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sandstone blocks is 177 ± 2.4 Ma, suggesting an Early 
Jurassic depositional age for the sandstones within the 
Gajia mélange. The Gajia mélange likely records the south-
ward subduction of the Bangong–Nujiang Ocean during 
the Early Jurassic.

Keywords Gajia mélange · Early Jurassic · Provenance 
analysis · Bangong–Nujiang suture zone

Introduction

The mélange is composed of the matrix, homologous 
blocks and exotic blocks, which are different in composi-
tions, ages and sources (Harris et al. 1998; Hsü 1974), and 
is mainly formed in the tectonic setting of oceanic subduc-
tion and continental collision (e.g., Chang et al. 2001; Har-
ris et al. 1998; Wang et al. 1988; An et al. 2016).

Wide distribution of the Jurassic ophiolite and oceanic 
sediments in the Bangong–Nujiang suture zone suggests 
that the Bangong–Nujiang Ocean did exist between the 
Lhasa and Qiangtang terranes (Allègre et al. 1984; Dewey 
et al. 1988). However, the subduction polarity remains in 
dispute. One traditional view is that the Bangong–Nujiang 
Ocean subducted northward beneath the Qiangtang terrane 
(Allègre et al. 1984; Chen et al. 2012; Guynn et al. 2006; 
Leier et al. 2007a; Yin and Harrison 2000). Alternatively, 
others have argued for southward subduction beneath the 
Lhasa terrane (Hsü et al. 1995; Kang et al. 2010; Zhu et al. 
2009a, 2011b) or a double-sided subduction zone involv-
ing both northward subduction beneath the Qiangtang ter-
rane and southward subduction beneath the Lhasa terrane 
(Deng et al. 2014; Hao et al. 2016; Pan et al. 2012; Zhu 
et al. 2013, 2016). Studying the geologic record of oceanic 
subduction such as mélange is fundamental to reconstruct 
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the details of subduction process during the destruction his-
tory of the Bangong–Nujiang oceanic lithosphere.

The aim of the present study is to unravel the mélange 
discovered near the Gajia village in the southern margin of 
Bangong–Nujiang suture zone. We present detailed petro-
logical, detrital zircon U–Pb geochronology and Hf isotope 
data on different types of sandstone blocks contained in 
the Gajia mélange of the Bangong–Nujiang suture zone in 
central Tibet (Fig. 1b). The results allowed us to determine 
the provenance and depositional age of the mélange and to 
demonstrate that the Bangong–Nujiang oceanic lithosphere 
subducted southward beneath the Lhasa terrane at the time 
when the Gajia mélange formed.

Geological setting

The study area is at the southern margin of Bangong–
Nujiang suture zone (Fig. 1a) which continues for at least 
1200 km east–west along the strike and is dominated by 
Jurassic deep water turbidites, mélange and ophiolite frag-
ments (Dewey et al. 1988; Kapp et al. 2005). The Bangong-
Nujiang Ocean possibly opened in the Paleozoic according 
the discovery of the Paleozoic ophiolite fragments (Zhu 
et al. 2013) and the Late Triassic turbidites unconformably 
on the ophiolite (Chen et al. 2005) in the suture zone, and 
closed during Late Jurassic–Early Cretaceous time (Baxter 
et al. 2009; Dewey et al. 1988; Ding et al. 2005; Zhu et al. 
2016).

The Amdo terrane, located in the northeast of the Ban-
gong–Nujiang suture zone, is dominated by Precambrian 
gneiss and metasedimentary rocks, Mesozoic granitoids 
and Cenozoic sedimentary rocks (Guynn et al. 2006; Kidd 
et al. 1988; Xu et al. 1985; XZBGM 1993). Guynn et al. 
(2012) reported bimodal distribution of Neoproterozoic 
(920–820 Ma) and Cambro–Ordovician (540–460 Ma) 
crystallization ages of the orthogeneses in Amdo ter-
rane. Meanwhile, the Mesozoic granitoids in Amdo have 
bimodal distribution of 185–170 and 110–120 Ma crystal-
lization ages, with εHf(t) values of −21.7 ~+0.6 (Liu et al. 
2015; Zhu et al. 2011b).

