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Introduction
Traditional, hazard-driven, single-chemical 
risk assessment practices that follow the 1983 
National Research Council (NRC) paradigm 
(NRC 1983) cannot keep pace with the 
vast and growing numbers of chemicals in 
commerce (Harvey et al. 1995; NRC 1984). A 
well-defined, quantitative, and defensible means 
of identifying chemicals with the greatest risk 
potential is needed (Judson et al. 2009; NRC 
2007b, 2009; van Leeuwen et al. 2007), with 
exposure considerations providing a critical 
context for allocation of limited resources 
(Cohen Hubal 2009; Dellarco et al. 2010; 
Egeghy et al. 2011; Sheldon and Cohen Hubal 
2009). However, elevating the role of exposure 
science will require the development and appli-
cation of efficient and reliable computational 
models that make full use of the rich and 
growing sources of accessible  exposure- relevant 
information (NRC 2012). We propose a new 
discipline, called “computational exposure 
science,” that expands the knowledge and 
current methods used in the field of exposure 
assessment by bringing in novel data sources 
and new computational technologies.

A key driver of computational exposure 
science is the reinvigoration of interest in the 
significant role played by the environment 
in disease etiology that has accompanied the 
conceptualization of the “exposome” (Prüss-
Üstün and Corvalán 2006; Rappaport and 
Smith 2010; Wild 2005). The exposome 
refers to the totality of an individual’s environ-
mental exposures from conception onwards. 
Integrating external agents, internal response, 

and the social, cultural, and ecological contexts 
of exposure, it was conceived to complement 
the genome for investigation of disease etiology 
(Wild 2012). The rise in increasingly prevalent 
diseases, such as autism, asthma, and child-
hood leukemia (Hertz-Picciotto and Delwiche 
2009; Meeker 2012; Perrin et al. 2007), 
against a backdrop of widespread human 
exposure to industrial chemicals, as revealed 
by biomonitoring surveys (Becker et al. 2007; 
Centers for Disease Control and Prevention 
2009; Park et al. 2012), confers a societal 
obligation to comprehensively understand 
exposures. Traditional strategies for evaluating 
chemical exposures have not provided even 
the most basic information about exposures 
for the vast majority of chemicals in commerce 
(Egeghy et al. 2012; Muir and Howard 2006; 
Schwarzman and Wilson 2009), but a new 
era of systems thinking promises to transform 
exposure science.

Exposure science is responding to advances 
in technology (Cohen Hubal 2009). Rapid 
improvements in computing hardware and 
software have led to the emergence of efficient 
computational approaches to collecting data, 
simulating complex processes, and system-
atically evaluating models. Simultaneously, 
diverse and “big” data are becoming increas-
ingly available. New social media–based 
methods of obtaining perception and behavior 
information are being developed (Eysenbach 
2009), and further development of low-cost 
sensors will soon empower “citizen scientists” 
to provide a broad range of data, including 
chemical concentrations, using omnipresent 

technologies such as smartphones (Dickinson 
et al. 2010; Snyder et al. 2013).

These public health drivers and novel 
scientific and technological advances are 
facilitating the development of computational 
exposure science as an emerging dimension 
of exposure science, akin to the emergence 
of computational toxicology more than a 
decade ago (el-Masri et al. 2002; Kavlock and 
Dix 2010). With various representations of 
computational exposure science beginning to 
appear in the literature (Dionisio et al. 2015; 
Isaacs et al. 2014; Shin et al. 2015; Wambaugh 
et al. 2013), this commentary is intended 
to define the emerging discipline, establish 
a conceptual framework, and provide some 
illustrative examples of research that is being 
conducted to advance the field of exposure 
assessment with regard to chemical ingredients 
of consumer products.

Discussion

Defining Computational Exposure 
Science
We define computational exposure science 
as the integration of advances in chemistry, 
computer science, mathematics, statistics, and 
social and behavioral sciences with new and 
efficient models and data collection methods 
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to reliably and effectively forecast real-world 
exposures to natural and anthropogenic 
chemicals in the environment. Computational 
exposure science aims to link exposures to 
health outcomes through the application of 
environmental informatics and advanced 
computational tools, as previously envisioned 
(Cohen Hubal 2009; Cohen Hubal et al. 
2010; Sheldon and Cohen Hubal 2009), and 
to take full advantage of scientific innovation 
and the resulting abundance of newly avail-
able information for predictive, rapid, and 
high-throughput exposure assessment.

