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Introduction
Tobacco smoking has been recognized as a 
risk factor for a variety of complex diseases 
(CDC 2014), including cardio vascular 
diseases (CVDs) (Ezzati et al. 2005b), at least 
15 types of cancer (Ezzati et al. 2005a), and 
pulmonary diseases (Decramer et al. 2012). 
Nevertheless, accurate prediction of smoking-
attributable health risk is still hampered by 
various factors (CDC 2010). In particular, 
it is well known that self-reported smoking 
exposure suffers from recall bias or inten-
tional under reporting (Connor Gorber et al. 
2009; Rebagliato 2002). Even though a 
number of biomarkers are well established, 
such as breath carbon monoxide (CO) and 
cotinine levels, they exclusively reflect short-
term smoking exposure and are of limited 
use for quantifying cumulative exposure and 
consequently for predicting smoking-related 
risk (CDC 2010). DNA or protein adducts 
are considered integrative biomarkers that 
reflect internal effective dose of smoking, 
which may, however, only be useful for 
carcino genic risk assessment (CDC 2010; 

Lodovici and Bigagli 2009). In cardio vascular 
risk assessment, although several biomarkers 
have been described and used, no biomarker 
has yet been identified for specifically 
predicting smoking-related risk (CDC 2010).

Recent advances  in genome-wide 
methyla tion profiling have opened new 
avenues in the search for biomarkers 
reflecting both current and lifetime smoking 
exposure that might have the potential to 
enhance prediction of smoking-related 
risks. Recently, a number of novel smoking-
as soc ia ted  b lood DNA methy la t ion 
biomarkers were identified by using the 
Infinium HumanMethylation Illumina 
450K BeadChip (Joubert et al. 2012; 
Shenker et al. 2013a; Zeilinger et al. 2013), 
among which seven loci located in four 
intragenic or intergenic regions [including 
F2RL3 (cg03636183), AHRR (cg21161138 
and cg05575921), 2q37.1 (cg21566642, 
cg01940273, and cg05951221), 6p21.33 
(cg06126421)] were the top seven CpGs 
reported by both epigenome-wide studies 
conducted in adults (Shenker et al. 2013a; 

Zeilinger et al. 2013). To further explore 
the use of methyl ation levels of these 
regions for quantifying biologically effec-
tive smoking exposure and for enhancing 
risk prediction of smoking-related disease, 
we carried out comprehensive analyses on 
the associations of methylation at nine CpGs 
[the top seven CpGs listed above and two 
other CpGs [AHRR (cg23576855); 2q37.1 
(cg06644428)] in those regions reported to 
be associated with smoking (Shenker et al. 
2013a; Zeilinger et al. 2013)] with both 
current and lifetime smoking exposure 
as well as mortality in a population-based 
cohort of older adults. In addition, we 
aimed to evaluate whether these methyla-
tion biomarkers can improve the fatal 
cardio vascular risk prediction estimated by 
the Systematic Coronary Risk Evaluation 
(SCORE) chart of the European Society of 
Cardiology (Conroy et al. 2003).

Methods
Study design and data collection. The study 
subjects were selected from the ESTHER 
study, a statewide population-based cohort 
study conducted in southwest Germany 
(Schöttker et al. 2013a). Briefly, 9,949 older 
adults (50–75 years of age) were enrolled by 
their general practitioners during a routine 
health check-up between July 2000 and 
December 2002, and followed up since then. 
The distribution of socio demographic factors 
and major risk factors in the cohort was 
similar to the distribution seen in representa-
tive surveys of the population in Germany 
in the corresponding age range (Löw et al. 
2004). A genome-wide methylation screen 
was performed in baseline blood samples 
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Background: With epigenome-wide mapping of DNA methylation, a number of novel smoking-
associated loci have been identified.

oBjectives: We aimed to assess dose–response relationships of methylation at the top hits from 
the epigenome-wide methylation studies with smoking exposure as well as with total and cause-
specific mortality.

Methods: In a population-based prospective cohort study in Germany, methylation was quantified 
in baseline blood DNA of 1,000 older adults by the Illumina 450K assay. Deaths were recorded 
during a median follow-up of 10.3 years. Dose–response relationships of smoking exposure with 
methylation at nine CpGs were modeled by restricted cubic spline regression. Associations of 
individual and aggregate methylation patterns with all-cause, cardio vascular, and cancer mortality 
were assessed by multiple Cox regression.

results: Clear dose–response relationships with respect to current and lifetime smoking intensity 
were consistently observed for methylation at six of the nine CpGs. Seven of the nine CpGs were 
also associated with mortality outcomes to various extents. A methylation score based on the 
top two CpGs (cg05575921 and cg06126421) showed the strongest associations with all-cause, 
cardiovascular, and cancer mortality, with adjusted hazard ratios (95% CI) of 3.59 (2.10, 6.16), 
7.41 (2.81, 19.54), and 2.48 (1.01, 6.08), respectively, for participants with methylation levels 
in the lowest quartile at both CpGs. Adding methylation at those two CpGs into a model that 
included the variables of the Systematic Coronary Risk Evaluation chart for fatal cardio vascular risk 
prediction improved the predictive discrimination.
conclusion: The novel methylation biomarkers are highly informative for both smoking exposure 
and smoking-related mortality outcomes. In particular, these biomarkers may substantially improve 
cardiovascular risk prediction. Nevertheless, the findings of the present study need to be further 
validated in additional large longitudinal studies.
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of 1,000 participants who were recruited 
between July and October 2000 (i.e., 
those with the longest follow-up time) and 
included in the current analysis. The study 
was approved by the ethics committees of 
the University of Heidelberg and of the 
state medical board of Saarland, Germany. 
Written informed consent was obtained from 
all participants.

