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of the Qiangtang lower crust that mixed with upwelling 
asthenosphere materials in response to the slab break-off of 
the northward subduction of the Bangong–Nujiang oceanic 
lithosphere.

Keywords Early Cretaceous · Bangong–Nujiang Ocean · 
Slab break-off · Qiangtang Terrane · Tibet

Introduction

The closure of the Bangong–Nujiang Ocean and the sub-
sequent Lhasa–Qiangtang collision are recognized as the 
principal events in central Tibet during the Late Jurassic–
Early Cretaceous (Girardeau et al. 1984; Dewey et al. 1988; 
Yin and Harrison 2000; Schneider et al. 2003; Kapp et al. 
2005, 2007; Guynn et al. 2006; Li et al. 2015b; Zhu et al. 
2016), and their rocks provide an important record for the 
assembly of the dispersed terranes into Asia and the devel-
opment of the Tibetan plateau (Yin and Harrison 2000; Li 
et al. 2015b). Magmatism offers important insights into 
the subduction of ocean seafloor, continental collision, and 
mantle–crust interaction in central Tibet (Kapp et al. 2007; 
Zhang et al. 2012a; Li et al. 2013a, 2015a; Zhu et al. 2016). 
However, the notable differences in Early Cretaceous mag-
matism between the northern Lhasa and southern Qiang-
tang subterranes resulting from the subduction of the Ban-
gong–Nujiang Ocean and subsequent Lhasa–Qiangtang 
collision remain hotly debated.

The early tectonic models speculated that the Ban-
gong–Nujiang slab was subducted beneath the Qiangtang 
Terrane together with one or more oceanic island arc ter-
ranes (Allègre et al. 1984; Girardeau et al. 1984; Guynn 
et al. 2006; Kapp et al. 2007). However, the widespread 
magmatic rocks in the northern Lhasa subterrane and lack 
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of corresponding magmatism in the southern Qiangtang 
subterrane led some researchers to suggest that the Ban-
gong–Nujiang Ocean subducted beneath the Lhasa Terrane 
(Zhu et al. 2009a, 2011, 2013; Pan et al. 2012; Deng et al. 
2014) rather than the Qiangtang Terrane (Allègre et al. 
1984; Guynn et al. 2006; Kapp et al. 2007; Zhang et al. 
2012a; Li et al. 2014a). Moreover, the magmatic flare-up 
with strong mantle input at ~110 Ma in the northern Lhasa 
subterrane was attributed to slab break-off of the southward 
subduction of the Bangong–Nujiang Ocean floor during 
the Lhasa–Qiangtang collision (Zhu et al. 2009a, 2011; 
Zhang et al. 2010, 2011, 2012b; Sui et al. 2013). However, 
the strongly peraluminous to calc-alkaline magmatism 
and extensional deformation in the Lhasa Terrane were 
regarded as the results of an orogen that broke down due 
to lithospheric delamination and asthenospheric upwelling 
(Zhang et al. 2012a). Moreover, newly discovered mag-
matic rocks in the southern Qiangtang subterrane confirm 
that the Bangong–Nujiang Ocean had undergone northward 
subduction (Li et al. 2014a, b, 2015a, b, 2016b; Geng et al. 
2016), which may imply that the Bangong–Nujiang oceanic 
lithosphere had experienced bidirectional subduction (Zhu 
et al. 2016). Obviously, the lack of high-quality geochro-
nological and geochemical data in central Tibet inhibits a 
complete understanding of the subduction polarity of the 
Bangong–Nujiang oceanic lithosphere and the evolution 
of central Tibet during the Mesozoic. The previous geody-
namic models regarding the subduction of the Bangong–
Nujiang oceanic lithosphere should be reappraised, and the 
Early Cretaceous magmatism in the southern Qiangtang 
subterrane provides an important window for understand-
ing the evolution of the Bangong–Nujiang Ocean.

In this paper, we report zircon LA–ICPMS age data from 
the newly discovered granitic rocks of the Moku area in the 
southern Qiangtang subterrane. We also present whole-rock 
geochemistry, Sr–Nd–Pb isotopes, and zircon Hf isotopic 
data to gain a better understanding of the petrogenesis 
and geodynamics of Early Cretaceous magmatism in the 
Qiangtang Terrane. Our results indicate that the Moku plu-
ton was emplaced at ca. 100 Ma and most likely resulted 
from anatexis of the Qiangtang lower crust that mixed with 
asthenospheric magma in response to the slab break-off 
of the northward-subducting Bangong–Nujiang oceanic 
lithosphere. Our results provide valuable constraints on the 
magmatic processes involved in the subduction of the Ban-
gong–Nujiang Ocean and the Lhasa–Qiangtang collision.

Geological background

The Tibetan plateau is essentially composed of four conti-
nental blocks or terranes: the Songpan–Ganzi, Qiangtang, 
Lhasa, and Himalaya, from north to south (Fig. 1a). These 

blocks are separated by the Jinsha, Bangong–Nujiang, and 
Indus–Yarlung Zangbo suture zones, representing Paleo-, 
Meso-, and Neo-Tethyan oceanic relicts, respectively (Yin 
and Harrison 2000).

The Qiangtang Terrane is located in central Tibet and has a 
width of 500–600 km (Fig. 1b). The Triassic Shuanghu suture 
divides the Qiangtang Terrane into northern and southern 
subterranes (Zhang and Tang 2009). The southern Qiangtang 
subterrane investigated in this study is dominated by Upper 
Triassic–Upper Jurassic marine deposits with a thickness of 
more than 3000 m (Li et al. 2016b), including Middle Juras-
sic sequences that mainly consist of clastic rocks and Upper 
Jurassic sequences that are composed of carbonates. These 
marine deposits are unconformably overlain by weakly 
deformed Upper Cretaceous continental sediments (i.e., 
Abushan Formation), which are considered to be the result 
of the Qiangtang–Lhasa collision (Kapp et al. 2005, 2007; 
Zhang et al. 2012a; Li et al. 2013a). The subduction-related 
magmatic rocks previously reported are mainly exposed in 
the northern Lhasa subterrane, and the lack of corresponding 
magmatism in the central segment of the southern Qiangtang 
subterrane is the main reason for disputes regarding the sub-
duction polarity of the Bangong–Nujiang Ocean. The newly 
discovered Jurassic magmatism in the central segment of the 
southern Qiangtang subterrane (Li et al. 2015a, 2016b) sug-
gests that the Bangong–Nujiang oceanic lithosphere was sub-
ducted northward beneath the Qiangtang Terrane, forming 
a west–east magmatic arc over more than 800 km long (Li 
et al. 2016a). Moreover, the recent studies revealed the exist-
ence of 96–102 Ma volcanic rocks in the Moku area (Poqu 
and Madeng) (Fig. 1a, b), which were attributed to the partial 
melting of relict subducted oceanic crust combined with the 
input of oceanic sediments (Li et al. 2015a). However, this 
genetic explanation is primarily based on the geochemical 
data of major and trace elements, but isotopic data to provide 
vital constraints on this model are lacking.