Between the Bangong–Nujiang suture zone in the south 
and the Longmu–Shuanghu suture zone in the north, the 
southern Qiangtang terrane is mainly represented by Trias-
sic–Jurassic shallow marine deposition, with some Later 
Cretaceous and Cenozoic nonmarine sedimentary rocks 
(XZBGM 1993). The Jurassic (150–170 Ma) acidic igne-
ous rocks, Triassic (200–230 Ma) acidic igneous rocks, 
Permian (280–290 Ma) basic igneous rocks and Ordovician 
(450–500 Ma) acidic igneous rocks are extensively exposed 
on the southern Qiangtang terrane, and the εHf(t) values of 
the Later Triassic to Jurassic, Ordovician to Middle Triassic 
igneous zircons mainly range from 4.2 to 17.7, −19.4 to 

+2.5, respectively (Li et al. 2014b, 2015; Liu et al. 2015; 
Wang et al. 2015; Yang et al. 2011; Zhai et al. 2013).

To the south of the study area, the Lhasa terrane is 
bounded by the Indus–Yarlung Zangbo and the Bangong–
Nujiang suture zones (Allègre et al. 1984; Dewey et al. 
1988; Yin and Harrison 2000). The Lower Cretaceous mar-
ginal marine and deltaic clastic sediments interbedded with 
volcanic tuffs (Leier et al. 2007a; Zhang et al. 2012), mid-
Cretaceous Orbitolina-bearing Langshan limestone (Rao 
et al. 2015; XZBGM 1993), and the Upper Cretaceous 
to Cenozoic nonmarine conglomerate (Kapp et al. 2005, 
2007b) are extensively exposed on the northern Lhasa 
block. The Cretaceous magmatic rocks are also widespread 
on the northern Lhasa block (Zhu et al. 2009a, 2011b). The 
central Lhasa terrane is mainly represented by Carbonifer-
ous metasediments, Permian limestone and Jurassic silici-
clastic successions (XZBGM 1993; Yin et al. 1988). And 
the southern Lhasa block is characterized by the Late Tri-
assic-Early Tertiary Gangdese batholiths and Tertiary Lin-
zizong volcanic succession (Chu et al. 2006; Ji et al. 2009; 
Zhu et al. 2011b) and the Cretaceous Xigaze forearc basin 
(An et al. 2014; Wu et al. 2010). Zhu et al. (2011a) dem-
onstrated that the detrital zircons of Lhasa terrane define a 
distinctive age population of ca. 1170 Ma, which is differ-
ent from both the southern Qiangtang and Amdo terrane. 
In addition, obviously different from the southern Qiang-
tang and Amdo terrane, the εHf(t) values of igneous zir-
cons from Lhasa terrane are <2.0 in Ordovician to Middle 
Triassic and −5.0 to +20.0 in Middle Triassic to Jurassic 
(Chu et al. 2006; Dong et al. 2014; Ji et al. 2009; Zhu et al. 
2009b, 2011b).

Located in the Gajia village of the Nagqu county 
(Fig. 1b), the Gajia mélange consists of limestone, basalt, 
turbidite sandstone and silicalite blocks and was consid-
ered as normal sedimentary strata in the Upper Jurassic to 
Lower Cretaceous (Kidd et al. 1988) or Middle Triassic 
(Nimaciren and Xie 2005).

Methods

The probable depositional environments and deformation 
characters of Gajia mélange were investigated and distin-
guished based on lithofacies and sedimentary features in 
the field. Sandstone blocks from the Gajia mélange were 
sampled systematically for further analysis.

Seven sandstones from the Gajia mélange were selected 
to do modal framework-grain analysis on thin sections. 
Over 350 larger than 62.5 μm grains were counted follow-
ing the Gazzi–Dickinson method (Dickinson and Suczek 
1979; Ingersoll et al. 1984).