Participants’ socio demographic charac-
teristics, lifestyle factors, health status, and 
history of major diseases at baseline were 
obtained by a standardized self-administered 
questionnaire. Detailed information on 
lifetime active smoking was also ascertained 
from the self-administered questionnaire, 
including age at initiation of smoking and 
intensity of smoking at various ages, as well as 
age of smoking cessation for former smokers. 
Additional information on height, weight, 
blood pressure, and prevalent diseases (e.g., 
diabetes, hypertension, CVD) was extracted 
from a standardized form completed by the 
general practitioners during the health check-
ups. Prevalent CVD at baseline was defined 
by either physician-reported coronary heart 
disease or a self-reported history of myocar-
dial infarction, stroke, pulmonary embolism, 
or revascularization of coronary arteries. 
Prevalent cancer [International Classification 
of Diseases, 10th Revision (ICD-10) codes 
C00–C99 except nonmelanoma skin cancer 
(code C44)] was determined by self-report or 
record linkage with data from the Saarland 
Cancer Registry [http://www.krebsregister.
saarland.de/ziele/ziel1.html (in German)]. 
Blood samples (21 mL from each participant) 
were collected during the health check-up 
and aliquoted and stored at –80°C until 
further processing. Total cholesterol level 
was measured in serum by standard high-
performance liquid chromatography methods 
(Schöttker et al. 2013b). Deaths during 
follow-up (between 2000 and end of 2011) 
were identified by record linkage with popula-
tion registries in Saarland; few participants 
who moved out of Saarland were censored at 
the date last known to be alive. Information 
about the major cause of death was obtained 
from death certificates provided by the local 
public health offices, and were coded with 
ICD-10 codes. Cardiovascular and cancer 
deaths were defined by ICD-10 codes I00–I99 
and C00–C99, respectively; non  melanoma 
skin cancer (ICD-10 code C44) was excluded. 

Methylation assessment .  DNA was 
extracted from whole blood samples collected 
at baseline by a salting out procedure (Miller 
et al. 1988) and was allocated in the 96-well 
format. Three random duplicate samples 
were placed on each plate as quality controls. 
The Infinium HumanMethylation450K 
BeadChip Assay (Illumina Inc., San Diego, 
CA, USA) was used to quantify DNA 

methyla tion at 485,577 CpG sites. Briefly, a 
sample of 1.5 μg genomic DNA was bisulfite 
converted, and 200 ng bisulfite-treated DNA 
was applied to the 450K BeadChips. The 
samples were analyzed following the manu-
facturer’s instruction at the Genomics and 
Proteomics Core Facility of German Cancer 
Research Center. GenomeStudio® (version 
2011.1; Illumina Inc.) was used to extract 
DNA methylation signals from the scanned 
arrays (module version 1.9.0; Illumina 
Inc.) and to calculate methylation intensity 
(β-value) as a ratio of the methylated signal 
over the sum of the methylated and unmeth-
ylated signals at each CpG according to the 
manufacturer’s guide, without additional 
background correction. Data were normal-
ized to internal controls provided by Illumina 
(Illumina normalization). Methylation inten-
sities at the nine CpGs were extracted from 
the 450K data.

Statistical analysis. Median methylation 
intensities at the nine CpGs were determined 
for strata of socio demographic charac teristics, 
lifestyle factors, and prevalent diseases; differ-
ences in methylation intensities between 
strata were examined by Kruskal–Wallis tests. 
Correlations between methylation intensity 
at the nine CpGs were assessed by Spearman 
rank correlation coefficients. The associa-
tions between smoking indicators (including 
smoking status, current intensity of smoking, 
cumulative dose of smoking, and time since 
cessation of smoking) and methylation 
intensity at the nine CpGs were assessed by 
linear regression models, controlling for batch 
effect, age (years), sex, body mass index (BMI; 
< 25, 25.0 to < 30.0, ≥ 30.0 kg/m2), physical 
activity ( inactive, insufficient, sufficient), and 
prevalence of CVD (ICD-10 codes I20–I16, 
I60–I69), diabetes (ICD-10 codes E10–E14), 
and cancer (ICD-10 codes C00–C99 except 
C44) at baseline. Dose–response relationships 
of current and lifetime smoking intensity, 
and time since smoking cessation with meth-
ylation intensity were assessed using restricted 
cubic spline (RSC) regression (Desquilbet 
and Mariotti 2010), controlling for the 
aforementioned confounders.

The associations of methylation intensi-
ties at each of the nine CpGs with all-cause 
mortality were first examined by Kaplan–
Meier plots and log-rank tests. Then Cox 
regression models were fit adjusting for age 
(years), sex, and batch effect (model 1). 
Further models were additionally adjusted 
for smoking status (never, former, current 
smoker) (model 2) and for systolic blood 
pressure (millimeters of mercury), total 
cholesterol level (milligrams per deciliter), 
BMI (< 25, 25.0 to < 30.0, ≥ 30.0 kg/m2), 
physical activity ( inactive, insufficient, suffi-
cient), and prevalence of CVD (ICD-10 
codes I20–I16, I60–I69), diabetes (ICD-10 

codes E10–E14), and cancer (ICD-10 codes 
C00–C99 except C44) at baseline (model 3). 
Methylation intensity was entered into the 
models either as a categorical variable (using 
the highest quartiles as reference level) or 
as a continuous variable [calculating hazard 
ratios (HR) for a decrease in methylation 
intensity by one standard deviation]. In 
parallel, the associations between smoking 
at baseline and all-cause mortality were 
also estimated by Cox regression, with and 
without controlling for methylation intensi-
ties to explore the role of DNA methylation 
in smoking-related mortality. The propor-
tional hazards assumption was assessed by 
martingale-based residuals (Lin et al. 1993). 
These preliminary analyses showed methyla-
tion at two of the nine CpGs (cg05575921, 
cg06126421) to be most strongly associated 
with all-cause mortality, whereas much less 
strong or non significant associations were 
observed for the other seven CpGs. Additional 
preliminary analyses were conducted by 
L1-penalized Cox model (Benner et al. 2010; 
Goeman 2010) with nine CpGs and other 
risk factors as covariates; in that model, only 
cg05575921 and cg06126421 were selected 
among the nine CpGs. We therefore carried 
out analyses on all-cause and cause-specific 
mortality, including CVD, cancer, and other 
mortality, using a methyl ation-based score 
developed according to these two CpGs. 
Categories of the score were 2, 1, and 0 for 
participants in the lowest quartiles of both 
CpGs, in one of the two CpGs, and none of 
the two CpGs, respectively. In addition, the 
analyses were repeated after joint classification 
of participants according to both methylation 
score and sex.

