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Introduction
Extreme hot weather events have become 
life-threatening phenomena in cities around 
the world (Anderson and Bell 2011; Baccini 
et al. 2011; Harlan et al. 2013; Loughnan 
et al. 2013; Sheridan et al. 2012). To estimate 
the risk of heat-related health consequences 
and propose adaptation strategies, researchers 
have developed heat vulnerability indices 
(HVIs) using composites of health, social, 
and environmental factors relevant to heat 
stress (Chow et al. 2012; Johnson et al. 2012; 
Loughnan et al. 2013; Reid et al. 2009, 
2012). Application of HVIs at the neighbor-
hood level allows public-health practitioners 
and emergency responders to identify and 
locate populations at high risk of heat stress 
(Reid et al. 2009). The ability to visualize the 
spatial variation of heat vulnerability (i.e., 
on a map) helps local governments allocate 
resources and assist people in the areas of 
greatest need. However, human vulnerability 
to heat is a complex and dynamic issue, 
and the usefulness of a vulnerability index 
can be sensitive to scale, measurement, and 
context. We investigated how generic indica-
tors of heat risk, taken from a national study 
(Reid et al. 2009) are interrelated in Phoenix, 
Arizona, and we analyzed the relative impor-
tance of different components of Reid et al.’s 
(2009) national heat-vulnerability index in 
predicting hospital admissions. Study results 

may help Phoenix focus its emergency services 
and climate-adaptation planning on neigh-
borhoods at high risk of heat-related illness 
and mortality.

Background
Vulnerability to natural hazards is a function 
of physical exposure, sensitivity, and adaptive 
capacity (Chow et al. 2012; Polsky et al. 
2007; Turner et al. 2003; Wisner et al. 
2004). “Physical exposure” is proximity to 
environmental hazards, such as heat waves 
or natural disasters. “Sensitivity” is a char-
acteristic of a population that influences its 
degree of susceptibility to the hazard, and 
“adaptive capacity” is the ability to cope with 
the impacts and aftermath of a hazardous 
event. Making the concept of vulnerability 
“operational” has been a challenge because 
current theoretical concepts and frameworks 
are abstract and lack guidelines to measure or 
quantify them (Hinkel 2011). This challenge 
has stimulated studies to develop measures 
of vulnerability at various scales (Chow et al. 
2012; Harlan et al. 2013; Johnson et al. 
2012; Reid et al. 2009, 2012). Research teams 
with different paradigms have focused on 
different subsets of vulnerability components 
(Romero-Lankao et al. 2012), which, in turn, 
influenced the selection of variables used to 
evaluate degrees of vulnerability (Tate 2013). 
Cutter et al. (2003) were perhaps the first to 

develop a social vulnerability index (SoVI); 
they used data from the 1990 U.S. Census 
to examine vulnerability to environmental 
hazards in 3,141 U.S. counties. This approach 
to vulnerability indicators (Cutter and Finch 
2008) continues to provide the foundation for 
those seeking indicators of heat risk.

HVI conceptualization and measurement 
differ from one study to another. In the past 
decade, at least 13 studies (see Supplemental 
Material, Table S1) produced different 
HVIs that revealed the spatial distribution of 
heat vulnerability for many locations. Most 
of these studies follow an inductive meth-
odology, which builds statistical models to 
explain observed harm through some indi-
cating variables (Hinkel 2011; Tate 2013). 
Researchers select their indicating variables 
according to empirical analysis (e.g., ethnic 
minorities are usually more vulnerable than 
non-Hispanic whites) or social theories (e.g., 
low social cohesion may negatively affect 
health) to evaluate an area’s relative risk of 
heat-related effects. Most studies include as 
risk factors temperature and vegetation cover 
(exposure components), age and ethnicity 
(sensitivity components), and income 
(adaptive capacity). The concerns of indi-
vidual disciplines produce different concep-
tualizations of heat vulnerability indices. For 
example, environmental modelers (Uejio 
et al. 2011) have used indicators of the built 
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environment and neighborhood stability 
to examine heat mortality and heat-related 
emergency services. They found that neigh-
borhoods with a high proportion of ethnic 
minorities, social isolation, and vacant 
housing units had the highest heat-stress 
incidence. Epidemiologists emphasize health 
conditions as risk factors—for example, 
diabetes, which increases susceptibility to heat 
(Reid et al. 2009, 2012; Rinner 2009). In 
addition, other variables such as air condi-
tioning (AC) prevalence and social infra-
structure (i.e., access to health care facilities) 
are used as indicators of adaptive capacity 
in studies of public health, sociology, and 
epidemiology (Harlan et al. 2013; Loughnan 
et al. 2013; Reid et al. 2009, 2012). Data 
from simulation models provide variables 
to assess future risks to heat. Vescovi et al. 
(2005) explored the spatial distribution of 
heat vulnerability in southern Quebec, 
Canada, under several future climate-change 
scenarios, using the prediction from the 
Canadian Regional Climate Model and socio-
economic variables. Each disciplinary perspec-
tive captures distinct elements of exposure, 
sensitivity, and adaptive capacity, and there-
fore produces varying findings about what 
determines heat vulnerability.