Accessory minerals were separated from seven sand-
stone samples by elutriation and magnetic separation. 
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Fig. 1  a Simplified tectonic map of the distribution of the Mesozoic 
and Later Paleozoic magmatic rocks in the Lhasa terrane, Qiang-
tang terrane and Amdo terrane (modified from Li et al. 2014a; Zhu 
et al. 2013); b simplified geological sketch map of studying area and 

sampling positions (modified from Nimaciren et al. (2004)). (LSSZ 
Longmu–Shuanghu suture zone, BNSZ Bangong–Nujiang suture 
zone, SNMZ Shiquan River–Nam Tso Mélange zone, LMF Luoba-
dui–Milashan Fault, IYZSZ Indus–Yarlung Zangbo suture zone)
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Zircon grains were hand-picked, mounted in epoxy resin 
and polished. U–Pb dating of detrital zircons was con-
ducted by LA-ICP-MS at the State Key Laboratory of 
Mineral Deposits Research, Nanjing University, following 
the method described by Jackson et al. (2004). To avoid 
grain-to-grain bias and treat all samples equally, the laser 
spot was always placed in the rim of the zircon grains and 
no cathodoluminescence (CL) imaging was performed. 
The results were calculated by GLITTER 4.4 (Van Achter-
bergh et al. 2001), and common Pb corrections (Andersen 
2002) were conducted. The interpretation of zircon ages 
was based on 206Pb/238U ages for grains with ages less 
than 1000 Ma and on 207Pb/206Pb ages for grains older than 
1000 Ma (Griffin et al. 2004). Zircon grains with discord-
ance <10 % were accepted. Age calculations and concor-
dia diagrams were created using Isoplot 3.23 (Ludwig 
2001). The complete dataset is provided as Supplementary 
material.

In situ Hf isotopic analyses on detrital zircons with ages 
younger than 450 Ma were conducted to help constrain the 
likely provenance. Hf isotopic compositions were deter-
mined with a Thermo Scientific Neptune Plus MC-ICP-MS 
coupled to a New Wave UP 193 solid-state laser-ablation 
system at the State Key Laboratory for Mineral Deposits 
Research, Nanjing University. Zircon grains were ablated 
with a beam diameter of 35 μm with an 8-Hz laser repeti-
tion rate, and with energy of 15.5 J/cm2. 1.865 × 10−11 a−1 
for the decay constant of 176Lu (Scherer et al. 2001) was 
applied for the calculation of the results. The εHf(t) and 
Hf crust model age (TC

DM
) were calculated, following the 

methodology of BouDagher-Fadel (2008) and Griffin et al. 
(2002), respectively. The complete dataset is provided as 
Supplementary material, too.

Results

The characters of the Gajia mélange in the field

Located in the south of the Dongqiao ophiolite, the Gajia 
mélange shows typically blocks-in-matrix structure. The 
black siliceous shale, mudstone and thin-bedded siltstone 
with broken corrugation and weakly metamorphic structure 
make up the “matrix.” Most blocks of the Gajia mélange, 
with several centimeters to several meters in size, can be 
identified as fragments of sandstone, silicalite, limestone, 
basalt. Blocks in the mélange can be identified as the len-
ticular exotic blocks (e.g., sandstone, silicalite, limestone 
and basalt as shown in Fig. 2b, c) and the bedding homolo-
gous sandstone blocks (Fig. 2d).

The siliceous shaly matrix indicates that the Gajia 
mélange formed most probably in a bathyal-abyssal 
environment.

Composition of sandstone blocks

Sandstones within the Gajia mélange are mainly grain-sup-
ported, which are poorly sorted and angular-subrounded, 
with calcareous and ferruginous cementation. Two homol-
ogous sandstone blocks and five exotic sandstone blocks 
from the Gajia mélange were analyzed by the modal frame-
work-grain analysis (Table 1; Fig. 3).

Petrographic analysis and field observations indicate that 
the Gajia mélange contains three distinct groups of sand-
stone blocks. Blocks of Group 1 and Group 2 are thick-
bedded or lenticular quartzarenite, intercalated with thin-
bedded siliceous mudstone (Fig. 2b, c). Blocks of Group 3 
consist of turbiditic lithic-rich sandstone interbedded with 
mudstone in m-size outcrops. Blocks of Group 3 are bed-
ding homologous sandstone blocks (Fig. 2d).