To further assess the potential contribu-
tions of the smoking-associated CpGs for 
fatal cardio vascular risk prediction, methyla-
tion intensity at the nine CpGs individu-
ally and jointly added to a Cox regression 
model consisting of variables of the SCORE 
(Conroy et al. 2003), including age (years), 
sex, systolic blood pressure (milli meters of 
mercury), current smoking (yes, no), and 
total cholesterol (milligrams per deciliter) and 
using cardio vascular mortality as the depen-
dent variable, additionally controlling for 
batch effect. Model fit was compared using 
Akaike information criterion (AIC) and likeli-
hood ratio (LR) tests. Discrimination of the 
models was evaluated by Harrell’s C-statistics 
(Harrell et al. 1996), and the over optimism 
was corrected using .632 bootstrap analysis 
with 1,000 replications [for this purpose, a 
SAS Macro was adapted from Miao’s work 
(Miao et al. 2013)]. Bootstrapping is a 
well-established approach for validation of 
a predictive model through quantifying the 
degradation in model predictive accuracy 
when applied in different data sources, which 
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is known as overoptimism. The improvement 
in model performance by adding methylation 
intensity was examined by both net reclas-
sification improvement (NRI) and integrated 
discrimination improvement (IDI). The NRI 
assesses whether participants are classified into 
clinically relevant risk categories by adding a 
new factor (e.g., methylation marker) to the 
risk prediction model (e.g., SCORE model). 
Absolute risk predictions were first calculated 
by Cox regression model with and without 
methylation marker for each individual, 
followed by assigning risk categories according 
to the recommended 10-year risk categories: 
0–5%, > 5–10%, > 10–20%, and > 20% 
of predicted probability for a cardio vascular 
event (Cook 2007; Pencina et al. 2008). 
Movements are considered separately for cases 
(deaths) and controls (survivors), and deemed 
as correct direction if cases move into a higher 
risk category and controls move into a lower 
risk category. NRI = [(no. of cases up – no. of 
cases down)/no. of cases] – [(no. of controls 
up – no. of controls down)/no. of controls]. 
IDI estimates the mean difference in predicted 
probability for cases and controls over all 
possible cut-off points between models with 
and without methyla tion marker (Cook 2010; 
Pencina et al. 2008). Calibration of all assessed 
models was examined by May–Hosmer’s 
simplification of the Gronnesby–Borgan test 
(May and Hosmer 2004). The study popula-
tion was divided into five subgroups according 
to the quintiles of the ranks based on their 
estimated risk probability, and model calibra-
tion was deemed satisfactory if p-values were 
> 0.05 for comparison of the observed and 
expected cases in each subgroup. Potential 
multi collinearity when simultaneously adding 
both CpGs in the model was assessed by 
variance inflation factor (VIF) and tolerance 
values, which did not indicate any relevant 
multi collinearity (e.g., VIF = 1.46 and toler-
ance = 0.69 when adding cg05575921 and 
cg06126421). Sensitivity analyses were carried 
out by excluding participants with prevalent 
CVD at baseline (n = 29).

The penalized Cox regression analyses were 
conducted using the R package “penalized” 
(version 0.9-42; Goeman et al. 2014), and 
all other analyses were carried out in SAS 9.3 
(SAS Institute Inc., Cary, NC, USA).

Results
Of 1,000 participants included in the 
present analysis, mortality follow-up was 
available for 999 subjects. Of the nine CpG 
sites assays, cg21566642, cg23576855, and 
cg21161138 had 3, 1, and 1 missing values, 
respectively; all other CpGs had complete 
data. Characteristics of the study population at 
baseline are shown in Table 1. Equal numbers 
of men and women of German nationality 
were included. The mean age was 62 years, 

and 33.9% of participants were younger than 
60 years. More than half of the participants 
had ever smoked, and 19% still smoked at 
the time of recruitment, among whom male 
(61.3%) and younger (< 60 years, 45.2%) 
participants were somewhat overrepresented. 
During a median follow-up time of 10.3 years, 
143 participants died. Among 135 partici-
pants with death certificates (94.4%), 50 died 
from CVD, 49 died from cancer, and 36 died 
from other diseases.

Methylation intensities by demographic 
and behavioral factors. Methylation intensi-
ties across various strata of charac teristics of 
the study population are shown in Table 1 
for AHRR  cg05575921 and 6p21.33 
cg06126421 (see Supplemental Material, 
Table S1, for all other CpGs). Men had 
lower methylation intensities than women 
at all nine CpG sites (all p < 0.0001). 
Methylation was not significantly associ-
ated with age (p > 0.05) except at 2q37.1 
cg06644428 (p < 0.0001). Major differences 
were observed between never, former, and 
current smokers. Methylation levels at all nine 
CpGs were lower in current smokers than in 
never smokers and intermediate in former 
smokers, and all of the differences across 

the three group were statistically significant 
(p < 0.0001).