English et al. (2009) reviewed studies that 
identified outcomes of climate change and 
developed indicators for human health vulner-
ability assessment and found a need to test the 
usefulness of these indicators. There have been 
only a few attempts to evaluate the perfor-
mance of heat vulnerability indices. Wolf and 
McGregor (2013) used an inductive approach 
to generate an HVI (and maps) covering 
4,765 census units in Greater London, United 
Kingdom. In their subsequent research, Wolf 
et al. (2014) validated the performance of 
their HVI using daily mortality and ambu-
lance dispatch data from 1990 to 2004 and 
from 1998 to 2006, respectively. The census 
unit that has an above-average HVI score 
and an above-average observed health impact 
score (measured by the number of mortality/ 
ambulance dispatches), and the census unit 
that has a below-average HVI score and a 
below-average health impact score are consid-
ered as accurate predictions in the work of 
Wolf et al. (2014). The results showed that 
the London HVI predicted ambulance calls 
better than it predicted mortality. London 
HVI correctly predicted the impacts 
(measured by ambulance calls) in 3,441 
(62.2%) census units during summer days. 
Wolf et al.’s (2014) findings also suggested 
that ambulance calls and mortality had 
different response patterns to heat, consistent 
with a previous report of contrasting patterns 
of emergency room admissions and mortality 
during heat waves in London (Kovats 
et al. 2004).

In the United States, Reid et al. (2009) 
developed a national HVI using a statistical 
approach that integrated factors known to 
be associated with risk of heat stress in the 
United States. They selected six sociodemo-
graphic and economic indicators (poverty, 
educational level, minority status, living 
alone, elderly, and elderly living alone), two 
AC variables, a measure of vegetation density, 
and diabetes prevalence to create an HVI for 
metropolitan statistical areas encompassing 
39,794 U.S. Census tracts. They identi-
fied four dimensions of heat vulnerability: 
a) social and environmental vulnerability—
the aggregation of low education level, 
poverty, ethnic-minority status, and lack of 
green space; b) social isolation, measured by 
the proportion of people living alone; c) AC 
prevalence; and d) underlying health condi-
tions, represented by the proportion of elderly 
in the population and the prevalence of 
diabetes. Later, they asked whether areas with 
high HVI scores at the ZIP-code scale had 
higher rates of mortality and morbidity on 
abnormally hot days (defined by maximum 
temperature above the 95th percentile for the 
30-year temperature distribution) (Reid et al. 
2012). They evaluated the relationship in five 
states: California, New Mexico, Washington, 
Oregon, and Massachusetts. In California, 
Washington, and Massachusetts, heat-related 
illness was more strongly associated with 
the HVI on abnormally hot days than on 
other days. But in Oregon, the association 
between the HVI and heat-related illness did 
not differ between abnormally hot days and 
other days. In New Mexico, a 1-unit increase 
in the HVI was associated with a significant 
decrease in heat-related hospitalization on 
abnormally hot days. These findings suggest 
that local characteristics may influence the 
accuracy of HVI measures for predicting the 
risk of adverse heat-related health outcomes 
in some areas.

