavolcanic 
rocks. Nie et al. (2014) recently obtained a U–Pb zircon 
age of 456 ± 7 Ma for the andesitic sample of the Huimin 
Formation. Thus, the previously defined Lancang Group, at 
least Huimin volcanic sequence, is most likely formed dur-
ing the Ordovician period.

Origin of the Ordovician high‑Mg andesitic rocks

All analyzed samples show little or no correlation between 
the LOI and Zr, La and Nb/La and Th/La, suggesting insig-
nificant modification of elemental contents during low-
temperature alteration. SiO2 correlates negatively with CaO 
and CaO/Al2O3 (Fig. 5b, g), indicative of fractionation of 
clinopyroxene and hornblende during magma evolution. 
This is also evidenced by the negative correlation between 
SiO2 and MgO, FeOt and Al2O3 (Fig. 5a, c, d). Apatite and 
Fe–Ti oxides fractionation should be insignificant since 
TiO2 and P2O5 contents are relatively constant irrespective 
of Zr (Fig. 3a) or SiO2 (Fig. 5e, f). Plagioclase fractionation 

Fig. 4  a Classification diagram of a Nb/Y versus Zr/TiO2 × 10−4, 
b SiO2 (wt%) versus Mg-number, c SiO2 (wt%) versus MgO (wt%) 
and d Y (ppm) versus Sr/Y for the Ordovician (454–460 Ma) volcanic 
rocks. The ranges for different rocks including normal arc lavas, 

Archean sanukitoids, Setouchi HMA are from Stern et al. (1989), 
Middlemost (1994), Kelemen (1995), Smithies and Champion 
(2000), Tatsumi (2001), Halla (2005), and Oliveira et al. (2009)
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is marked by negative correlations of CaO and Al2O3 with 
SiO2 (Fig. 5b, c) and significantly negative Eu anomalies 
(Fig. 6).

The samples have negative εNd(t) values (−7.63 and 
−7.62) and 147Sm/144Nd ratios of 0.132459–0.134479. 
TDM(Nd) ages of 2.06–2.10 Ga are much older than their 
formation age (~460 Ma). They exhibit similar initial Sr–
Nd isotopic compositions to the Ordovician granitic rocks 
in SW Yunnan, the Greater Himalayan Crystalline Com-
plex, and Lhasa metarhyolite, and also fall into the fields of 
the Greater Himalayan Crystalline Complex metasedimen-
tary rocks and Ordovician S-type granites in the Lachlan 
Fold Belt (Fig. 7; Healy et al. 2004; Wang et al. 2007). The 

εNd(t) values are significantly lower than the synchronous 
Mandi and Shao La mafic rocks in Greater Himalayan 
Crystalline Complex and Lhasa metabasites (Miller et al. 
2001; Chen et al. 2007; Liu et al. 2009; Wang et al. 2011, 
2012; Zhu et al. 2011, 2012a, b; Wang et al. 2013b).

Three petrogenetic models have been proposed for 
the high-Mg andesitic rocks involving the partial melt-
ing of (1) eclogitic crust, (2) a young and hot slab, or (3) 
metasomatized source modified by the subduction-related 
components (Baker and Stolper 1994; Kelemen 1995; 
Yogodzinski et al. 1995; Hirose 1997; McCarron and Smel-
lie 1998; Shimoda et al. 1998; Kawabata and Shuto 2005; 
Wang et al. 2006, 2009; Hoang et al. 2009; Zhang et al. 