Group 1 lithic arkoses of exotic blocks (average compo-
sition QmFLt = 51:36:13, LmLvLs = 5:95:0, Fig. 3) con-
sist of mainly angular to subrounded monocrystalline and 
feldspars (plagioclase > K-feldspar; Fig. 2e), with subordi-
nately polycrystalline quartz, a few volcanic or rarely meta-
morphic lithic fragments (Fig. 3).

Group 2 consists of feldspar volcaniclastic sand-
stones (average composition QmFLt = 31:14:55, 
LmLvLs = 2:98:0) with monocrystalline and subordinately 
polycrystalline quartz grains, feldspars, and lithic frag-
ments of mostly microlitic to felsitic volcanic, and minor 
low-rank metamorphic.

Group 3 sandstones are feldspar volcaniclastic sand-
stones of homologous blocks (average composition 
QmFLt = 20:24:56, LmLvLs = 2:98:0), dominant by sub-
angular to rounded felsitic volcanic, feldspars (plagioclase 
more than K-feldspar), monocrystalline quartz grains and 
low-rank metamorphic lithic fragments (Fig. 2f).

Zircon, magnetite, muscovite and biotite are common 
accessory minerals in all three groups of sandstone blocks.

Detrital zircon U–Pb ages and Hf isotopes

Totally, 387 detrital zircons from seven sandstones of the 
Gajia mélange (samples shown in the Table 1) were con-
ducted using U–Pb dating and 361 concordant ages were 
usable (Appendix Table S1; Fig. 4). The >80 % detrital zir-
cons were igneous zircons with Th/U ratios over 0.4 (Bel-
ousova et al. 2002). 84 Hf isotopic analyses data with age 
younger than 450 Ma were acceptable (Appendix Table S2; 
Fig. 5).

38 of the 137 usable ages obtained from two samples of 
Group 1 sandstone blocks (Samples 13NQ05 and 13NQ07) 
are younger than 450 Ma, with a main peak at 514 Ma 
(Fig. 4). The youngest ages are 189 ± 4, 192 ± 3 and 
195 ± 3 Ma. The complex age pattern includes clusters at 
180–200, 210–250, 260–300, 310–340, 360–400, 400–530, 
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580–700, 740–1180, 1700–2000 and 2350–2650 Ma with 
age peaks of ~450, ~850, ~1100, ~1850 and ~2500 Ma 
(Fig. 4c). 26 zircon grains of Jurassic to Silurian age show 
mainly negative εHf(t) (from −25.86 to +1.86) with TC

DM
 

model ages of 2.93–1.22 Ga (Appendix Table S2; Fig. 5).
Of the 100 concordant ages obtained from three samples 

of Group 2 sandstone blocks (samples 13NQ08, 13NQ10 

and 13NQ11), about 22 % of zircon ages are less than 
450 Ma (Fig. 4d). The youngest ages are 241 ± 4, 262 ± 4 
and 263 ± 4 Ma. In addition, these samples have the clus-
ters at 260–310, 320–360, 400–600, 700–900, 950–1200, 
1700–2000, 2100–2250 and 2350–2600 Ma, with domi-
nating peaks of ~450, ~800, ~1050, ~1850, ~2150 and 
~2500 Ma. Sixteen Triassic to Silurian zircon grains show 
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Fig. 2  Field photograph and microphotograph of sandstone blocks 
from the Gajia mélange. a Panoramic photograph for Gajia mélange, 
the early Cretaceous volcanic rock overlying on Gajia mélange; b 
photograph for the exotic silicalite blocks; c photograph for the exotic 
sandstone blocks with siliceous shaly matrix; d photograph for the 

homologous sandstone blocks with extensional structure; e feldspar 
sandstone (13NQ05) of exotic blocks, showing volcanic fragments 
and plagioclase; f volcaniclastic sandstone (13NQ12) of homologous 
blocks, showing volcanic fragments and plagioclase. (Qz quartz, Pl 
plagioclase, Kf K-feldspar, Lv volcanic lithic fragments)
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εHf(t) values ranging from −12.63 to +9.14 with TC

DM
 

model ages of 2.15–0.76 Ga (Appendix Table S2; Fig. 5).
Among the 130 valid ages obtained from two samples of 