Two HVI studies have been conducted 
in Arizona, using measures similar to those of 
Reid et al. (2009, 2012). Chow et al. (2012) 
constructed an HVI using seven indicators 
from the three dimensions of heat vulner-
ability (physical exposure, adaptive capacity, 
and sensitivity) at the census-tract level in 
metropolitan Phoenix. They used this HVI 
to investigate geographical change to heat-
stress risk between 1990 and 2000, and esti-
mated changes in heat vulnerability among 
different ethnic populations. They concluded 
that metropolitan Phoenix had experienced 
major demographic change during those 
10 years, and that demographic change alone 
had altered the region’s “heatscape.” Harlan 
et al. (2013) examined neighborhood vulner-
ability indicators for 2,081 census-block 
groups in Maricopa County, which includes 
the Phoenix metropolitan area. Using 278 

heat-death cases as dependent variables, they 
used binary logistic regression to validate a set 
of HVIs with different combinations of indi-
cators. They concluded that socioeconomic 
vulnerability, being elderly or isolated, and 
surface temperature were strong predictors of 
death from heat exposure.

Aim and Scope of This Study
Measurement, scale, and context all influence 
the identification of risk factors. Different 
combinations of risk factors can produce 
different “vulnerability landscapes.” To better 
understand the relationships among risk 
factors and different scales, we tested Reid 
et al.’s (2009) national indicators in Phoenix, 
one of the nation’s hottest cities. We applied 
Reid et al.’s (2009) variables at the census-
tract scale, but measured a few of them differ-
ently. We evaluated how accurately the model 
reflects actual risk of harm locally. At this 
fine scale, we expected our findings to differ 
from those of Reid et al. (2009, 2012) and 
the local research described above (Harlan 
et al. 2013). We asked where, and what kind 
of, neighborhoods are at risk of heat-related 
illness caused by factors beyond social and 
economic vulnerability, inadequate green 
space, social isolation, and diabetes. Using 
a multinomial (polytomous) logistic regres-
sion model, with hospital admissions for heat 
stress modeled as a three-category dependent 
variable (zero-, moderate-, or high-incidence 
census tracts), our study explored several 
questions: a) How well does a national HVI 
explain heat-related hospitalizations in the 
city of Phoenix? Analyzing the census tracts 
within the municipal boundary of Phoenix 
is highly relevant for interventions, because it 
is the scale at which local governments deter-
mine resource allocation and enforce policies. 
b) What is the relative importance of physical 
exposure, adaptive capacity, and sensitivity 
to hospitalization incidence, given Phoenix’s 
hot climate and high prevalence of air condi-
tioning? c) In which kinds of neighborhoods 
is the incidence of heat-related hospitalization 
explained well or poorly by the HVI? d) Are 
there neighborhood characteristics that are 
not included in the HVI that predict heat-
related hospitalizations in Phoenix?

Methods
Our dependent variable (hospital admis-
sions for heat stress) came from the Arizona 
Department of Health Services’ hospital 
discharge databases for 2004 and 2005. This 
data set contains a disease code [from the 
International Classification of Diseases, 9th 
Revision–Clinical Modification (ICD-9-CM)] 
and the census tract number of the patient’s 
residence. We used ArcGIS 10 (ESRI, 
Redlands, CA) to calculate the rate of heat-
related illness for each census tract and map 
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460 heat-related hospitalizations (ICD-9-CM 
codes 992.0–992.9, effects of heat and light), 
including heat stroke, heat exhaustion, and 
other less common heat-related outcomes in 
362 census tracts. We normalized the heat-
related hospitalizations between 2004 and 
2005 by census-tract population estimates for 
2010. Rates of hospitalization varied between 
0 and 0.76%; the average was 0.03% (see 
Supplemental Material, Figure S1).

The variables in Reid et al.’s (2009) study 
were our independent variables. Poverty, low 
education level, AC prevalence, and social 
isolation were indicators of adaptive capacity; 
ethnicity, age, and diabetes prevalence were 
indicators of a population’s sensitivity to 
heat; and density of green space indicated 
both physical exposure and adaptive capacity. 
Vegetation density has been shown to have 
a negative relationship with neighborhood 
temperatures (Jenerette et al. 2007), and it 
could mitigate the urban heat island effects 
(Gober 2010; Stone and Norman 2006).

We used data from the 2010 Census 
(http://factfinder.census.gov/faces/nav/jsf/
pages/index.xhtml) for our socioeconomic 
and demographic variables, which included 
the percentage of population living below 
the poverty line (poverty), > 65 years of age 
(elderly), ethnicity other than non-Hispanic 
white (minority), having less than a high 
school diploma (low education), living alone 
(all ages living alone), and living alone and 
> 65 years old (elderly living alone) at the 
census-tract level. To determine poverty, the 
U.S. Census Bureau uses a set of annual-
income thresholds that vary by family size 
and composition. The poverty threshold for 
a household in Phoenix with two adults is 
$14,218 (U.S. Census Bureau 2013a).