The Bangong–Nujiang suture is characterized by a 
>1400-km-long east–west-trending belt of mainly Jurassic 
flysch, mélange, and ophiolitic fragments, representing the 
remnants of the Bangong–Nujiang Ocean (Fig. 1a; Girardeau 
et al. 1984; Dewey et al. 1988; Schneider et al. 2003; Yin and 
Harrison 2000; Leier et al. 2007). Although the subduction 
processes of the Bangong–Nujiang Ocean and geological 
consequences are still in dispute (Zhu et al. 2009a; Liu et al. 
2010; Zhang et al. 2012a), the isotopic ages of the ophiolitic 
fragments (which range from 190 to 108 Ma) (Zhu et al. 
2006b; Zhang et al. 2012a) and the Late Cretaceous terres-
trial sediments along this suture indicate that final closure 
of the Bangong–Nujiang Ocean and the subsequent Lhasa–
Qiangtang collision occurred during the Early Cretaceous 
(Zhang et al. 2012a; Li et al. 2013a; Zhu et al. 2016).

The Lhasa Terrane, which is bounded by the Bangong–
Nujiang suture in the north and the Indus–Yarlung suture 
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in the south (Fig. 1b), can be divided into northern, central, 
and southern subterranes. The main rocks exposed in the 
northern Lhasa subterrane are Jurassic–Early Cretaceous 
sedimentary and associated magmatic rock (Dewey et al. 
1988; Guynn et al. 2006). In contrast with the Qiangtang 
Terrane, this subterrane contains widespread Cretaceous 
magmatic rocks (Fig. 1b) (Zhang et al. 2004; Leier et al. 
2007; Mo et al. 2007; Zhu et al. 2006a, 2009a, b; 2016). 

The arc-related magmatic rocks (>110 Ma) include inter-
mediate-silicic intrusions and volcanic rocks and are attrib-
uted to the southward subduction of the Bangong–Nujiang 
oceanic lithosphere beneath the Lhasa subterrane (Zhu 
et al. 2006a, 2009a, 2011, 2013, 2016; Ma and Yue 2010). 
The magmatic flare-up with a great compositional diversity 
(basalt, rhyolite, dioritic enclave, biotite monzogranite, and 
granite) and the strong input of mantle-derived materials at 
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ca. 110 Ma are interpreted as the results of slab break-off of 
the southward subducted Bangong–Nujiang oceanic litho-
sphere during the Lhasa–Qiangtang collision (Zhu et al. 
2006a, 2009a, 2011, 2013, 2016; Ma and Yue 2010; Sui 
et al. 2013).

Field occurrence and petrography

Samples were collected from the Moku area (E90°14′38″, 
N32°21′07″) in the southern Qiangtang subterrane 
adjacent to the Bangong–Nujiang suture (Fig. 1b). 
The lithostratigraphic units exposed in the Moku area 
include the Late Triassic Bagong Formation, the Mid-
dle–Late Jurassic Yanshiping Group, the Late Cretaceous 
Abushan Formation, and the Paleogene Niubao Forma-
tion (Fig. 1c). With a area of ca. 90 km2, the Moku plu-
ton intrudes into the Yanshiping Group in the northwest 
and the Abushan Formation terrestrial sediments in the 
southeast (Figs. 1c, 2a). Zircon U–Pb data of the volcanic 
rocks in the lower part of the Abushan Formation indicate 
that terrestrial sedimentations started at ~100 Ma (Li et al. 
2015a).

The Moku pluton is composed primarily of biotite-horn-
blende monzogranites (host rocks) with dioritic enclaves. 
The biotite-hornblende monzogranites are gray and exhibit 
medium- to coarse-grained igneous texture; they consist of 
20–25 % quartz, 30–40 % K-feldspar, 25–30 % plagioclase, 
5–10 % hornblende and biotite, as well as minor accessory 
minerals (Fig. 2b). The dioritic enclaves, with sizes from 
5 to 30 cm, are commonly observed within the monzo-
granite, generally appear ellipsoidal or lenticular in sec-
tion, and have sharp contacts with the host rocks (Fig. 2c). 
Compared to the host rocks, the dioritic enclaves are fine-
grained in texture and consisting of plagioclase (50–55 %), 
hornblende (30–35 %), quartz (8–10 %), K-feldspar (5 %), 
biotite (3 %), and minor accessory minerals (Fig. 2d).

Analytical methods

Zircon U–Pb dating

Zircon dating was conducted using LA–ICP–MS methods 
at the State Key Laboratory for Mineral Deposits Research 
at Nanjing University using an Agilent 7500a ICP–MS 
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coupled with a UP213 laser-ablation system (made by New 
Wave). The analytical procedures used for the U–Pb dat-
ing were described in detail by Belousova et al. (2001). 
The zircon standard 91500 (origin: Ontario, Canada) used 
for the correction of mass discrimination was analyzed at 
intervals of 5–7 sample zircon analyses. Afterward, the data 
from ICP–MS analyses were processed using the GLIT-
TER software (Version 4.0). Common Pb was corrected 
according to Andersen (2002), and the ISOPLOT software 
(Version 2.49) was used to calculate the weighted zircon 
ages and produce a concordia plot.

Major and trace elements

All samples were crushed to 200 mesh using an agate mill 
for major and trace element and Sr–Nd isotopic analyses. 
Major element oxides (wt%) were determined using a Var-
ian Vista PRO ICP–AES at the Key Laboratory of Isotope 
Geochronology and Geochemistry, Guangzhou Institute of 
Geochemistry, Chinese Academy of Sciences (GIGCAS). 
The details of the analytical procedures were described by 
Li et al. (2002). Trace elements, including the rare earth 
elements (REE), were analyzed using a Perkin-Elmer 
ELAN 6000 inductively coupled plasma source mass spec-
trometer (ICP–MS) at the GIGCAS, following procedures 
described by Li et al. (2002).