Correlations of methylation intensities at 
the nine CpGs. Mutual Spearman correla-
tion coefficients for methylation intensities at 
all CpGs except cg06644428 were 0.46–0.93; 
Spearman correlation coefficients between 
cg06644428 and other CpGs were 0.18–0.66 
(see Supplemental Material, Table S2).

Methylation intensities by smoking 
charac teristics. Table 2 shows the association 
between smoking behavior and methylation 
intensities at cg05575921 and cg06126421 
estimated by linear regression (results for the 
other seven CpGs, which showed very similar 
patterns, are presented in Supplemental 
Material, Table S3). Compared with partici-
pants who never smoked, current and former 
smokers had the lowest and intermediate 
methylation levels at both CpGs, respectively. 
Methylation intensities were inversely associ-
ated with both current and lifetime smoking 
intensity, and were positively associated with 
time since cessation. Estimated dose–response 
curves for smoking behavior with meth-
ylation intensity at the two CpGs are shown 
in Figure 1. A steep decrease in methyla-
tion intensity was observed with increasing 

Table 1. Characteristics of the study population and methylation at AHRR (cg05575921) and 6p21.33 
(cg06126421) (n = 1,000).a

Characteristic n (%)

AHRR (cg05575921) 6p21.33 (cg06126421)

Median (Q1–Q3) p-Valueb Median (Q1–Q3) p-Valueb

Sex
Male 500 (50.0) 0.82 (0.70–0.87) 0.63 (0.57–0.69)
Female 500 (50.0) 0.88 (0.84–0.90) < 0.0001 0.69 (0.65–0.73) < 0.0001

Age (years)
< 60 339 (33.9) 0.85 (0.74–0.89) 0.61 (0.68–0.72)
60–64 289 (28.9) 0.86 (0.77–0.89) 0.66 (0.59–0.71)
65–69 226 (22.6) 0.86 (0.79–0.89) 0.66 (0.59–0.71)
70–75 146 (14.6) 0.86 (0.79–0.90) 0.20 0.66 (0.59–0.70) 0.20

Smoking statusc

Never smoker 469 (48.0) 0.88 (0.86–0.90) 0.70 (0.66–0.73)
Former smoker 323 (33.0) 0.83 (0.77–0.87) 0.64 (0.58–0.69)
Current smoker 186 (19.0) 0.63 (0.56–0.70) < 0.0001 0.57 (0.51–0.62) < 0.0001

BMI (kg/m2)d
Underweight (< 18.5) 8 (0.8) 0.55 (0.66–0.87) 0.55 (0.50–0.66)
Normal weight (18.5 to < 25.0) 243 (24.4) 0.86 (0.73–0.89) 0.66 (0.59–0.71)
Overweight (25.0 to < 30.0) 483 (48.5) 0.86 (0.77–0.89) 0.67 (0.60–0.71)
Obese (≥ 30.0) 263 (26.4) 0.86 (0.78–0.89) 0.07 0.66 (0.60–0.72) 0.12

Physical activitye,f

Inactive 203 (20.3) 0.86 (0.74–0.89) 0.67 (0.59–0.71)
Insufficient 438 (43.8) 0.86 (0.77–0.89) 0.66 (0.59–0.71)
Sufficient 358 (35.8) 0.86 (0.78–0.89) 0.97 0.67 (0.60–0.72) 0.12

Diabetese

Not prevalent 837 (83.8) 0.86 (0.77–0.89) 0.66 (0.59–0.71)
Prevalent 162 (16.2) 0.86 (0.78–0.89) 0.43 0.67 (0.60–0.72) 0.07

Cardiovascular diseasee 
Not prevalent 784 (78.4) 0.86 (0.78–0.89) 0.67 (0.60–0.71)
Prevalent 216 (21.6) 0.84 (0.74–0.88) 0.08 0.64 (0.58–0.69) 0.0003

Cancer
Not prevalent 934 (93.4) 0.86 (0.77–0.89) 0.66 (0.60–0.71)
Prevalent 66 (6.6) 0.86 (0.76–0.89) 0.71 0.65 (0.59–0.71) 0.37

Q, quartile. 
aData for the other seven CpGs are reported in Supplemental Material, Table S1. bKruskal–Wallis test for group 
differences. cData missing for 22 participants. dData missing for 3 participants. eData missing for 1 participant. 
fCategories are defined as follows: inactive, < 1 hr/week of physical activity; sufficient: ≥ 2 hr/week of vigorous physical 
activity or ≥ 2 hr/week of light physical activity; insufficient, other. 
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smoking intensity up to approximately 
15 cigarettes per day and with increasing 
cumulative smoking up to approximately 
30–40 pack-years, followed by further 
gradual decrease at higher current and lifetime 
smoking intensity. Among former smokers, 
methylation intensity steadily increased with 
time since cessation up to approximately 
20–25 years after quitting and leveled off 
thereafter. Similar patterns of dose–response 
curves were also observed for most of the other 
seven CpGs [with exception of cg05951221, 
cg23576855, and cg06644428 for current 
smoking intensity; cg06644428 for pack-
years; and cg23576855 and cg06644428 for 
time after quitting smoking (see Supplemental 
Material, Figure S1)]. 