We measured diabetes rates differently 
from Reid et al. (2009, 2012). Whereas Reid 
et al. (2009, 2012) estimated diabetes preva-
lence based on age, race, and sex of a county’s 
population and applied the diabetes incidence 
rate of each group, we thought this method 
might miss small-scale effects of diabetes. 
Thus, we used the diabetes hospitalization 

rate as an indication of diabetes-related 
morbidity, and we felt it would provide 
a better measure of health inequality at the 
neighborhood level. Using the principal diag-
nosis code (ICD-9-CM codes 250.0–250.9, 
diabetes mellitus) and the associated census-
tract numbers, we mapped 7,727 cases of 
diabetes. We used census-tract population 
estimates for 2010 as the denominator and 
hospitalizations for diabetes during 2004 and 
2005 to calculate census tract–level hospi-
talization rates for diabetes. The rates varied 
from 0 to 5.52%; the average was 0.50%. 
Fifty-three (14.64%) of the census tracts had 
no hospital admissions for diabetes.

To determine AC prevalence,  we 
aggregated parcel-level residential AC data 
from the Maricopa County Assessor’s Office to 
the census-tract level. We obtained vegetation 
index using a high-resolution (15 m/pixel) 
ASTER image [NASA Land Processes 
Distributed Active Archive Center (LP 
DAAC); https://lpdaac.usgs.gov/data_access]. 
We combined three images taken on 16 June 
2005 and 6 July 2006 to represent Phoenix’s 
summer vegetation. The Normalized Difference 
Vegetation Index (NDVI) was calculated 
using red and near-infrared bands in ERDAS 
IMAGINE 2011 (download.intergraph.com/
downloads/erdas-imagine-2011), a remote-
sensing image-processing software.

Statistical analysis. A flow chart that 
illustrates our research steps can be found in 
Supplemental Material, Figure S2. Factor 
analysis was conducted using IBM SPSS 
version 19. We used factor scores from 
this analysis as independent variables in 
the multi nomial logistic regression (MLR), 
with health outcomes as dependent vari-
ables. A valid regression model that uses 
geographical/spatial data should consider the 
effect of spatial autocorrelation/ dependency 
(Ward and Gleditsch 2008). We used 
global Moran’s I to test the distribution of 
our dependent variable and model resid-
uals. The spatial pattern of the dependent 
variable was very close to a random distribu-
tion (Moran’s I = 0.10, p = 0.00), and the 

Moran’s I for residuals was 0.02, p = 0.00. 
We divided 362 census tracts into three 
groups of heat-related health outcomes: zero 
(146 tracts, 40.33%), moderate (109 tracts, 
30.11%), and upper 30th percentile (high 
incidence, 107 tracts, 29.56%). The deviance 
and chi-square value are both significant, 
providing evidence of good fit for the model.

Results
Correlation matrix. Spearman’s correlation 
coefficients show the relationships among 
each of the 10 census-tract level vulnerability 
indicators (Table 1). Diabetes hospitalization 
rates were significantly and positively corre-
lated with several indicators of socioeconomic 
disadvantage, including the proportions of 
the population that were race/ethnicity other 
than non-Hispanic white, below the poverty 
line, and that did not have a high school 
diploma. Reid et al. (2009) found a weaker 
correlation between diabetes prevalence and 
these variables (coefficients < 0.3). Use of 
different methods for the measurement of 
diabetes and the demographic structure of 
Phoenix may have affected our findings.

Another location-specific condition that 
did not stand out in Reid et al.’s analyses 
(2009, 2012) is AC prevalence. On the 
national level, AC variables showed no strong 
associations (coefficient < 0.02) with poverty 
and minority status. However, in Phoenix, AC 
variables have significant positive associations 
with poverty (coefficient > 0.5) and propor-
tion of minority (coefficient > 0.42). AC is 
vital to life and comfort in Phoenix, where 
temperatures average 41°C in July (Cerveny 
1996). Although Phoenix’s AC prevalence is 
> 90%, including central AC and window 
AC units (U.S. Census Bureau 2013b), the 
nearly 10% of housing units without AC are 
concentrated in economically disadvantaged 
neighborhoods in central Phoenix.