Whole‑rock Sr–Nd–Pb isotopes

The whole-rock Sr, Nd, and Pb isotopic compositions were 
measured using a Finnigan Triton TI TIMS at the State Key 
Laboratory for Mineral Deposits Research, Nanjing Univer-
sity. The detailed separation procedures and mass spectrom-
etry analyses were the same as those described by Pu et al. 
(2005). The mass fractionation corrections for 87Sr/86Sr 
and 143Nd/144Nd ratios were based on 86Sr/88Sr = 0.1194 
and 146Nd/144Nd = 0.7219, respectively. Repeated analy-
ses of the JNdi–1 Nd standard yielded a 143Nd/144Nd ratio 
of 0.512121 ± 0.000016 (2σ, n = 5), and the NBS-987 Sr 
standard yielded 87Sr/86Sr = 0.710260 ± 0.000010 (2σ, 
n = 30). Total analytical blanks were 5 × 10−11 g for Sm 
and Nd and (2–5) × 10−10 g for Rb and Sr.

For Pb isotope determination, approximately 50 mg 
of the feldspar samples was completely dissolved in an 
ultrapure HNO3 + HCl mixture. After drying, the residue 
was dissolved in an HBr + HNO3 mixture and then loaded 
into a column with 50 Am of AG 1-X 8 anionic resins. 
The extracted Pb was then purified in a second column. 
Approximately, 100 ng of Pb was loaded onto a single 
rhenium filament using the silica gel technique. Analyti-
cal reproducibilities of 0.01 % (2σ) for 206Pb/204Pb, 0.01 % 
for 207Pb/204Pb, and 0.02 % for 208Pb/204Pb were attained in 
this study. Mass fractionation corrections were made from 

runs of the NBS-981 standard based on the suggested value 
of Todt et al. (1996), and the error of the mass fractionation 
corrections was 0.04 %.

Zircon Hf isotopic analysis

In situ zircon Lu–Hf isotopic measurements were per-
formed on a Neptune multi-collector ICP–MS equipped 
with a Geolas-193 laser-ablation system with a laser pulse 
frequency of 8 Hz at the Institute of Geology and Geophys-
ics, Chinese Academy of Sciences, Beijing. Instrumen-
tal conditions and data acquisition were similar to those 
described by Wu et al. (2006). Measured 176Hf/177Hf ratios 
were normalized to 179Hf/177Hf = 0.7325. The εHf(t) values 
and TDM were calculated following Griffin et al. (2000) 
using the 176Lu decay constant given in Blichert-Toft and 
Albarède (1997).

Geochronology and geochemistry results

Zircon U–Pb geochronology

Three samples were selected for dating, including two 
samples from the host granites (UKG and HKV) and one 
sample (BT–9) from a dioritic enclave (Fig. 1b). The zir-
con U–Pb analytical data and calculation results are listed 
in Table 1.

Zircons from the two host granites show euhedral mor-
phology and are mainly long and prismatic with long 
axes of 200–400 μm and length/width ratios of 2:1–6:1. 
Cathodoluminescence (CL) images reveal that the zir-
con crystals possess clear oscillatory zoning and lack 
any inherited cores (Fig. 3a, b). These, together with the 
high Th/U ratios (0.30–0.70) of the dated analyses, sug-
gest an origin by crystallization from magmas. Nineteen 
zircons from UKG yield 206Pb/238U ages ranging from 
98 ± 0.8 to 102 ± 0.9 Ma, with a weighted mean age 
of 100.3 ± 0.6 Ma (MSWD = 1.9, n = 19) (Fig. 3d). 
Twenty zircons from HKV yield 206Pb/238U ages between 
100 ± 1.0 and 102 ± 0.9 Ma, with a weighted mean age of 
100.6 ± 0.5 Ma (MSWD = 0.6, n = 20) (Fig. 3e). These 
data suggest that the Moku pluton was emplaced during the 
Early Cretaceous (ca. 100 Ma).

Except for their smaller size, zircons from the dioritic 
enclave (BT-9) exhibit morphology, crystal structure, and 
Th/U ratios (0.30–0.90) similar to zircons from the host 
granites (Fig. 3c). Seventeen zircons yield 206Pb/238U ages 
ranging from 100 ± 2.0 to 101 ± 2.0 Ma, with a weighted 
mean age of 100.3 ± 0.8 Ma (MSWD = 0.1, n = 17) 
(Fig. 3f). The zircon U–Pb dating results indicate that the 
Moku granites are coeval with their dioritic enclaves and 
areal volcanic rocks in Madeng and Poqu (Li et al. 2015a).
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Fig. 3  Cathodoluminescence (CL) images (a–c) and concordia diagrams (d–f) for zircons from the host monzogranites (UKG and HKV) and 
dioritic enclave (BT-9). Solid and dashed circles indicate the locations of LA-ICPMS U–Pb analyses and Hf isotope analyses, respectively
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Whole‑rock geochemistry

Fifteen host monzogranite samples and seven enclave 
samples were selected for whole-rock major and trace 
element analyses (Fig. 1c). The analytical results are 
listed in Table 2. The host monzogranites show high 
SiO2 (65.40−68.33 wt%), K2O (3.43-3.89 wt%), Na2O 
(3.51–4.11 wt%) and total alkalis (K2O + Na2O = 7.17–
8.08 wt%), and they plot in the granite field (Fig. 4a). In 
the K2O–SiO2 diagram, all of the samples lie in the field 
of high-K calc-alkaline rocks and are similar to the ca. 
110 Ma magmatic rocks in the northern Lhasa subter-
rane (Fig. 4b). The host monzogranites have low MgO 
(1.12–1.45 wt%), Fe2O3 (3.74–4.34 wt%), and CaO (1.89–
2.80 wt%). The high-K calc-alkaline and peraluminous 
(A/CNK = 1.01–1.08) (Fig. 4c) characteristics indicate 
that they are I-type granites (Chappell and White 1992). 
In contrast, the dioritic enclaves plot in the fields of dior-
ite and quartz diorite (Fig. 4a). They are calc-alkaline to 
high-K calc-alkaline (Fig. 4b) and metaluminous, with A/
CNK ranging from 0.92 to 0.97 (except for one value of 
1.05, in sample AD–2) (Fig. 4c). In addition, the dioritic 
enclaves have lower SiO2 (58.57−63.96 wt%) and K2O 
(1.88–2.94 wt%) and higher Fe2O3 (5.00–9.36 wt%), 
CaO (2.40–4.62 wt%), MgO (2.27–3.56 wt%), and Mg# 
[Mg# = 100 × Mg2+/(Mg2++TFe2+)] (43.20–50.90) than 
the host monzogranites.