Group 3 sandstone blocks (Samples 13NQ09 and 13NQ12), 
69 are younger than 450 Ma (Fig. 4e). The youngest ages are 
176 ± 3, 176 ± 4, 177 ± 3 and 177 ± 3 Ma. The complex 
age pattern includes clusters at 170–200, 220–270, 290–330, 
340–400, 400–500, 700–900, 1100–1300, 1750–2250 and 
2350–2600 Ma with peaks at ~190, ~230, ~260, ~310, ~370, 
~450, ~800, ~1200, ~1850 and ~2500 Ma, (Fig. 4e). Forty-
two zircon grains of Jurassic to Silurian age show either pos-
itive or negative εHf(t) (from −24.03 to +11.67) with TC

DM
 

model ages of 2.73–0.49 Ga (Appendix Table S2; Fig. 5).

Discussion

Age constraints for the sandstone deposition within the 
Gajia mélange

The forming age of mélange is quite difficult to be obtained 
as it is not a normal sedimentary succession (Harris et al. 

1998; Sun et al. 2011). According to the study of young-
est U–Pb ages of detrital zircons and depositional ages 
known independently from biostratigraphy in the Colorado 
Plateau and adjacent areas, Dickinson and Gehrels (2009) 
suggested that the weighted mean age of youngest clus-
ter of two or more grain ages (n ≥ 2) overlapping in age 
at 1σ (YC1σ(2+)) is compatible with depositional age in 
95 % with a discrepancy ≤5 Ma, for strata derived from 
a contemporaneously active magmatic arc. The YC1σ(2+) 
is testified to be compatible with biostratigraphy age and 
tuff age in Sangdanlin section sourced mainly from the 
Gangdese arc, southern Tibet (Hu et al. 2015). Thus, for 
mélange commonly formed in the subduction or collision 
zones adjacent to active magmatic arc (Harris et al. 1998; 
Hsü 1974), the YC1σ(2+) can provide an effective age 
constraint. The homologous sandstone blocks of Group 3 
are rich in feldspar and volcanic clasts typically from mag-
matic arc (Fig. 3; Dickinson et al. 1983), indicating some 
of the youngest detrital zircons are from the nearby con-
temporary active arc.

The YC1σ(2+) age of the homologous sandstone blocks 
from the Gajia mélange is 177.2 ± 2.4 Ma (MSWD = 0.11) 

Table 1  Sampling location and detrital composition of sandstone blocks in Gajia mélange

Qm monocrystalline quartz, Qp polycrystalline quartz, Pl plagioclase, Kf K-feldspar, Lv total volcanic lithic grains, Lm total Metamorphic lithic 
grains, Ls total sedimentary lithic grains, Acc accessory mineral

Group Sample Longitude (E) Latitude (N) Qm Qp Pl Kf Lv Lm Ls matrix Acc Count

Group 1 13NQ05 91°50′03.57″ 31°33′26.06″ 145 5 89 44 15 1 0 82 8 389

13NQ07 91°48′10.13″ 31°33′23.28″ 185 0 75 17 64 3 0 24 4 372

Group 2 13NQ08 91°48′12.23″ 31°33′21.22″ 147 13 40 9 235 8 0 17 2 471

13NQ10 91°48′12.59″ 31°33′20.82″ 122 1 49 9 195 1 0 8 3 388

13NQ11 91°48′13.42″ 31°33′19.46″ 96 1 52 10 204 4 0 15 13 395

Group 3 13NQ09 91°48′12.23″ 31°33′21.22″ 72 0 100 14 191 2 0 12 3 394

13NQ12 91°48′11.45″ 31°33′21.08″ 70 0 58 8 214 4 0 3 2 359

F

C
ra

to
n 

ba
se

m
en

t

Magmatic arc

Recycled orogenic

Mixed

Qm

Lt Lv

Lm

Ls

Group 1
Group 2
Group 3

Fig. 3  Triplot of sandstone clastic compositions from the Gajia 
mélange. Recycled orogenic, magmatic arc and craton basement 
provenance fields after Dickinson et al. (1983). (Qm monocrystalline 

quartz, F feldspar, Lt total lithic grains (=Lv + Lm + Ls), Lv total 
volcanic lithic grains, Lm total Metamorphic lithic grains, Ls total 
sedimentary lithic grains)
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(Fig. 6), indicating a reasonable depositional age of Early 
Jurassic for the sandstones within the Gajia mélange, which 
means the Bangong–Nujiang oceanic subduction occurred 
during this time and provides an age constraint comparable 
to ~200–162 Ma suggested by paleomagnetic results (Yan 
et al. 2016).