Fig. 5  SiO2 (wt%) versus a FeOt (wt%), b CaO (wt%), c Al2O3 (wt%), d MgO (wt%), e P2O5 (wt%), f TiO2 (wt%), g CaO/Al2O3 and h MnO 
(wt%) for the Ordovician metavolcanic rocks in the previously defined Lancang Group (SW Yunnan)



1479Int J Earth Sci (Geol Rundsch) (2017) 106:1469–1486 

1 3

2012a; Honarmand et al. 2015). We firstly argue that cases 
(1) and (2) are not applicable to the Lancang high-Mg 
metavolcanic rocks based on the following observations. 
Our samples have relatively high Mg-numbers (50–62), 
Al2O3 (13.04–18.77 wt%) and low TiO2 (0.64–1.00 wt%) 
contents, enrichment in LILEs and depletion in HFSEs 
(Fig. 6b) with high LILE/HFSE ratios. The partial melt-
ing of a granulite or eclogite crust, containing minor rutile, 
generally produces magma with low Mg-number, high 
Al2O3 (>17 %) and TiO2 contents (Rapp et al. 1991, 1999; 
Sen and Dunn 1994). Thus, the Lancang metavolcanic 
rocks are unlikely to be derived from the melting of an 
eclogitic crust. Our high-Mg metavolcanic andesitic sam-
ples have weakly negative Eu, Ba and Sr anomalies, indica-
tive of the absence of plagioclase in the source. In addition, 
the samples exhibit insignificant Ce anomalies, relatively 
high 87Sr/86Sr(t) ratios and negative εNd(t) values, against 
the possible model for derivation of a hot and young sub-
ducted slab for these rocks (Defant and Drummond 1990; 
Kelemen et al. 1993).

Melt extraction or slab- and sediment-derived meta-
somatism at exceptionally low pressures can form a high 
modal orthopyroxene source and lead to relatively high 
SiO2 contents in the rocks (Kushiro 1990; Gallagher and 
Hawkesworth 1992; Chalot-Prat and Boullier 1997). 
As a result, the arc-like elemental signatures (e.g., high 
LREE and LILE contents, high La/Nb, Ba/Th and Ba/La 
ratios and negative Nb–Ta–Ti anomalies) and the “crust-
like” Sr–Nd isotopic compositions of the analyzed sam-
ples are likely attributed to a source modified by recy-
cled sediment- or slab-derived components (Rapp et al. 
1991, 1999; Evans and Hanson 1997; Sajona et al. 2000; 
Smithies and Champion 2000; Prouteau et al. 2001; 
Moyen et al. 2003; Smithies et al. 2003, 2007; Kamei 
2004; Oliveira et al. 2009). High-Mg andesites that orig-
inate from a slab-metasomatized source (e.g., western 
Aleutians) generally exhibit high Sr contents and La/Yb 
ratios and depleted Sr–Nd isotopic system. However, our 
samples show insignificant Sr anomalies and EMII-like 
isotopic composition. Their Sr/La ratios gently increase 

Fig. 6  a Chondrite-normalized 
REE patterns and b primitive 
mantle-normalized incompat-
ible element for the Ordovician 
metavolcanic rocks. Normalized 
values for chondrite and primi-
tive mantle are from Sun and 
McDonough (1989)
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with decreasing La/Yb ratios and the Th/Yb ratios 
increase with increasing Ba/La ratios (not shown). The 
Th/Yb ratios of Lancang high-Mg metavolcanic rocks 
range from 2.01 to 5.23, obviously higher than N-MORB 
(0.04; Sun and McDonough 1989) and E-MORB (0.25; 
Sun and McDonough 1989), having been ascribed to 
the addition of subducted sediments (Davidson 1987; 
Xu et al. 2014). As shown in the Fig. 8a, b, samples 
plot along the trend related to fluid-related/increasing 
hydrous metasomatism rather than melt-related enrich-
ment. Such geochemical signatures appear to be consist-
ent with the source involvement of subducted sediment 
rather than a slab-derived component.

Tectonic implications

Available data show that the Sanjiang area in SW Yunnan 
is an important component of the orogenic zone associ-
ated with the final closure of the proto-Tethys ocean basin 
(Zhang et al. 1985; Cong et al. 1993; Zhong 1998). Evi-
dence for early Paleozoic tectonothermal activity is wide-
spread along the northern margin of East Gondwana from 
NW India to SW Yunnan involving an unconformity sepa-
rating Ordovician from older strata, along with Cambrian–
Ordovician magmatic activity, metamorphism and deforma-
tion (Cawood et al. 2007; Wang et al. 2013b). Widespread 
development of Cambrian and Ordovician volcanic rocks 
including acid and basic tuffs, basalts, andesites and felsic 
volcanic rocks in the western Tethyan Himalaya resembles 
to those from volcanic arc systems (Garzanti et al. 1986; 
Brookfield 1993; Valdiya 1995).