The samples from the host monzogranites and dioritic 
enclaves have similar rare earth elements (REE) charac-
teristics. In the chondrite-normalized REE diagram, both 
of the rock types (except for sample AD-2) display evident 
fractionation between light rare earth elements (LREE) and 
heavy rare earth elements (HREE) and negative to positive 
Eu anomalies (Fig. 5a; Table 2). In primitive-mantle-nor-
malized spider diagrams (Fig. 5b), the host monzogranites 
and the dioritic enclaves show coherent patterns, with high 
light rare earth elements (LREE, such as Rb, Pb, Th) and 
low depletion in high field strength elements (HFSE, such 
as Nb, Ta, Ti). These geochemical signatures are consistent 
with those of the ca. 110 Ma magmatic rocks in the north-
ern Lhasa subterrane and the Poqu volcanic rocks (Fig. 5b).

Fifteen host monzogranite samples were used for 
whole-rock Sr–Nd–Pb isotope analyses, and the results 
are listed in Table 2. All of the samples show homo-
geneous Sr–Nd–Pb isotopic compositions. They show 
(87Sr/86Sr)i ranging from 0.70605 to 0.70658, with εNd(t) 
from −4.44 to −3.35 (Table 2) and Nd model ages rang-
ing from 1.19 to 1.29 Ga. In the εNd(t)–(87Sr/86Sr)i dia-
gram, all of the samples plot along the mixing line between 
the Bangong–Nujiang ophiolites and the lower crus-
tal mafic granulitic xenoliths of the Qiangtang Terrane 
(Fig. 6). The initial Pb isotopic ratios of the host mon-
zogranite are uniform: (206Pb/204Pb)t = 18.645–18.711; 

(207Pb/204Pb)t = 15.656–15.666; (208Pb/204Pb)t = 38.751–
38.836. On plots of 207Pb/204Pb and 208Pb/204Pb versus 
206Pb/204Pb (Fig. 7), all of the samples fall significantly 
above the Northern Hemisphere Reference Line (NHRL) 
and are distributed in the field between DM and EMП.

Zircon Hf isotopes

Two host monzogranite samples (UKG and HKV) and one 
dioritic enclave sample (BT-9) were analyzed for in situ Hf 
isotope analyses on the same or similar sites as U–Pb dat-
ing (Fig. 3a–c). The analytical results are listed in Table 3. 
Except for three zircons (UKG–11, 21, 23, with 176Lu/177Hf 
values form 0.002122 to 0.002463), most zircons have 
176Lu/177Hf ratios less than 0.002, indicating a negligible 
amount of radiogenic 177Hf. Thirty-six zircons from the 
two host monzogranites show 176Lu/177Hf ratios ranging 
from 0.000859 to 0.001902 and 176Hf/177Hf varying from 
0.282021 to 0.282787. The corresponding εHf(t) values are 
from −24.4 to 2.6 (UKG: −13.8 to +2.6; HKV: −24.4 
to +2.2), and the two-stage Hf model ages (TC

DM) range 
from 0.93–2.50 Ga, clustering at ~1.10 Ga. The dioritic 
enclave exhibits 176Lu/177Hf ratios varying from 0.000543 
to 0.002186 and 176Hf/177Hf ratios ranging from 0.282339 
to 0.282814. The εHf(t) values are from −13.3 to +3.6, and 
TC

DM ranges from 0.87 to 1.85 Ga.

Discussion

Genetic types of granites

Granite petrogenesis and geodynamic mechanisms are 
closely related to genetic types. The Moku granites have 
relatively low SiO2 contents (65.40–68.33 wt%) and A/
CNK values (1.01–1.08) and high K2O contents (3.43–
3.89 wt%), and they are free of typical peraluminous min-
erals (e.g., cordierite, muscovite, and garnet). All of these 
characteristics are identical to those of typical I-type gran-
ites in the Lachlan Fold Belt (Chappell and White 1992), 
suggesting that the Moku granites are high-K calc-alka-
line I-type granites. P2O5 concentrations in I-type granites 
decrease with increasing SiO2; in contrast, P2O5 in S-type 
granites is either roughly constant or slightly increases 
with increasing SiO2 concentrations (Chappell 1999; Wu 
et al. 2003; Li et al. 2007). The P2O5 contents of the Moku 
granites decrease markedly with increasing SiO2 contents 
(Fig. 8a), consistent with the evolutionary tendency of 
I-type granites. In addition, all of the Moku host rocks and 
dioritic enclaves fall in the I-type granite field in the K2O 
versus Na2O diagram (Fig. 8b). In summary, both petrolog-
ical and geochemical features denote clearly that the Moku 
granites have the characteristics of I-type granites.
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Poqu volcanic rocks
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Petrogenesis

In general, three mechanisms have been proposed for the 
petrogenesis of intermediate to felsic I-type granites: (1) 
remelting of preexisting infra-crustal igneous rocks or 
metamorphic rocks (Chappell and Stephens 1988; Chap-
pell and White 2001; Griffin et al. 2002; Wu et al. 2007); 
(2) advanced fractional crystallization of mantle-derived 
parental magma (Cawthorn and Brown 1976; Wyborn et al. 
2001; Chiaradia 2009; Li et al. 2009b); and (3) the mix-
ing of the melts from partial melting of crustal rocks and 
mantle-derived magmas (Kemp et al. 2007; Collins and 
Richards 2008; Li et al. 2009a; Zhu et al. 2009a, c; Wang 
et al. 2014).