Methylation intensities and mortality. 
Supplemental Material, Figure S2 depicts 
the survival experience according to quartiles 
of methylation intensity at the nine CpGs: 
a gradient of lower survival among partici-
pants with lower methylation levels was 
observed for 7 of the nine CpGs (all except 
cg23576855 and cg06644428). The associa-
tions of methyla tion intensity at the individual 
CpGs with all-cause mortality are further 
presented in Supplemental Material, Table S4. 
After multi variate adjustment, the stron-
gest and statistically significant associations 
were estimated for two CpGs (cg05575921 
and cg06126421), with HR = 2.45 [95% 
confidence interval (CI): 1.26, 4.79] and 
HR = 2.34 (95% CI: 1.27, 4.30), respec-
tively, for the lowest quartile compared with 
the highest quartile. In addition, a decrease in 
methylation intensity by one standard devia-
tion was associated with an increase in all-
cause mortality by 15%–60% for seven CpGs 
(all except cg23576855 and cg06644428). 
In addition, a 1-SD decrease in methylation 
intensity was associated with higher all-cause 
mortality for seven CpGs (HR 1.15–1.59, 
with p < 0.05 for 5 CpGs); HRs for 
cg23576855 and cg06644428 were 0.97 and 
1.00, respectively.

Table 3 shows the associations of score-
based methylation with all-cause and cause-
specific mortality. Multivariate-adjusted HRs 
for cardio vascular, cancer, and other mortality 
were 7.41 (95% CI: 2.81, 19.54), 2.48 
(95% CI: 1.01, 6.08), and 2.78 (95% CI: 
0.97, 7.98), respectively, for participants in 
the lowest quartile of methylation for both 
cg05575921 and cg06126421 compared 
with participants who were not in the lowest 
quartile of methylation for either CpG. By 
contrast, the strong associations between 
current smoking and all mortality outcomes 
were substantially attenuated or disappeared 
after adjustment for methylation-based 
score. Joint classification by sex and meth-
ylation demonstrated clear dose–response 
relationships of the methyla tion score with 

mortality in both sexes (see Supplemental 
Material, Table S5).

Methylation intensity and fatal cardio
vascular risk prediction. Table 4 and 
Supplemental Material, Table S6 present 
the increment in the performance indica-
tors of the SCORE in prediction of fatal 
CVD by adding methylation intensity. The 
largest improvement was observed when 
including cg05575921 and cg06126421: 
Harrell’s C-statistics increased from 0.754 
for the SCORE-only model to 0.822 and 
from 0.736 to 0.779 after correction for over-
optimism (Table 4). Adding the two CpGs 
also resulted in 18 cases and 82 controls 
moving up and 11 cases and 151 controls 
moving down, which resulted in a NRI of 
21.92% (p = 0.049) and a significant IDI 
of 3.73% (p = 0.005). Additionally adding 
methylation at other CpGs did not lead to 
a further improvement in the prediction 
of fatal CVD mortality (see Supplemental 
Material, Table S6). Even though NRI 
and IDI increased with additional CpGs 
included in the model, a substantial propor-
tion of controls, who were supposed to move 
to lower risk categories, moved to higher 
risk categories along with cases moving to 
higher risk categories. The improvement in 
risk prediction became larger after excluding 
participants with CVD at baseline (n = 216; 
see Supplemental Material, Table S7). The 
Gronnesby–Borgan test indicated that the 
new model was also well-calibrated in both 
full and sensitivity analyses (all p > 0.05).

Discussion
In this population-based cohort study, we 
found clear dose–response relationships of 
current and lifetime smoking exposure and 
time since smoking cessation with site-specific 
methylation, which were consistent among 
six CpGs located in AHRR (cg05575921, 
cg21161138), F2RL3 (cg03636183), 2q37.1 
(cg21566642, cg01940273), and 6p21.22 
(cg06126421). Methylation at seven CpGs 
(all above + cg05951221) was also associated 
with mortality outcomes to various extents. 
A score based on methylation at the top 
two CpGs (cg05575921 and cg06126421) 
provided very strong associations with all-
cause, cardio vascular, and cancer mortality. 
Moreover, integrating methylation at these 
two CpGs into the conventional risk factors 
substantially improved the accuracy of 
predicting fatal cardio vascular risk and reclas-
sified a substantial proportion of individuals 
to higher or lower risk categories. 

A biomarker reflecting long-term past 
smoking exposure is desirable for accurate 
evaluation of smoking cessation and for 
assessment of smoking-related disease risk 
(CDC 2010). DNA methylation biomarkers 
might be promising candidates for this 
purpose. Methylation at nine loci targeted 
in our study was reported to be strongly 
associated with smoking exposure by both 
previous genome-wide methylation studies 
(Shenker et al. 2013a; Zeilinger et al. 
2013). In the present study, distinct and 
rather consistent dose–response patterns of 

Table 2. Association between smoking behavior and methylation intensity.a

Characteristic

AHRR (cg05575921) 6p21.33 (cg06126421)

Regression coefficient p-Value Regression coefficient p-Value
Smoking statusb

Never smoker Reference Reference
Former smoker –0.05 (–0.06, –0.04) < 0.0001 –0.04 (–0.05, –0.03) < 0.0001
Current smoker –0.22 (–0.23, –0.20) < 0.0001 –0.11 (–0.12, –0.10) < 0.0001

Current intensity of smokingc (average 
number of cigarettes/day)
0 (never and former smokers) Reference Reference
< 10 –0.14 (–0.17, –0.11) < 0.0001 –0.06 (–0.09, –0.04) < 0.0001
10–19 –0.20 (–0.22, –0.17) < 0.0001 –0.08 (–0.10, –0.06) < 0.0001
20–29 –0.22 (–0.23, –0.20) < 0.0001 –0.11 (–0.12, –0.09) < 0.0001
≥ 30 –0.27 (–0.31, –0.23) < 0.0001 –0.13 (–0.17, –0.10) < 0.0001

Cumulative dose of smoking (pack-years)d
0 (never smokers) Reference Reference
< 10 –0.03 (–0.05, –0.01) 0.001 –0.02 (–0.04, –0.01) 0.003
10–19 –0.09 (–0.10, –0.07) < 0.0001 –0.06 (–0.07, –0.04) < 0.0001
20–29 –0.12 (–0.13, –0.09) < 0.0001 –0.08 (–0.09, –0.06) < 0.0001
≥ 30 –0.19 (–0.21, –0.18) < 0.0001 –0.11 (–0.12, –0.10) < 0.0001