Although computational exposure science 
is conceptualized in the spirit of computational 
biology, it builds on a rich history of computa-
tional models for understanding environmental 
science that dates to the early 1900s (NRC 
2007a). For key environmental chemicals, 
decades of observational studies have enabled 
the evolution of empirical and mechanistic 
models that can reliably explain the distribu-
tion and fate of chemicals in biological and 
environmental media. (Tornero-Velez et al. 
2012; Zartarian et al. 2012). Multimedia 
fate models have greatly expanded modeling 
capacity to large inventories of chemicals. 
These models predict human exposure using 
mechanistic mass balance equations and food 
web bioaccumulation calculations to describe 
transfer between environmental compartments 
(e.g., air, water, soil, biota) (Arnot et al. 2012; 
Bennett et al. 2002; Diamond et al. 1994) but 
require few inputs other than easily obtainable 
physical/chemical descriptors. In the era of big 
data and informatics, analytical solutions are 
giving way to more numerical, computational, 
and systems-focused methods. Nonetheless, 
a computational exposure science approach 
is not a replacement for traditional moni-
toring, survey, and modeling methods used 
in exposure science. Although computational 
exposure science provides the opportunity to 
examine a more expansive range of chemicals 
than can be investigated by the aforemen-
tioned traditional methods, it also carries much 
greater levels of uncertainty. Risk context 
(NRC 2009) should determine whether rapid 
or highly refined approaches are employed. 
Moreover, the two approaches complement 
each other: the screening-level results of predic-
tive models can identify targets for measure-
ment, and the acquisition of new data through 
measurements and field studies is needed to 
evaluate and improve computational exposure 
science methods (NRC 2007b).

Applying Computational Exposure 
Science
Our ambitious goal for computational 
exposure science at the U.S. Environmental 
Protection Agency (EPA) is to rapidly and 
defensibly predict screening-level population 
exposure and intake dose rates for any existing 

or new chemical, even if few data exist beyond 
chemical structure. As depicted in Figure 1, 
understanding exposure to any chemical 
requires linkages from chemical functional 
role to formulated component of consumer 
products, to identification of scenarios 
involving chemical release, media concentra-
tions, and human contact, and, ultimately, 
to models estimating uptake and dose. The 
functional role of a chemical (i.e., how it is 
used in processes or products) is determined 
by its inherent chemical properties, which are 
imparted by the chemical structure.

Predicting exposure and dose from 
chemical structure requires viable approaches 
for integrating information about the function 
of a chemical both with mechanistic fate and 
transport processes and with social and behav-
ioral science descriptions of consumer product 
use and activities. Two distinct realms of infor-
mation, or “source data,” that are critical for 
estimating exposure are illustrated in Figure 1. 

These realms represent a) inherent chemical, 
physical, and molecular properties; and b) deci-
sions and other behaviors that govern product 
use. The individual components are arranged 
to visually indicate whether the data streams 
characterizing each component are mainly in 
the domain of “inherent chemical properties” 
or “human decisions and behavior” (beyond 
traditional exposure factors). For example, 
media concentrations can be predicted using 
a multimedia mass balance model and a 
chemical release factor, both of which can be 
parameterized using the inherent properties 
of the chemical (Arnot et al. 2012). Product 
purchase and use, however, are the result of 
complex individual-level decisions that drive 
overall consumer behaviors in a stochastic 
fashion (Rand and Rust 2011). The position 
of the “exposure” component reflects that the 
process depends as much on inherent proper-
ties as it does on complex social, psychological, 
and economic drivers.

Figure 1. Framework for computational exposure science. The rounded rectangles represent components 
of computational exposure science required for high-throughput exposure assessment; their relative 
positions toward the left or the right represent the two generalized categories of source data (inherent 
chemical properties and human decisions, respectively).
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The system of linkages depicted in 
Figure 1 may not seem like a radical depar-
ture from the traditional, linear source-to-dose 
continuum (Lioy 1990), nor is it intended as 
one. Instead, it expands on the modification 
proposed in the NRC report, Exposure Science 
in the 21st Century (Lioy and Smith 2013; 
NRC 2012). Specifically, this framework 
expands the “upstream” factors of exposure 
to formulation science (i.e., functional role, 
product formulation) and to behavior infor-
matics (i.e., product purchase, product use), 
and it identifies the types of data streams 
required to parameterize each component. 
This addition of upstream processes provides 
a natural mechanism by which the product 
manufacturing stage of the product’s life 
cycle (i.e., product formulation) can be linked 
directly to human behavior.