Dioritic enclaves within coeval host rocks can provide 
significant evidence for petrogenesis of I-type granites 
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Table 3  Zircons Hf isotopic data of the Moku granites and dioritic enclaves

Spot Ages (Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) TDM (Ga) TC
DM (Ga) fLu/Hf

UKG, host granite, 100.3 ± 0.6 Ma, εHf(t) = −13.8 to +2.6 (19 analyses)

1. UKG-01 101 0.062307 0.001902 0.282752 0.000021 −0.7 1.4 0.73 1.00 −0.94

2. UKG-05 101 0.057546 0.001831 0.282787 0.000032 0.5 2.6 0.68 0.93 −0.94

3. UKG-06 102 0.040620 0.001342 0.282685 0.000027 −3.1 −0.9 0.81 1.14 −0.96

4. UKG-07 100 0.039100 0.001271 0.282323 0.000030 −15.9 −13.8 1.32 1.88 −0.96

5. UKG-09 98 0.036763 0.001253 0.282735 0.000024 −1.3 0.8 0.74 1.03 −0.96

6. UKG-10 99 0.038797 0.001238 0.282655 0.000023 −4.1 −2.0 0.85 1.20 −0.96

7. UKG-11 100 0.063828 0.002122 0.282691 0.000031 −2.9 −0.8 0.82 1.13 −0.94

8. UKG-14 99 0.025000 0.000859 0.282768 0.000027 −0.1 2.0 0.68 0.96 −0.97

9. UKG-15 101 0.041907 0.001487 0.282752 0.000034 −0.7 1.4 0.72 1.00 −0.96

10. UKG-17 100 0.040677 0.001322 0.282731 0.000028 −1.5 0.6 0.75 1.04 −0.96

11. UKG-18 102 0.045907 0.001566 0.282763 0.000027 −0.3 1.8 0.70 0.97 −0.95

12. UKG-19 101 0.051898 0.001826 0.282776 0.000048 0.2 2.3 0.69 0.95 −0.94

13. UKG-20 102 0.045667 0.001501 0.282742 0.000023 −1.1 1.1 0.73 1.02 −0.95

14. UKG-21 100 0.076914 0.002443 0.282678 0.000032 −3.3 −1.3 0.85 1.15 −0.93

15. UKG-22 99 0.045287 0.001477 0.282684 0.000021 −3.1 −1.0 0.82 1.14 −0.96

16. UKG-23 100 0.072772 0.002463 0.282688 0.000031 −3.0 −0.9 0.83 1.13 −0.93

17. UKG-24 101 0.040594 0.001394 0.282744 0.000031 −1.0 1.1 0.73 1.01 −0.96

18. UKG-25 98 0.048354 0.001674 0.282576 0.000034 −6.9 −4.9 0.97 1.36 −0.95

19. UKG-26 101 0.049705 0.001669 0.282728 0.000023 −1.5 0.6 0.76 1.05 −0.95

HKV, host granite, 100.6 ± 0.5 Ma, εHf(t) = −24.4 to +2.2 (20 analyses)

1. HKV-02 101 0.039635 0.001271 0.282719 0.000021 −1.9 0.2 0.76 1.07 −0.96

2. HKV-03 100 0.051375 0.001569 0.282755 0.000019 −0.6 1.5 0.72 0.99 −0.95

3. HKV-04 101 0.031100 0.001001 0.282021 0.000017 −26.6 −24.4 1.73 2.50 −0.97

4. HKV-05 101 0.035104 0.001224 0.282774 0.000022 0.1 2.2 0.68 0.95 −0.96

5. HKV-06 100 0.048930 0.001537 0.282705 0.000018 −2.4 −0.3 0.79 1.09 −0.95

6. HKV-07 101 0.044720 0.001426 0.282727 0.000018 −1.6 0.5 0.75 1.05 −0.96

7. HKV-08 101 0.040257 0.001230 0.282727 0.000016 −1.6 0.5 0.75 1.05 −0.96

8. HKV-10 101 0.041779 0.001379 0.282713 0.000018 −2.1 0.0 0.77 1.08 −0.96

9. HKV-11 101 0.043130 0.001417 0.282769 0.000018 −0.1 2.0 0.69 0.96 −0.96

10. HKV-13 101 0.050226 0.001602 0.282755 0.000018 −0.6 1.5 0.72 0.99 −0.95

11. HKV-15 100 0.048326 0.001489 0.282738 0.000017 −1.2 0.9 0.74 1.03 −0.96

12. HKV-17 100 0.052465 0.001678 0.282716 0.000021 −2.0 0.1 0.77 1.07 −0.95

13. HKV-19 101 0.047686 0.001545 0.282711 0.000017 −2.2 −0.1 0.78 1.08 −0.95

14. HKV-20 100 0.058543 0.001897 0.282752 0.000019 −0.7 1.4 0.73 1.00 −0.94

15. HKV-21 102 0.050121 0.001658 0.282716 0.000016 −2.0 0.2 0.77 1.07 −0.95

16. HKV-22 102 0.036001 0.001205 0.282691 0.000014 −2.9 −0.7 0.80 1.12 −0.96

17. HKV-23 100 0.034571 0.001149 0.282698 0.000016 −2.6 −0.5 0.79 1.11 −0.97

18. HKV-24 102 0.042091 0.001386 0.282585 0.000017 −6.6 −4.5 0.95 1.34 −0.96

19. HKV-25 102 0.045894 0.001502 0.282723 0.000016 −1.7 0.4 0.76 1.06 −0.95

20. HKV-26 100 0.040429 0.001366 0.282749 0.000016 −0.8 1.3 0.72 1.00 −0.96

Sample BT-9 dioritic enclave, 100.3 ± 0.8 Ma, εHf(t) = −13.3 to +3.6 (10 analyses)