Time since cessation of smoking (years)e
0 (current smokers) Reference Reference
< 2 0.02 (–0.02, 0.06) 0.31 –0.002 (–0.04, 0.03) 0.93
2–4 0.11 (0.08, 0.13) < 0.0001 0.04 (0.01, 0.06) 0.002
5–9 0.13 (0.11, 0.15) < 0.0001 0.03 (0.01, 0.05) 0.007
10–20 0.17 (0.15, 0.19) < 0.0001 0.07 (0.05, 0.08) < 0.0001
≥ 20 0.21 (0.19, 0.22) < 0.0001 0.09 (0.07, 0.10) < 0.0001

aResults from linear regression, adjusted for sex, age, BMI (< 25 kg/m2, 25.0 to < 30.0 kg/m2, ≥ 30.0 kg/m2), physical 
activity ( inactive, insufficient, sufficient), prevalence of cardiovascular disease, diabetes, and cancer, and batch effect. 
bData missing for 22 participants. cData missing for 26 participants. dData missing for 68 participants. eData missing for 
1 participant.
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methylation with respect to both lifetime 
cumulative smoking exposure and time since 
cessation were observed for six of the nine 
CpGs, which are, of note, similar to the 
dose–response patterns observed between 
smoking and smoking-related diseases. For 
example, cardio vascular risk increases sharply 
at low levels of cigarette consumption and 
then plateaus at higher levels of smoking 
(CDC 2010); the reduction of cardio vascular 
risk becomes evident within the initial years 
after quitting smoking and remains slightly 
elevated for more than a decade (CDC 
2010; Kramer et al. 2006; Lightwood and 
Glantz 1997). The observed dose–response 
pattern of these six CpGs with current and 
lifetime smoking behavior was also consis-
tent with dose–response patterns of methyla-
tion at the F2RL3 gene previously identified 
by our group in a large study specifically 
focusing on this site (Zhang et al. 2014). 
In addition, in the study by Shenker et al. 
(2013b), a methylation index combining four 
of the nine CpGs investigated in our study 
(cg23576855, cg06644428, cg21566642, and 
cg06126421) provided superior performance 
in distinguishing former smokers from never 
smokers [area under the curve (AUC) = 0.82 
(95% CI: 0.96, 0.99)] compared with 
cotinine [AUC = 0.47 (95% CI: 0.32, 0.63)]. 
Our present study, in which we addressed 
associations of methyla tion patterns with 
both smoking and smoking-related mortality, 
suggested that the identified DNA methyla-
tion biomarkers might be markers of 
cumulative smoking exposure-associated risk. 

The AHRR gene, known as a tumor 
repressor (Zudaire et al. 2008), codes 
a protein involved in multiple patho-
physiological pathways, such as metabolism 
of tobacco smoke components (Kasai et al. 
2006; Moennikes et al. 2004) and regula-
tion of cell proliferation and differentiation 
(Haarmann-Stemmann et al. 2007; Pot 
2012). Hypomethylation of cg05575921 
at AHRR has been reported to be associated 
with increasing lymphoblast AHRR gene 
expression in vivo (Monick et al. 2012). It 
has also been observed that AHRR expres-
sion in human lung tissues was inversly corre-
lated with methylation levels of cg23576855 
and cg21161138 at AHRR, with 5.7-fold 
increased expression in five current smokers 
compared with five non smokers (Shenker 
et al. 2013a). AHRR and the aryl hydro-
carbon receptor (AHR) constitute a feedback 
loop in which the AHR hetero dimer acti-
vates the expression of the AHRR gene, and 
the expressed AHRR inhibits the function 
of AHR in oncogenesis (Mimura et al. 
1999). Tobacco smoking has been shown to 
trigger the production of AHR that mediates 
dioxin toxicity and other pathological effects 
(Martey et al. 2005; Meek and Finch 1999). 

Therefore, it is plausible to assume that 
demethylation/overexpression of the AHRR 
gene may result from a smoking-induced 
increase in AHR activation. The gene product 
of F2RL3, thrombin protease-activated 
receptor-4 (PAR-4), plays roles in inflamma-
tory reactions and blood coagulation (Leger 
et al. 2006), and other pathophysiology 
commonly described in smoking-induced 
conditions (Leone 2007; Rahman and 
Laher 2007). Hypomethylation at F2RL3 
has been suggested to be strongly associated 

with mortality in a cohort of 1,206 patients 
with stable CVD (Breitling et al. 2012). 
Interestingly, methylation at four CpGs 
assessed in our study [AHRR (cg05575921), 
F2RL3 (cg03636183), 2q37.1 (cg21566642), 
and 6p21.22 (cg06126421)] were recently 
found to be associated with a metabolic indi-
cator of complex disorders, 4-vinylphenol 
sulfate (Petersen et al. 2014). Of note, this 
metabolic marker has also been reported to 
be associated with smoking (Manini et al. 
2003). Although the potential joint or 

Figure 1. Dose–response relationships between smoking behavior and methylation intensity (results 
from restricted cubic spline regression adjusted for potential confounding factors). CL, confidence limit. 
(A) Dose–response relationship between current intensity of smoking and methylation intensity at AHRR 
(cg05575921; left), and 6p21.33 (cg06126421; right); never and former smokers were defined as reference, 
with current smoking intensity = 0. (B) Dose–response relationship between cumulative dose of smoking 
and methylation intensity at AHRR (cg05575921; left), and 6p21.33 (cg06126421; right); never smokers were 
defined as reference, with pack-years = 0. (C) Dose–response relationship between time since cessation 
of smoking and methylation intensity at AHRR (cg05575921; left), and 6p21.33 (cg06126421; right) among 
former smokers; current smokers were defined as reference, with time since cessation = 0. 
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independent epigenetic role of the various 
loci remains to be clarified, these findings, as 
well as the disappearance or attenuation of 
association between smoking and mortality 
outcomes after adjustment for methylation at 
these CpGs in the present study, suggest that 
multiple DNA methylation sites are involved 
in mediating smoking-related adverse effects.