The application of computational 
exposure science to characterize each process 
shown in Figure 1 for thousands of chemi-
cals will require one or more of the following 
generalizable activities:
• identification and acquisition of multiple 

data streams from traditional and nontradi-
tional sources

• extrapolation of model input parameters 
from data-rich to data-limited chemicals

• integration of multiple data streams for 
large sets of chemicals through rapid, effi-
cient, and reliable models

• evaluation of model performance by system-
atic comparison of model predictions with 
measured values obtained through targeted 
or non-targeted analyses and by application 
of quantitative model sensitivity and uncer-
tainty analyses to identify key data limita-
tions and sources of uncertainty

• continuous acquisition and incorporation 
of new data streams that address key uncer-
tainties and performance of refinements in 
an iterative and self-consistent manner.

An immediate challenge in computational 
exposure science is identifying and integrating 
data streams, particularly those outside of the 
traditional realm of exposure science, that are 
essential for understanding, parameterizing, 
and evaluating interactions between (chemical) 
stressors and (human) receptors. For example, 
commercial market research data and internet 
search volume analytics remain largely unex-
ploited for understanding consumer behaviors 
and their differences by region and demo-
graphics. Novel analytical tools (e.g., social 
network analysis, natural language processing) 
must be explored to facilitate the integration 
of nontraditional data streams into exposure 
assessment, just as ontologies are being devel-
oped to integrate exposure information with 
other disciplines (Goldsmith et al. 2012; 
Mattingly et al. 2012).

To parameterize the processes illus-
trated in Figure 1 for the vast number of 

data-limited chemicals in commerce, it is 
necessary to extrapolate chemical–behavior 
patterns (fate, transport, intake, etc.) from 
those of relatively data-rich chemicals [often 
using quantitative structure–activity rela-
tionship (QSAR) methodologies], with the 
explicit understanding that such extrapola-
tion is fraught with uncertainty and demands 
empirical evaluation (Molitor et al. 2007; 
Oreskes 1998; Wambaugh et al. 2013).

Innovative modeling approaches are 
needed to understand relationships among 
data sources of varying complexity and quality 
and exposure-related factors, processes, and 
monitoring data. These approaches include 
machine-learning classification models, 
which have already proved to be well-suited 
for pharmaco kinetic and hazard-related 
contexts (Freitas et al. 2015; Liu et al. 2015; 
Zang et al. 2013), and agent-based models, 
which provide a new opportunity to predict 
exposure-relevant behavior as a function of 
characteristics of individuals, their environ-
ments, and their interactions (Luke and 
Stamatakis 2012).

A clear understanding of domain of appli-
cability (i.e., the set of conditions under which 
use of the model is scientifically defensible) is 
critical for the reliable application of models, 
as is appropriately quantifying the precision 
of mathematical models, evaluating their 
predictive value, and characterizing associated 
uncertainties. Care must be taken to ensure 
that the models truly reflect their assumed 
underlying theoretical constructs, particularly 
when relying on big data (Lazer et al. 2014; 
Oreskes 1998). Conventional evaluations of 
model predictions against available personal 
measurement data, along with advances in 
the computational implementation of statis-
tical methods for model and data evaluation 
(Markov chain Monte Carlo sampling for 
Bayesian inference, in particular), provide a 
path forward for such evaluation (Molitor 
et al. 2007; Wambaugh et al. 2013; Zartarian 
et al. 2012). The results of such evaluation 
will guide the acquisition and incorporation 
of additional data to address key uncertainties 
and to further refine models (NRC 2007a).

Current Research Activities and 
Examples
The application of computational exposure 
science as described above has led to a set of 
strategic research efforts by the U.S. EPA to 
advance high-throughput exposure predic-
tions. Below, we provide examples describing 
the development and application of methods 
for assessing exposure to consumer product 
chemicals pertaining to a) the development of 
reliable, computationally efficient predictive 
models; b) the identification, acquisition, and 
analysis of data supporting high-throughput 
exposure model parameterization and model 

evaluation; and c) the extrapolation of available 
data to predict behaviors of large inventories of 
data-limited chemicals.