The Mandi mafic rocks in High Himalayan Crystal-
line of NW India formed at 496 ± 14 Ma and show geo-
chemical affinity to a convergent margin setting (Miller 
et al. 2001). At Shenzha in the Central Lhasa Block, Ji 
et al. (2009) and Zhu et al. (2012a) identified the late 
Cambrian (~492 Ma) bimodal volcanic rocks related to 
the active continental margin, which are underlain by the 
lower Ordovician basal conglomerate (Ji et al. 2009; Li 
et al. 2010). SHRIMP zircon U–Pb ages for cumulate gab-
bro along the Longmucuo-Shuanghu suture zone range 
from 467 ± 4 to 432 ± 7 Ma (Li et al. 2008; Wang et al. 
2008; Zhai et al. 2010). Yang et al. (2012) reported the late 
Cambrian (499.2 ± 2.1 Ma) mafic lavas with geochemical 
affinities to arc volcanic rocks in the Gongyanghe Group, 
which are unconformably overlain by lower Ordovician 
basal conglomerate in the Baoshan Block of SW Yun-
nan. Wang et al. (2013a) obtained zircon U–Pb age of 
473.0 ± 3.8 and 444.0 ± 4.0 Ma for cumulate gabbro with 
geochemical affinity to back-arc basin setting at Nantinghe 

Fig. 7  Initial Sr–Nd isotopic composition. The Sr–Nd isotopic data 
for Mandi and Shao La mafic rocks, along with the granite and meta-
sedimentary rocks of the Greater Himalayan Complex (GHC), are 
from Parrish and Hodges (1996), Robinson et al. (2001), Imayama 
and Arita (2008), Miller et al. (2001), Visonà et al. (2010), Zhu et al. 
(2012a) and Wang et al. (2011, 2012)

Fig. 8  a Nb/Y versus Ba/Y and b Th/Zr versus Nb/Zr for the Ordovician metavolcanic rocks showing an input of the subducted fluid-related 
metasomatism
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in the Baoshan Block of SW Yunnan. Meanwhile, Wang 
et al. (2013a) obtained LA-ICPMS zircon U–Pb age of 
443.6 ± 4.0 and 439.0 ± 2.4 Ma for cumulate gabbro and 
gabbro in the Tongchangjie ophiolitic mélange along the 
Changning-Menglian tectonic belt, respectively. In addi-
tion, molybdenite samples from the dacite-hosted massive 
sulfide deposit at Dapingzhang of the southern Lancangji-
ang zone, which is interpreted as a product of back-arc vol-
canic setting, yield the zircon U–Pb age of 429 ± 2 Ma and 
Re–Os isotopic ages of 429 ± 6 and 442 ± 6 Ma (Yang 
et al. 2008; Li et al. 2010). Medium–basic to medium–
acidic island-arc volcanic rocks were separated from the 
Precambrian Jitang Formation and re-defined as the Lower 
Paleozoic Youxi Formation in the central and northern Lan-
cangjiang zones. Our metavolcanic samples from the previ-
ously defined Lancang Group in SW Yunnan formed in the 
Late Ordovician around 460 Ma and are classified as high-
Mg andesitic rocks. They exhibit arc-like geochemical sig-
natures (e.g., low TiO2, Ni, Cr and higher Al2O3 contents, 
and a marked enrichment in LILEs and LREEs and a deple-
tion in HFSEs; Bailey 1981; Peate et al. 1997) and nega-
tive εNd(t) values, suggestive of subduction-related meta-
somatic enrichment, interpreted as the derivation of the 
metasomatic source with the input of subducted sediment. 
On tectonic discrimination diagrams (Fig. 9a–c), they plot 
in a suprasubduction setting. In addition, the peraluminous 
granites in the Tengchong, Baoshan and Shan-Thai Blocks 
in SW Yunnan, which were generated in the active conti-
nental margin setting related to accretionary orogenesis, 
have the zircon U–Pb ages of 498–460 Ma (Wang et al. 
2013b and reference therein). All of these observations, 
along with the widespread development of early Paleozoic 
volcanic rocks in the Tethyan Himalaya and Sanjiang areas 
(e.g., Brookfield 1993; Garzanti et al. 1986; Valdiya 1995), 
suggest an evolution of the proto-Tethyan arc-basin system 
during early Paleozoic in South Tibet and Sanjiang areas.