1. BT-9-19 100 0.045328 0.001606 0.282771 0.000036 −0.1 2.0 0.69 0.96 −0.95

2. BT-9-21 101 0.063398 0.002186 0.282339 0.000124 −15.3 −13.3 1.33 1.85 −0.93

3. BT-9-23 100 0.042256 0.001493 0.282805 0.000077 1.2 3.3 0.64 0.89 −0.96

4. BT-9-29 101 0.046085 0.001611 0.282643 0.000050 −4.6 −2.5 0.88 1.22 −0.95

5. BT-9-30 101 0.016887 0.000543 0.282614 0.000115 −5.6 −3.4 0.89 1.28 −0.98

6. BT-9-35 100 0.051113 0.001791 0.282689 0.000035 −2.9 −0.8 0.81 1.13 −0.95
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(Didier 1984; Vernon 1984; Li 2002; Mo et al. 2007; Yang 
et al. 2007; Li et al. 2009a; Zhang et al. 2012b). Although 
abundant dioritic enclaves are observed in the Moku gran-
ite, many models have been proposed to explain the origin 
of the enclaves, including residual materials of the initial 
magma, xenoliths of surrounding rocks, magmatic precipi-
tation, or remnants of a mafic component added to granitic 
magma (magma mixing) (Chappell and Simpson 1984; 
Chappell and White 1992; Didier 1987; Holden et al. 1987; 
Yang et al. 2004; Guan et al. 2012). The dioritic enclaves 
within the Moku granites are generally spheroidal to ellip-
soidal or ovoidal with typical magmatic textures and coeval 
with the host granites; thus, they cannot be the products of 
residual materials of the initial magma or xenoliths of sur-
rounding rocks. Meanwhile, the dioritic enclaves contain 
K-feldspar megacrysts; this unbalanced mineral combina-
tion suggests the mixing of mafic and felsic magmas before 
cooling and crystallization (Silva et al. 2000; Mo et al. 
2007; Karsli et al. 2007, 2010; Kaygusuz and Aydincakir 
2009). Moreover, plagioclases of the enclaves display typi-
cal oscillatory zoning textures, and no cumulate textures 
are found in the dioritic enclaves. These features too can be 
attributed to magma mixing (Hibbard 1991; Waight et al. 
2000) and clearly rule out any strictly cogenetic origin. 
In addition, a light-colored felsic halo occurs at the edges 
of the enclaves, which reflects the product of the mixing 
of basic and granitic magmas (Fig. 2c) (Mo et al. 2007). 
In summary, petrographic characteristics of the dioritic 
enclaves provide robust evidence that the Moku granites 
were generated by mixing between mantle-derived mafic 
magmas and felsic magmas.

The TiO2, MgO, Fe2O3
T, P2O5, and CaO contents of the 

Moku granites and hosted enclaves show a negative cor-
relation with SiO2 (Fig. 8). These are typical characteris-
tics of magma mixing rather than fractional crystallization 
(Zorpi et al. 1991; Karsli et al. 2007; Kaygusuz and Aydin-
cakir 2009; Zhang et al. 2009). In the FeOT versus MgO 
diagram (Fig. 8f), the Moku granites and dioritic enclaves 
extend along a magma mixing trend (Zorpi et al. 1991), 
indicating that the Moku magma was derived from mixing 

between mantle magma and crustal melts. Moreover, the 
Moku granites and dioritic enclaves have high Mg# values 
(37.46–40.84 and 43.20–50.90, respectively), higher than 
those of pure crustal melts (Sisson et al. 2005), which sug-
gest that mantle-derived magma was mixed into the crus-
tal melts during generation of the Moku magma. The host 
granites have major elements that are clearly different from 
those of the enclaves, but the two rock types display similar 
rare earth element and trace element patterns. This type of 
composition is considered as an indicator of magma mix-
ing (Yang et al. 2007; Zhang et al. 2011). Moreover, the 
enclaves are composed of a variety of rock types includ-
ing syenite-diorite, diorite and quartz diorite, but they have 
similar trace element contents and patterns (Figs. 4a, 5). 
These features are considered as the results of homogeniza-
tion between basic and acidic melts during magma mixing; 
a similar phenomenon is also observed in the ca. 110 Ma 
granites from the northern Lhasa subterrane (Zhang et al. 
2010, 2011, 2012b).

The Lu–Hf isotope system of zircons has high closure 
temperatures (Cherniak et al. 1997; Cherniak and Watson 
2003), so that partial melting or fractional crystallization 
cannot affect the Hf isotopic ratios. Therefore, zircon Hf 
isotopic compositions can differentiate between magma 
mixing and fractional crystallization processes (Grif-
fin et al. 2002; Kemp and Hawkesworth 2006; Wu et al. 
2007). In general, negative εHf(t) values and old Hf model 
ages (TC

DM) indicate that the magmas were derived by ana-
texis or remelting of the ancient continental crust (Allègre 
and Ben 1980; Wang et al. 2014). In contrast, relatively 
high εHf(t) values and younger TC

DM suggest the magmas 
are most likely derived from a mantle source or recycled 
juvenile crust (Jahn et al. 2000; Mo et al. 2007; Hou et al. 
2013). Most of the zircons from the Moku granites have 
negative εHf(t) values and ancient TC

DM (Table 3), suggest-
ing that they were derived from anatexis or remelting of 
ancient continental crust. However, the wide variation of 
εHf(t) (–24.4 to 2.6) and TC

DM (0.93–2.50 Ga) (Fig. 9) indi-
cates open-system processes involving more radiogenic 
(i.e., mantle-derived) and less radiogenic (i.e., crustal) 

Table 3  continued

Spot Ages (Ma) 176Yb/177Hf 176Lu/177Hf 176Hf/177Hf 2σ εHf(0) εHf(t) TDM (Ga) TC
DM (Ga) fLu/Hf

7. BT-9-36 101 0.056762 0.001977 0.282671 0.000056 −3.6 −1.5 0.85 1.17 −0.94

8. BT-9-38 100 0.036036 0.001223 0.282662 0.000034 −3.9 −1.8 0.84 1.18 −0.96

9. BT-9-39 100 0.039744 0.001408 0.282674 0.000028 −3.5 −1.4 0.83 1.16 −0.96

10. BT-9-42 100 0.048988 0.001787 0.282814 0.000054 1.5 3.6 0.63 0.87 −0.95

εHf(t) = 10,000 × {[(176Hf/177Hf)S–(176Lu/177Hf)m × (eλt–1)]/[(176Hf/177Hf)CHUR,0–(176Lu/177Hf)CHUR × (eλt –1)] − 1}. TDM = 1/λ × ln{1 
+ [(176Hf/177Hf)m–(176Hf/177Hf)DM]/[(176Lu/177Hf)m–(176Lu/177Hf)DM]}. TDMC = TDM–(TDM–t) × [(fcc–fm)/(fcc–fDM)]. fLu/Hf = (176Lu/177Hf)m/
(176Lu/177Hf)CHUR–1. λ = 1.867 × 10−11/a; (176Lu/177Hf)CHUR = 0.0332, (176Hf/177Hf)CHUR,0 = 0.282772; (176Lu/177Hf)DM = 0.0384, 
(176Hf/177Hf)DM = 0.28325; (176Lu/177Hf)mean crust = 0.015; fcc = [(176Lu/177Hf)mean crust/(