For proof of concept, our current focus 
has been on assessing exposures to chemical 
ingredients of consumer products under the 
construct that exposure to a chemical is a 
function of the type of product in which the 
chemical can be found and human activity 
patterns related to that product. The general 
strategy has been to identify products, map 
products to chemical ingredients, map products 
to use patterns and exposure scenarios, and 
then employ scenarios to model chemical 
 exposures by route and pathway.

To supplement the National Library of 
Medicine’s (NLM’s) Household Products 
Database (NLM 2015) for information on 
product ingredients, the U.S. EPA has built 
the Consumer Product Chemical Profiles 
database (CPCPdb) (Goldsmith et al. 
2014). Using optical character recognition 
and automated parsing to extract informa-
tion from publicly available product material 
safety data sheets, CPCPdb has been popu-
lated with roughly 1,800 unique chemicals 
in 353 product categories. The U.S. EPA has 
also developed a database [Chemical Product 
Categorization database (CPCat)] of various 
levels of chemical use information for more 
than 40,000 chemicals (Dionisio et al. 2015). 
CPCPdb has been consolidated into CPCat, 
and both databases are available through the 
U.S. EPA’s online warehouse of chemical 
data, known as the Aggregated Computational 
Toxicology Resource (ACToR) (U.S. EPA 
2015). Use-related data within ACToR have 
already been shown to correlate with exposures 
inferred from biomonitoring (Wambaugh et al. 
2014), and these databases provide a founda-
tion for the development of modeling systems 
to predict chemical functional use (based on 
properties), and then, from functional use, the 
types of products in which chemicals are likely 
to be found (“use profiles”).

As QSARs are used to extrapolate physico-
chemical and pharmacokinetic properties 
across chemicals, similar models are being 
developed to determine relationships between 
predicted properties or structural descriptors 
and chemical functional role in products and 
to probabilistically predict weight fractions 
of consumer product ingredients based on 
the functions they perform in products. Such 
analyses may eventually aid in identification 
of the underlying inherent chemical proper-
ties (molecule features) that confer the desired 
properties. As such, these computational 
exposure modeling methods can be repur-
posed to design safer ingredients or to identify 
safer, readily available alternatives.

For the purposes of high-throughput 
exposure assessment, the U.S. EPA has 
developed a new modeling approach, the 
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Stochastic Human Exposure and Dose 
Simulation–High-Throughput (SHEDS-HT) 
model (Isaacs et al. 2014), that combines use 
profiles with consumption information and 
then maps these factors to exposure scenarios. 
SHEDS-HT is based on the methods and 
algorithms of the SHEDS model for multi-
media pollutants, commonly known as 
SHEDS Multimedia (Zartarian et al. 2012), 
but the fugacity, residential, and dietary 
modules have been numerically and opera-
tionally reduced to decrease user burden 
and to increase run speed while maintaining 
critical features. A fugacity-based source-
to-concentration module estimates indoor 
concentrations by media (air, dust, and 
surfaces). Concentration estimates, along 
with relevant exposure factors and human 
activity data, are then used by the model to 
rapidly generate population-specific distribu-
tions of potential residential exposures via 
dermal, nondietary ingestion, and inhala-
tion pathways. Estimated population dietary 
exposures are combined with the residen-
tial exposure predictions to produce total 
exposure estimates.

The development of SHEDS-HT, 
together with informatics-based methods 
of obtaining chemical use information, 
led to a significant increase in the speed of 
probabilistic exposure assessment and in the 
number of chemicals assessed. For example, 
the premier, higher-tier SHEDS Multimedia 
(SHEDS-MM) model had been applied 
to fewer than 10 chemicals over the past 
15 years in support of high-priority regulatory 
support activities (Figure 2). In contrast, the 
first generation of SHEDS-HT extended the 
number to 15 by using less-detailed inputs 
and appropriate measurement surrogates. 
The addition of the simplified dietary module 
1 year later increased the number of chemi-
cals that had been investigated to 330, and 
subsequent enhancement with information 
from consumer product ingredient databases 
brought the number of chemicals assessed 
to 2,500 (Isaacs et al. 2014). We anticipate 
that current efforts aimed at the develop-
ment of structure-to-function relationships 
will produce an accelerated rate of model 
parameteri zation that will enable screening-
level forecasts for ≥ 10,000 chemicals by 2016 
and perhaps twice that number within the 
subsequent 2 years.