The much stronger associations of 
the methylation markers with mortality 
outcomes, compared with those of commonly 
studied molecular and genetic biomarkers, 
and the attenuation or disappearance of the 
association between current smoking and 
mortality after adjustment for the methyla-
tion markers observed in our study suggest 

that DNA methylation biomarkers may more 
accurately summarize individuals’ smoking-
related risks that accumulated through past 
and current exposure, and thus be more 
informative in risk assessment than self-
reported smoking history. To our knowl-
edge, this is the first study to evaluate the 
improvement in risk assessment of fatal CVD 

Table 3. Methylation score and smoking in relation to mortality outcomes.

Outcome/methylation scorea/
smoking status ntotal Cases PY IRb

HR (95% CI)

Model 1c Model 2d Model 3e

All-cause mortality
0 677 60 6716.06 0.89 Reference Reference Reference
1 151 31 1431.15 2.17 2.08 (1.33, 3.25) 2.01 (1.25, 3.25) 1.90 (1.15, 3.14)
2 172 52 1546.03 3.36 3.41 (2.29, 5.08) 3.69 (2.21, 6.16) 3.59 (2.10, 6.16)
Never smoker 469 45 4651.73 0.97 Reference Reference Reference
Former smoker 323 58 3059.15 1.90 1.52 (1.00, 2.33) 1.14 (0.71, 1.80) 0.92 (0.56, 1.50)
Current smoker 186 37 1766.04 2.10 2.16 (1.37, 3.40) 0.91 (0.50, 1.63) 0.92 (0.50, 1.68)

CVD mortality
0 677 16 6690.70 0.24 Reference Reference Reference
1 151 14 1431.15 0.98 3.58 (1.69, 7.56) 4.37 (1.99, 9.61) 4.30 (1.89, 9.81)
2 172 20 1525.56 1.31 5.51 (2.68, 11.30) 9.25 (3.72, 22.96) 7.41 (2.81, 19.54)
Never smoker 469 17 4627.45 0.37 Reference Reference Reference
Former smoker 323 23 3058.06 0.75 1.50 (0.75, 3.00) 0.86 (0.40, 1.88) 0.70 (0.30, 1.64)
Current smoker 186 10 1745.58 0.57 1.59 (0.71, 3.58) 0.38 (0.14, 1.04) 0.44 (0.15, 1.24)

Cancer mortality
0 677 24 6690.70 0.36 Reference Reference Reference
1 151 9 1431.15 0.63 1.47 (0.67, 3.21) 1.15 (0.49, 2.70) 1.19 (0.48, 2.93)
2 172 16 1525.56 1.05 2.57 (1.31, 5.02) 2.06 (0.88, 4.79) 2.48 (1.01, 6.08)
Never smoker 469 14 4627.45 0.30 Reference Reference Reference
Former smoker 323 21 3058.06 0.69 1.86 (0.89, 3.89) 1.69 (0.77, 3.67) 1.37 (0.60, 3.01)
Current smoker 186 13 1745.58 0.74 2.43 (1.11, 5.35) 1.60 (0.59, 4.33) 1.45 (0.52, 4.08)

Other mortality
0 677 17 6690.70 0.22 Reference Reference Reference
1 151  6 1431.15 0.56 2.12 (0.88, 5.12) 1.88 (0.71, 4.95) 1.69 (0.62, 4.63)
2 172 11 1525.56 0.85 3.18 (1.45, 7.00) 2.86 (1.02, 8.04) 2.78 (0.97, 7.98)
Never smoker 469 15 4627.45 0.22 Reference Reference Reference
Former smoker 323 8 3058.06 0.43 1.46 (0.60, 3.57) 1.09 (0.42, 2.82) 0.83 (0.31, 2.23)
Current smoker 186 13 1745.58 0.63 2.81 (1.15, 6.89) 1.37 (0.43, 4.36) 1.35 (0.42, 4.38)

Abbreviations: HR, hazard ratio; IR, incidence rate; PY, person-years. 
aScore was based on methylation intensity at cg05575921 and cg06126421, defined as follows: 2, methylation intensity in the lowest quartiles of both 2 CpG sites; 1, methylation intensity 
in the lowest quartiles of one of the 2 CpG sites; 0, other. bIncidence rate per 100 person-years. cModel 1: adjusted for age, sex, and batch effect. dModel 2: model 1 plus adjusted for 
smoking status and methylation score. eModel 3: model 2 plus adjusted for BMI, physical activity, systolic blood pressure, total cholesterol, hypertension, and prevalent CVD, diabetes, 
and cancer at baseline.

Table 4. Evaluation of the SCORE and methylation intensity in prediction of fatal CVD (controlling for batch effect).