176Lu/177Hf)CHUR]–1; fs = fLu/Hf; fDM = [(176Lu/177Hf)DM/
(176Lu/177Hf)CHUR] − 1; m measured isotopic ratios
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end-members (Bolhar et al. 2008). This hypothesis is 
supported by the presence of dioritic enclaves within the 
Moku granites. In addition, the dioritic enclaves have vari-
able εHf(t) values (−13.3 to +3.6) and TC

DM (0.87–1.85 Ga) 
(Fig. 9). These features are different from those of a 
magma derived from a single source with a homogeneous 
Hf isotopic composition (Griffin et al. 2002; Kemp et al. 
2007), which indicates the involvement of mantle-derived 
materials in the source of the Moku magma. The variable 
εHf(t) and TC

DM are similar to those of the intermediate-
felsic intrusions from the southern Qiangtang magmatic 
belt and ca. 110 Ma igneous rocks in the northern Lhasa 
subterrane (Fig. 9), which are considered to be the results 
of magma mixing between lower crustal melts and ris-
ing asthenospheric melts (Zhu et al. 2006a, 2009a, 2011, 

2013, 2016; Ma and Yue 2010; Sui et al. 2013; Li et al. 
2013b, 2016a; Liu et al. 2015).

The Moku granites have high (87Sr/86Sr)i values 
(0.70605–0.70658), negative εNd(t) (−3.35 to −4.44), old 
Nd model ages (1.19–1.29 Ga), and Pb isotopic character-
istics identical to those of the Bangong–Nujiang ophiolites 
(Fig. 7), which suggests that the Moku magma may derive 
from a dominantly lower crustal source with contributions 
from an asthenospheric mantle component. Regarding the 
source of the Moku granites, the lower crustal mafic granu-
litic xenoliths of the Qiangtang Terrane (Lai and Qin 2008) 
presumably represent the lower crust beneath this region, 
and the Bangong–Nujiang ophiolites (Zhang 2007; Bao 
et al. 2007) represent the asthenospheric mantle composi-
tion with respect to the Sr–Nd isotopic composition. In the 
εNd(t) versus (87Sr/86Sr)i diagram (Fig. 6), the Moku gran-
ites plot in the field adjacent to the mixing line between 
asthenospheric mantle composition and the lower crustal 
components, which suggest that these rocks were derived 
from mixing between asthenospheric mantle and lower 
crustal materials. These results are similar to those of the 
112–127 Ma granodiorite porphyries in the Qiangtang 
Terrane (Fig. 6), which were derived from magma mixing 
between melts derived from the lower crust and basaltic 
melts derived from the metasomatized mantle wedge (Qu 
and Xin 2006; Xin et al. 2009; Li et al. 2013b, 2016a). 
Thus, it can be inferred that the Moku magma originated by 
the anatexis of the Qiangtang lower crust and basaltic melts 
derived from rising asthenosphere mantle.

Basaltic melts derived from rising asthenosphere could 
well explain the aluminum saturation index of the Moku 
granites (A/CNK 1.01–1.08). In general, lower crus-
tal melts are peraluminous (A/CNK > 1.1), and mantle-
derived melts are calc-alkaline (A/CNK < 1) (Zhang et al. 
2010). The Moku granites are quasi-aluminous rocks 
(1 < A/CNK < 1.1) because of the mixing between lower 
crustal melts and basaltic melts derived from rising asthe-
nospheric mantle. In this model, the rising asthenosphere 
can also provide the necessary heat for dehydration melts 
derived from the lower crust and produce granitic magma. 
Moreover, the occurrence of magma mixing is confirmed 
by the Pb isotopic compositions. In the 207Pb/204Pb versus 
206Pb/204Pb and 208Pb/204Pb versus 206Pb/204Pb diagrams, 
the Moku granites plot in the field between the Bangong–
Nujiang ophiolites and the Qiangtang lower crust (Fig. 7). 
Therefore, we conclude that the Moku magma was gener-
ated by mixing between lower crustal melts and mantle-
derived basaltic magmas.

In summary, the geochemical data of the major and trace 
elements, together with the Sr–Nd–Pb–Hf isotopic compo-
sitions, suggest that the source of the Moku granites was 
derived from a mixture of asthenospheric mantle-derived 
magma and anatexis of the Qiangtang lower crust. This 
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implies that the petrogenesis of the Moku granites is in 
accordance with the ca. 110 Ma igneous rocks in the north-
ern Lhasa subterrane (Zhu et al. 2006a, 2009a, 2011, 2013, 
2016; Ma and Yue 2010; Sui et al. 2013).

Geodynamic mechanism

It is generally accepted that the final closing of the Ban-
gong–Nujiang Ocean and the subsequent Lhasa–Qiangtang 
collision occurred during the Early Cretaceous (Girardeau 
et al. 1984; Xu et al. 1985; Dewey et al. 1988; Kapp et al. 
2005; Zhu et al. 2006a, 2009a, 2016; Leier et al. 2007; 
Zhang et al. 2012a; Li et al. 2015b). In the Moku area, the 
angular unconformity between the continental Abushan 
Formation and the underlying marine deposits marks the 
Lhasa–Qiangtang collision (Li et al. 2015a). The Moku 
pluton intruded into the Abushan Formation and is coeval 
with the volcanic layers (96–102 Ma) in the lower part 
of this formation (Li et al. 2015a), which implies that the 
pluton emplacement was contemporary with or occurred 
shortly after the Lhasa–Qiangtang collision.

All of the Moku samples display high-K calc-alkaline 
series, LREE-rich patterns, enrichment of LILE, and deple-
tion of HFSE. Their geochemical characteristics are con-
sistent with arc-type magmas (Pearce et al. 1984; Wilson 
1989; Condie 2005). However, the ages and geological 
background indicate that the emplacement of the Moku 
pluton lagged behind the subduction of the Bangong–Nuji-
ang Ocean. Therefore, an island or continental arc model 
for subduction-related magmatism is excluded in space and 
time. Moreover, the coeval dioritic enclaves exhibit weak 
depletion of Nb, negative Sr anomalies (Fig. 5b), and high 
Zr abundances (182–218 × 10−6) (Table 2), which are 
different from arc-related rocks that display strong deple-
tion of Nb, normal Sr concentrations, and low Zr contents 
(Zr < 50 × 10−6).