The depositional age of the components of the Gajia 
mélange is also supported by the ophiolites and radio-
larian cherts in the Bangong–Nujiang suture zone. The 
cumulate gabbros in the Bangong–Nujiang suture zone 
have recently been dated at 164–187 Ma from Dengqen to 
Dongqiao, indicating that the Bangong–Nujiang ophiolites 
were formed during the Early–Middle Jurassic (Wang et al. 
2016). Moreover, radiolarian cherts indicate that deep-
marine environment prevailed in Bangong–Nujiang Ocean 
during the early Middle Jurassic in Gerze (Baxter et al. 
2009), the Jurassic in Dongqiao (Wang and Tang 1984), 
respectively.

Provenance interpretation

U–Pb age spectra and εHf(t) values of detrital zircons are 
collected from all available sources (including the Lhasa 
terrane, the southern Qiangtang terrane, and Amdo terrane) 
and used to constrain the likely provenance of sandstone 
blocks.

Detrital zircon ages range widely in different Tibetan 
terranes (Qiangtang, Lhasa and Himalaya) (Gehrels et al. 
2011), with some important features for each unit. For 
example, the major Precambrian age peaks in the south-
ern Qiangtang terrane occur at ~550, ~800, ~950 and 
~2500 Ma (Fig. 4a), while the Amdo terrane with ~500, 
~800 and ~2500 Ma (Fig. 4b), and the Lhasa terrane with 
~550, ~950, ~1170, ~1600, ~1850 and ~2500 Ma (Fig. 4f).

In addition, the age peaks and εHf(t) values of the Silu-
rian to Jurassic igneous zircons are also quite different 
among these units (as shown in Figs. 1a, 5). The Mesozoic 
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granitoids in the Amdo have bimodal distribution of 185–
170 Ma and 110–120 Ma crystallization ages, with εHf(t) 
values of −21.7 to +0.6 (Liu et al. 2015; Zhu et al. 2011b). 
The εHf(t) values of the Later Triassic to Jurassic, Ordo-
vician to Middle Triassic igneous zircons from southern 
Qiangtang terrane mainly range from 4.2 to 17.7, −19.4 to 
+2.5, respectively (Li et al. 2014b, 2015; Liu et al. 2015; 
Wang et al. 2015; Yang et al. 2011; Zhai et al. 2013). The 
εHf(t) values of igneous zircons from Lhasa terrane are 
<2.0 in Ordovician to Middle Triassic and −5.0 to +20.0 
in Middle Triassic to Jurassic (Chu et al. 2006; Dong et al. 
2014; Ji et al. 2009; Zhu et al. 2009b, 2011b).

Lack of detrital zircons with age peaks of 200–400, 
~1100 and ~1850 Ma precludes the Amdo terrane prov-
enance as the main source for the Gajia mélange (Fig. 4).

Detrital zircons in the Group 1 with age peaks of ~450, 
~850, ~1100, ~1850 and ~2500 Ma are much more compa-
rable to those of the Lhasa terrane than to those of southern 
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Qiangtang terrane (Fig. 4). Moreover, The Triassic to Ordo-
vician detrital zircons with mainly negative εHf(t) (−25.86 
to +1.86) are similar to the zircons from Lhasa terrane 
(Chu et al. 2006; Dong et al. 2014; Ji et al. 2009; Li et al. 
2014a; Zhu et al. 2009b, 2011b) rather than those from 
southern Qiangtang terrane (Li et al. 2014b, 2015; Liu et al. 
2014; Wang et al. 2015; Yang et al. 2011; Zhai et al. 2013), 
as shown in Fig. 4, suggesting a possible greater contribu-
tion from the Lhasa terrane.