Characteristic SCORE SCORE + cg05575921 SCORE + cg06126421
SCORE + cg05575921 

+ cg06126421
Overall model fit

–2 LOG L; df; p-value 623.93; 5; < 0.0001 601.82; 10; < 0.0001 602.21; 10; < 0.0001 597.54; 11; < 0.0001
AIC 633.93 621.82 622.52 619.54
LR test p-valuea  — 0.0005 0.0006 0.0002

Harrell’s C-statistics (95% CI) 0.754 (0.691, 0.818) 0.810 (0.752, 0.867) 0.806 (0.748, 0.864) 0.822 (0.765, 0.879)
Optimism-corrected Harrell’s C-statistics (95% CI) 0.736 (0.676, 0.791) 0.773 (0.687, 0.832) 0.766 (0.678, 0.830) 0.779 (0.693, 0.840)
Reclassification of

Cases, nup/ndown Reference 18/11 18/12 18/11
Controls, nup/ndown Reference 86/157 88/146 82/151
NRI % (p-value) Reference 22.14 (0.046) 18.66 (0.10) 21.92 (0.049)
IDI % (p-value) Reference 3.39 (0.02) 3.36 (0.008) 3.73 (0.005)

Calibration 
nobs/nexp (p-value)
Quintile 1 2/2 (0.82) 2/1 (0.40) 0/1 (0.26) 2/1 (0.40)
Quintile 2 3/4 (0.67) 2/3 (0.57) 3/3 (0.99) 1/3 (0.28)
Quintile 3 7/7 (0.94) 5/6 (0.82) 6/6 (0.73) 4/5 (0.74)
Quintile 4 10/12 (0.62) 7/10 (0.29)  8/10 (0.46) 7/10 (0.56)
Quintile 5 27/25 (0.68) 33/29 (0.45) 32/29 (0.55) 35/29 (0.30)

Abbreviations: AIC, Akaike information criterion; IDI, integrated discrimination improvement; LOG L, log-likelihood; LR, likelihood ratio; nexp, number of expected events; nobs, number of 
observed events; NRI, net reclassification improvement; SCORE, Systematic Coronary Risk Evaluation chart (age, sex, systolic blood pressure, current smoking, and total cholesterol). 
aComparison of SCORE + methylation model with SCORE model by likelihood ratio test. 
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when adding DNA methylation biomarkers 
to conventional risk factors. The increment 
in C-statistics by adding the methylation 
intensity at cg05575921 and cg06126421 
(approximately 0.04) was much larger than 
the increment seen by adding a multi marker 
score in the Framingham Heart Study 
(C-statistics for model of major cardio vascular 
events increased by 0.01) (Wang et al. 
2006). In another large population-based 
cohort, the investigators evaluated six novel 
biomarkers for cardio vascular risk prediction 
along with the conventional markers and 
reported the NRI was 0.00% and 4.70% for 
cardio vascular events and coronary events, 
respectively (Melander et al. 2009). They 
obtained improved NRI by restricting the 
analyses to individuals with intermediate risk; 
the reclassification, however, was essentially 
confined to down-classification of participants 
without events. Of note, the proportion of 
reclassified participants was substantial in 
our study, and consisted of not only down-
classification of individuals without events 
but also up-classification of individuals 
with events. Given that nearly 22% of 
participants were reclassified, inclusion of 
smoking-associated methylation markers into 
the routine screening programs, such as the 
SCORE risk estimation system, would benefit 
a substantial proportion of individuals in the 
population setting and could greatly promote 
cost effective ness of CVD prevention and 
therapy. On the other hand, our study was an 
exploratory investigation on CVD risk predic-
tion using methylation markers based on a 
limited number of total cardio vascular deaths, 
thus our findings need to be validated in an 
independent population. The performance of 
these methylation markers for predicting risk 
of non fatal or subtypes of fatal CVD, such 
as coronary and non-coronary heart disease, 
needs to be evaluated in further studies 
with high-quality assessment of CVD risk 
factors as well as CVD events. In addition, 
to examine the generalizability of the current 
finding, the performance of methylation 
markers should also be assessed in relation 
to other well-established risk scores, such as 
the Framingham score, and in geographically 
different populations.

Our study has specific strengths and 
limitations. Strengths of our study are the 
population-based prospective study design 
with comprehensive information on smoking 
exposure and a variety of covariates, as well 
as long-term complete mortality follow-up 
data. A limitation is that the limited numbers 
of cause-specific deaths prevent the analyses 
from going into more detail, such as sex-
specific examination of CVD risk prediction 
or investigation of deaths from well-known 
smoking-associated subtypes of cancer (CDC 
2014; Ezzati et al. 2005a). Future studies 

with large numbers of participants would 
be desirable to further validate our findings. 
Information on cause of death was based on 
death certificates, which are known to be less 
than perfect. However, potential misclassifica-
tion between the broad categories of causes 
of deaths assessed in our study is likely to be 
much less relevant than potential misclassifica-
tion between specific causes; given the rather 
consistent findings of an inverse association 
with methyla tion intensity for all categories of 
causes of deaths, such misclassification might 
have had only a small impact on the observed 
results. An additional limitation of our study 
is that methyla tion was measured from whole 
blood, without possibilities for differentiating 
DNA methyla tion between various cell types. 
It might therefore be conceivable that differ-
ences in methylation might, in part, reflect 
different distribution of leukocyte cell types. 
However, even if the difference in methyla-
tion we observed was primarily or partly due 
to shifts in leukocyte distribution, their use 
as biomarkers for charac terizing smoking 
exposure or risk prediction would not be 
invalidated. On the contrary, given that DNA 
from whole blood is more readily obtainable 
in most clinical and epidemiological settings, 
biomarkers based on whole blood may be 
more relevant for clinical practice. Finally, our 
results are based on a single study and might 
be over optimistic because only the CpG sites 
that performed best in the exploratory phase 
of the study were used to create the model and 
outcome classification. Further validation in 
independent studies should therefore be the 
aim for future studies. 

Despite its limitations, our study strongly 
supports the potential utility of DNA methyla-
tion markers as indicators for both current and 
lifetime smoking exposure and for predicting 
mortality outcomes, in particular for cardio-
vascular mortality. Incorporation of methyla-
tion biomarkers into conventional risk factors 
might be a promising approach to improve 
cardio vascular risk assessment and disease 
prevention, which needs to be further vali-
dated and confirmed in additional studies with 
a large number of participants and detailed 
assessment of known determinants of CVD.
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