Based on the geochemical characteristics of major 
and trace elements but lacking any isotopic data, Li et al. 
(2015a) suggested that the Poqu and Madeng volcanic 
rocks were derived by the partial melting of relict sub-
ducted oceanic crust combined with the input of oceanic 
sediments. The Moku granites show similar geochemical 
characteristics (i.e., high-K calc-alkaline series, enrich-
ments in LILE and LREE, and depletions in HFSE) to the 
coeval Poqu and Madeng volcanic rocks (Fig. 5), imply-
ing that they have an analogous origin. Nevertheless, if the 
granites originated as subducted slab melts, they should 
have mid-ocean-ridge basalt (MORB)-like Sr–Nd iso-
topic compositions (εNd ≈ 10) (Defant and Drummond 
1990). In contrast, the Moku granites exhibit much more 
evolved isotopic compositions (εNd = −4.35 to −4.4; 
87Sr/86Sr = 0.70605–0.70658), which are distinctly differ-
ent from oceanic (MORB and OIB) basalts. Moreover, arc 

volcanic rocks generally have restricted Sr isotope ratios 
(87Sr/86Sr = 0.703–0.704) (Hawkesworth et al. 1993), 
which contrast significantly with those of the Moku 
granites.

These granites are also unlikely to have been caused by 
remelting of a thickened lower crust or lithospheric delami-
nation during the Lhasa–Qiangtang collision. The Lhasa–
Qiangtang collision and related remelting of a thickened 
lower crust had been adopted to interpret the petrogenesis of 
the Early Cretaceous magmatism in central Tibet (Xu et al. 
1985; Pearce and Mei 1988). However, there is no clear evi-
dence that crustal thickening had occurred in central Tibet at 
~100 Ma. Moreover, the magma derived from remelting of a 
thickened lower crust usually lacks mantle components (Zhu 
et al. 2009a, b), whereas the Moku granites have contribu-
tions from mantle-derived components. Previous studies 
have verified that the partial melting of metabasic igneous 
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rocks in the eclogite to amphibolite facies in the thickened 
lower crust (Atherton and Petford 1993; Chung et al. 2003; 
Wen et al. 2008; Karsli et al. 2010) can produce melts with 
high Sr and low Y and Yb (adakitic rocks) during collision. 
However, the ca. 100 Ma magmatic rocks show different 
characteristics from those of adakitic rocks. In addition, the 
ca. 100 Ma magmatic rocks were emplaced before delami-
nation magmatism related to the Lhasa–Qiangtang collision 
(75–79 Ma) (Li et al. 2013a); thus, they cannot be explained 
by lithospheric delamination.

Excluding the above models, the ca. 100 Ma magmatic 
rocks were most likely triggered by slab break-off associ-
ated with the subduction of the Bangong–Nujiang oceanic 
lithosphere. It has been accepted that with the final closing 
of an ocean, the subducted/subducting oceanic slab breaks 
off during or after collision (von Blanckenburg and Davis 
1995; Wong et al. 1997; Zhu et al. 2009a). The slab break-
off induces upwelling of the deep asthenosphere, causing 
mantle decompression melting, and the mantle-derived 
melt cause crustal anatexis (Zhu et al. 2009a). This geody-
namic interpretation for the Moku granites and ~100 Ma 
volcanic rocks is also supported by the following facts: (1) 
recent studies show that the Bangong–Nujiang oceanic lith-
osphere underwent northward subduction (Li et al. 2014b, 
2015a, 2016b; Zhu et al. 2016); (2) the ~100 Ma volcanic 
rocks are almost coeval with the Qiangtang–Lhasa colli-
sion; (3) the magmatic rocks were derived from anatexis 
of the ancient crust that mixed with asthenospheric materi-
als, which is similar to what is predicted by the slab break-
off model (Davies and Von Blanckenburg 1995; Dilek and 
Altunkaynak 2009; Zhu et al. 2009a); and (4) in addition 
to the ca. 100 Ma magmatic rocks in the Moku area, Early 
Cretaceous magmatic rocks in the southern Qiangtang 
subterrane are more widespread than previously thought, 
including the Rena-Co (109–110 Ma) (Chang et al. 2011) 
and the Duolong (105 Ma) (Li et al. 2016b).

Based on the above facts and combined with regional 
evolution, a tectonic scenario for the formation of the Moku 
granites and coeval volcanic rock in the Moku area can be 
summarized as follows. Before the Lhasa–Qiangtang colli-
sion (> 100 Ma), the Bangong–Nujiang oceanic lithosphere 
was subducting northward beneath the Qiangtang Terrane, 
and this resulted in the development of a magmatic arc 
in the southern Qiangtang subterrane (Fig. 10a) (Li et al. 
2014a, 2015a, 2016a; Geng et al. 2016; Zhu et al. 2016). 
With the Lhasa–Qiangtang collision, the Bangong–Nuji-
ang oceanic lithosphere continued to descend beneath the 
southern Qiangtang subterrane. At approximately 100 Ma, 
the Bangong–Nujiang oceanic lithosphere broke off from 
the subducting slab, causing the upwelling of the astheno-
spheric magma, which in turn induced anatexis of Qiang-
tang lower crust and led to the formation of the Moku 
granites and coeval volcanic rocks (Fig. 10b). Because slab 

break-off is dominated by the age of oceanic crust, the ini-
tial plate convergence rate, and the angle of the subducted 
oceanic slab (Duretz et al. 2011), this event may have led 
to the occurrence of magmatism in the southern Qiangtang 
subterrane (ca. 100 Ma) ~10 Ma later than in the northern 
Lhasa subterrane (ca. 110 Ma).

Conclusions

1. The Moku pluton was emplaced at ca. 100 Ma and 
coeval with the hosted dioritic enclaves, marking Early 
Cretaceous magmatic intrusion in the southern Qiang-
tang subterrane.

2. The Moku granites are peraluminous and high-K calc-
alkaline I-type granites, enriched in LILE and LREE 
and depleted in HFSE and HREE. Sr–Nd–Pb and zir-
con Hf isotopic compositions suggest that the granites 
were derived from the anatexis of the Qiangtang lower 
crust that mixed with upwelling asthenospheric magma.

3. The Moku pluton and coeval volcanic rocks in the 
southern Qiangtang subterrane were triggered by the 
slab break-off of the northward-subducting Bangong–
Nujiang oceanic lithosphere during the Lhasa–Qiang-
tang collision.
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