Ages of detrital zircons from the Group 2 exotic sand-
stone blocks range from 241 to 2593 Ma, with peaks ~450, 
~800, ~1050, ~1850, ~2150 and ~2500 Ma. This age dis-
tribution is partly similar to the southern Qiangtang and 
Lhasa terranes (as shown in Fig. 4). However, 14 of the 16 
Triassic to Silurian detrital zircon grains with εHf(t) < +2 
are similar to the Late Triassic sediments in central Lhasa 
terrane (Li et al. 2014a) and extremely different from the 
simultaneous igneous zircons in the southern Qiangtang 
terrane (Fig. 5), indicating the Group 2 exotic sandstone 
blocks are mainly from the Lhasa terrane.

Group 3 feldspar volcaniclastic sandstones of homolo-
gous blocks yield detrital zircons with the pre-Silurian age 
peaks at ~450, ~800, ~1200, ~1850 and ~2500 Ma, which 
are widespread in Lhasa sedimentary units (Leier et al. 
2007b; Zhang et al. 2012, 2011a). The zircons peaks of 
~190 Ma with mainly positive εHf(t) (−2.49 to +11.67), 
~260 Ma with positive or negative εHf(t) (−18.34 to 
+5.50), ~310 and ~370 Ma with mainly negative εHf(t) 
(−18.34 to +1.62) may be derived from the Jurassic gran-
ite or diorite (Chu et al. 2006; Ji et al. 2009; Zhu et al. 
2011b), the Permian granite (Zhu et al. 2009b) or the Late 
Triassic sandstones (Li et al. 2014a), the Late Triassic 
sandstones (Li et al. 2014a) or gneiss (Dong et al. 2014), 
respectively (as shown in Fig. 5). Moreover, six detrital 
zircons with extremely negative εHf(t) (−24.03 to −15.02) 
resemble the Early Jurassic granite in central Lhasa terrane 
reported by Zhu et al. (2011b). However, less than 30 % of 
the Silurian to Jurassic zircons display similar εHf(t) values 
to those from the southern Qiangtang terrane. In conclu-
sion, provenance of Group 3 homologous sandstone blocks 
is most likely to be the Lhasa terrane rather than the south-
ern Qiangtang terrane.

Note that the ranges of age peaks older than 400 Ma of 
Group 1, 2 and 3 are significant deviation from collected 
data of Lhasa terrane. Because the quantity of detrital zir-
cons with different age peaks is strongly affected by grain 
size of sorting, times of recycling, distribution of prov-
enance, and erosion rate. The detrital zircons older than 
400 Ma in Group 1, 2 and 3 may be recycled times and 
only from fine sandstone while the collected detrital zir-
cons of Lhasa terrane were from samples of different sizes 
in different places. Therefore, it is entirely possible that the 
ranges of age peaks older than 400 Ma of Group 1, 2 and 3 

deviate from collected data of Lhasa terrane. Based on inte-
grated research of the strata (Leier et al. 2007a; Yin et al. 
1988; Zhang et al. 2004), magmatism (Liu et al. 2014; Zhu 
et al. 2013, 2016), ophiolite (Fan et al. 2014) and paleontol-
ogy (Baxter et al. 2009) in Bangong–Nujiang suture zone 
and adjacent area, the Bangong–Nujiang Ocean last to the 
Late Jurassic to Early Cretaceous. The Gajia mélange with 
YC1σ(2+) age of ~177 Ma was formed far before the onset 
of the Lhasa-Qiangtang collision. Besides, accommodated 
>230 km of shortening (>55 %) in the Lhasa region (Kapp 
et al. 2007a), the Gajia area was ~400–500 km away from 
the Jurassic-Paleozoic magma zone on Lhasa terrane (as 
shown in Fig. 1a) during the Early Jurassic, which is much 
shorter than the 600–800 km distance between Okinawa 
Trough and its present source area, southeast China (Diek-
mann et al. 2008; Dou et al. 2012).

Group 1, 2, and 3 sandstones were thus most possibly 
sourced from the Lhasa and deposited near or on the north-
ern marginal of Lhasa before the Lhasa-Qiangtang collision 
onset. During the Early Jurassic, clastics from the south-
ern Qiangtang terrane or Amdo terrane to the north of the 
Bangong–Nujiang Ocean seemed impossible to bypass the 
Bangong–Nujiang oceanic basin and deposit in the Gajia 
area.