T o  a s s e s s  n e w  m o d e l s  s u c h  a s 
SHEDS-HT and foster confidence for their 
application in regulatory settings, we are 
developing techniques to evaluate model 
predictions that are both systematic (e.g., to 
measure performance across a broad range 
of chemical stressors) and empirical (e.g., 
to determine how reliably the available data 
support model estimates). We have relied on 
a well-defined framework using a Bayesian 

statistical methodology to draw inferences 
from biomonitoring data for evaluating 
model predictions. This framework, called 
Systematic Empirical Evaluation of Models 
(Wambaugh et al. 2013, 2014), provides 
consensus exposure forecasts from multiple 
models along with an empirical determina-
tion of uncertainty in the resulting model 
predictions. This framework is a direct 
example of how traditional biomonitoring 
and exposure data can be used in concert with 
(perhaps less certain) computational exposure 
science modeling results.

Conclusions
The emerging discipline of computational 
exposure science represents an evolution of 
exposure science toward the identification of 
new data sources and the application of inno-
vative modeling techniques for understanding 
and quantifying human exposures to chemi-
cals. The success of computational exposure 
science as a discipline will require that we 
also design and implement new research to 
collect the critical monitoring data needed 
to evaluate and improve the reliability of 
the next generation of models and to reduce 
the uncertainty in chemical exposure model 
predictions for screening and prioritiza-
tion purposes and other applications (e.g., 
ecological impact analysis, life cycle analysis, 
broad sustainability evaluations). Performing 
nontargeted analysis of the chemicals present 
in biological and environmental media 
using high-resolution mass spectrometry 
platforms will play a key role in developing 
these models. The wealth of data produced 
by nontargeted measurement techniques 
can be used to generate and test hypotheses 
regarding the fate of chemicals as a function 
of, for example, their physical–chemical 

properties, use (applicative or functional), 
and source distance [near-field (applied to the 
body or released indoors) vs. far-field (released 
to the outdoor environment)], but innova-
tive data analysis methods beyond those 
described herein will be required. Results 
from both nontargeted analysis and computa-
tional models will be used to optimize future 
exposure data collection efforts. The symbi-
otic relationship between methods, measure-
ments, and modeling traditionally realized 
in exposure science is no less relevant within 
computational exposure science, but here, this 
relationship takes on a systems-focused and 
high-throughput form.

Although the examples provided herein 
focus on U.S. EPA research, it should 
be acknowledged that other groups are 
also engaged in advancing computational 
exposure science. For example, the National 
Institute of Environmental Health Sciences–
funded Health and Exposome Research 
Center: Understanding Lifetime Exposures 
(HERCULES) (HERCULES Exposome 
Research Center 2015) and the European 
Union–funded Health and Environment-wide 
Associations based on Large population Surveys 
(HEALS) (HEALS Consortium 2015) projects 
are both bringing together novel technolo-
gies, data analysis techniques, and modeling 
tools to support exposome studies. Whereas 
our examples emphasize human exposure to 
consumer-product chemicals, computational 
exposure science methods are also amenable for 
broader application, and similar approaches are 
already being evaluated for ecological receptors. 
As the technology rapidly evolves, the potential 
applications of these methods will expand, and 
the promise of minimizing significant adverse 
impacts of chemicals on human health will 
become more attainable.

Figure 2. The number of chemicals for which probabilistic exposure assessment has been performed has 
increased dramatically over the past 2 years. Current efforts toward the development of generic product 
formations and structure-to-function property–activity relationships will produce accelerated rates 
of evaluation.
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A critical mass of research around the 
themes of exposure modeling, statistics, and 
novel data streams is affirming computational 
exposure science as sufficiently distinct and 
mature to warrant description within the 
scientific literature. The emergence of compu-
tational exposure science has been motivated 
by both need and opportunity, in parallel with 
the earlier emergence of computational toxi-
cology from toxicology. The availability of 
toxicity testing data for thousands of chemicals 
highlights the need for an exposure context 
to gauge risk and inform regulation (NRC 
2007b; Thomas et al. 2013; Tice et al. 2013) 
as well as the need for exposure assessment 
to not be the rate-limiting step for high-
throughput risk assessment. By identifying 
and defining this new and rapidly emerging 
dimension of exposure science, we hope to 
foster its continued development in support of 
protection of health and the environment.
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