Ordovician basal conglomerate unconformably overlies 
the Cambrian-lower Ordovician Group in the Baoshan and 
Tengchong Blocks (Wang 2000), suggestive of a regional 
early Paleozoic orogenesis. Wang et al. (2013b) proposed 
the development of an early Paleozoic orogenesis from 
NW India to at least Namche Barwa. More importantly, the 
reconstruction of northeastern Gondwana at Late Ordovi-
cian indicates that the Tethyan Himalaya and associated 
East and Southeast Asian micro-continents (e.g., Baoshan, 
Tengchong, Shan-Thai, Pan-Cathaysia and Indochina) were 
located paleographically on the proto-Tethyan margin of 
East Gondwana (Fig. 10a, b; Cawood et al. 2007, 2013; 
Wang et al. 2010; Zhu et al. 2012a, b). Although the exact 

Fig. 9  a Th–Hf–Nb diagram (e.g., Wood 1980), b ATK diagram 
(e.g., Zhao 1989) and c TiO2 (wt%)-FeOt/MgO diagram (e.g., Glass-
ley 1974; IAB: island-arc basalt; MORB: oceanic ridge basalt; OIB: 
oceanic island basalt) of the Ordovician metavolcanic rocks in SW 
Yunnan
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paleogeographic location of the Simao block along the East 
Gondwana margin is still unknown, it must be nearby or be 
part of the Pan-Cathaysia or Indochina blocks on basis of 
their paleobiological and paleoclimate affinity. Thus, these 
high-Mg rocks in the previously defined Lancang Group, 
together with synchronous mafic and granitic rocks, can be 
interpreted as the product of subduction of the proto-Teth-
yan ocean along the north margin of East Gondwana at the 
early Paleozoic (Chen et al. 2007; Liu et al. 2009; Zhang 
et al. 2008, 2012b; Wang et al. 2011, 2012, 2013b; Zhu 
et al. 2012a, b; Xing et al. 2015). The synthesis of our data 
and available regional observations suggest that these igne-
ous rocks have been generated in a Late Ordovician island-
arc setting related to subduction of the proto-Tethyan 
Ocean facing the Pan-Cathaysia continent. These Ordovi-
cian volcanic rocks in SW Yunnan might be the product 
of a regional accretionary orogen that extended along the 
northern margin of Gondwana during the Neoproterozoic 
to early Paleozoic.

Conclusions

1. The Huimin metavolcanic rocks in Manlai area of the 
previously defined Lancang Group of SW Yunnan give 
zircon U–Pb age of 462 and 454 Ma, indicative of Late 
Ordovician origin.

2. The volcanic rocks have Mg-numbers ranging from 62 
to 50 with SiO2 of 53.57–69.10 wt%, compositionally 
corresponding to the high-Mg andesitic rocks. They 
show relatively high Al2O3 and low TiO2, with enrich-
ments in LREE and LILEs and depletions in HFSEs, 
and have Eu and Nb–Ta negative anomalies. They have 
negative εNd(t) (−7.62 and −7.63) and Paleoprotero-
zoic model ages (TDM of 2.10–2.06 Ga), similar to arc-
like volcanic rocks.

3. These igneous rocks were derived from a mantle wedge 
source with involvement of subducted sediment in an 
Ordovician island-arc setting in response to subduction 
of the proto-Tethyan Ocean facing the Pan-Cathaysia.
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