Tectonic model for the Gajia Mélange

The extensive presence of Late Mesozoic(164–102 Ma) 
magmatic rocks in central–northern Lhasa subterrane has 
been attributed to the southward subduction of the Ban-
gong–Nujiang Ocean (e.g., Pan et al. 2006; Zhu et al. 
2009a, b). A slab break-off model has also been suggested 
to explain a magmatic flare-up with an increased mantle 
contribution at 110 ± 3 Ma in Xainza of the central and 
northern Lhasa subterrane (Chen et al. 2014). If the Ban-
gong–Nujiang Ocean closed only by northern subduction 
(Allègre et al. 1984; Chen et al. 2012; Guynn et al. 2006; 
Kang et al. 2010; Leier et al. 2007a; Yin and Harrison 
2000), it is difficult for a slab break-off model to account 
for contemporary magmatic flare-ups in central–northern 
Lhasa sub-blocks during the Early Cretaceous and hard to 
explain the double mélange belts located in both north and 
south of the Early–Middle Jurassic ophiolite, as observed. 
As discussed above, southern subduction of the Bangong–
Nujiang Ocean seems to also exist (Deng et al. 2014; Hao 
et al. 2016; Pan et al. 2012; Zhu et al. 2013, 2016).

Located in the south of the Early Jurassic Dongqiao 
ophiolite, the Gajia mélange was formed as the southern 
subduction complex not the collision production for the 
clastics of the Gajia mélange was only sourced from the 
Lhasa terrane and deposited in a bathyal-abyssal environ-
ment on the north margin of the Lhasa terrane. During 
the Early Jurassic subduction beneath the Lhasa terrane 
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(Fig. 7), shed from the Lhasa terrane of the active margin, 
Group 1 lithic arkoses and Group 2 feldspar volcaniclas-
tic sandstones of exotic blocks were laid in the trench and/
or in a trench-slope basin on top of the subduction com-
plex. At the same time, sediments from the Lhasa terrane, 
magma arc and oceanic crust deposited in the trench as the 
“matrix,” and the sandstone beds in the “matrix” turned 
into Group 3 homologous sandstone blocks broken or bou-
dinaged by tectonic deformation during continuing subduc-
tion of the Bangong–Nujiang Ocean.

About at the same time, abyssal sediments together with 
seamounts lying on Bangong–Nujiang Oceanic crust were off-
scraped and accreted into the growing subduction complex as 
exotic blocks of chert, limestone and basalt. The Gajia mélange 
provides additional sedimentary evidence for this southward 
subduction and locates the southward subduction zone.

Conclusions

Based on the field evidence and provenance analysis of 
sandstone blocks from the Gajia mélange of the Bangong–
Nujiang suture zone, we can conclude that:

1. Showing typically blocks-in-matrix structure with black 
shale and mudstone as “matrix,” the Gajia mélange was 
identified as mélange rather than normal sedimentary 
strata as mapped before, deposited in the bathyal-abys-
sal environment during the Early Jurassic (ca. 177 Ma).

2. According to field evidence, petrology, detrital zir-
con age pattern, and Hf isotope values, the sandstone 
blocks in the Gajia mélange can be divided into three 
groups: Group 1, the lenticular exotic sandstone blocks 
are rich in feldspar and quartz and lack of volcanic 
debris, with ~25 % Late Paleozoic and Mesozoic detri-
tal zircon. Group 2, the lenticular exotic sandstone 
blocks are rich in volcanic debris and lack of feldspar 
and quartz, with ~14 % Late Paleozoic and Mesozoic 
detrital zircon. Group 3, the bedding homologous sand-
stone blocks are rich in feldspar and volcanic debris 

and lack of quartz, with ~50 % Late Paleozoic and 
Mesozoic detrital zircon.

3. Detrital zircon U–Pb ages and Hf isotopes data sug-
gest the sandstone blocks were mostly derived from 
the Lhasa terrane, indicated that the Gajia mélange in 
Nagqu of the Early Jurassic southward subduction of 
Bangong–Nujiang suture zone records the Bangong 
Ocean beneath the Lhasa terrane.
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