Table 1 also shows that the proportion 
of elderly was negatively associated with less 
than high school diploma (–0.42), poverty 
(–0.33), and low vegetation (–0.35) in 
Phoenix. These relationships were stronger 

Table 1. Spearman’s correlation for vulnerability variables.

Variable Diabetes

Race/ethnicity 
other than 

non-Hispanic white
Age > 65 

years Live alone

Elderly 
living 
alone

Below 
poverty 

line

Less than 
high school 

diploma
Low 

vegetation
No central 

AC

No AC 
of any 
kind

Diabetes 1.00
Race/ethnicity other than non-Hispanic white 0.63** 1.00
Age > 65 years –0.13* –0.54** 1.00
Living alone 0.34** 0.06 0.15** 1.00
Elderly living alone 0.27** –0.07 0.52** 0.57** 1.00
Below poverty line 0.73** 0.79** –0.33** 0.31** 0.16** 1.00
Less than high school diploma 0.67** 0.91** –0.42** 0.09 0.04 0.83** 1.00
Low vegetation cover 0.32** 0.34** –0.35** 0.12* –0.03 0.35** 0.38** 1.00
No central AC 0.51** 0.43** –0.05 0.25** 0.17** 0.51** 0.45** 0.23** 1.00
No AC of any kind 0.52** 0.42** –0.05 0.26** 0.17** 0.50** 0.43** 0.26** 0.93** 1.00

Spatial unit: census tract; n = 362.
*p < 0.05. **p < 0.01.
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than the data at the national scale (with coef-
ficients between –0.03 and –0.11). We can 
therefore interpret that the census tracts in 
Phoenix with a higher proportion of elderly 
residents were likely to be wealthier, greener, 
and better educated than what Reid et al. 
(2009) found at the county scale for the 
nation overall. This difference may be attrib-
utable to the influx of wealthy retirees into 
the Phoenix area, and the related prolifera-
tion of retirement communities featuring golf 
courses and outdoor recreational activities 
(Gober 2006).

Spatial pattern of heat stress in Phoenix. 
The map of heat-related hospitalization 
(Figure 1A) reveals an uneven rate pattern, 
with higher rates in the urban core. Urban-
fringe neighborhoods in northeast, northwest, 
and south Phoenix had relatively low rates 
of heat-related hospitalization. Of the three 
neighborhoods with the highest hospitaliza-
tion rates, one (no. 3 in Figure 1A), which 

sits directly west of Sky Harbor Airport, is 
a low-income neighborhood with a median 
household income of $20,488 and a Hispanic 
population of almost 90%. However, the 
other two (nos. 1 and 2 in Figure 1A) are 
middle-class (with median household incomes 
of $40,104 and $37,514) neighborhoods, and 
Hispanic populations of 25.7% and 52.3%, 
respectively.

Factor analysis. Like Reid et al. (2009), 
we applied a Varimax rotation in the factor 
analysis to minimize the number of original 
variables that load highly on any one factor 
and increase the variation among factors. We 
retained three factors (Table 2) with eigen-
values higher than one: a) poverty, ethnic 
minority, and low education; b) lack of AC 
and vegetation; and c) diabetes and social 
isolation, including elderly living alone. 
Factor 1 explained the highest amount of 
variance (44.7%); factors 2 and 3 explained 
19.98% and 10.46%, respectively. Together 

they explained 75.14% of the total variance, 
similar to the results of Reid at al. (2009) in 
which 75% of total variance was explained by 
four factors.

Poverty and minority status are impor-
tant factors in heat vulnerability, locally and 
nationally, and are included in factor 1 (see 
Supplemental Material, Figure S3A). Also 
included is a negative relationship with elderly 
populations: Disadvantaged neighborhoods 
in Phoenix tend to have a large number of 
children and relatively few elderly residents. 
Factor 2 combines lack of AC with lack of 
vegetation, and can be considered a location 
factor; it is associated with inner-city neigh-
borhoods (see Supplemental Material, 
Figure S3B). Residents of the inner city are 
at higher risk from heat than residents else-
where. Factor 3 (see Supplemental Material, 
Figure S3C) combines social isolation 
(especially of elderly people) with diabetes 
hospitalization. In Phoenix, demographic char-
acteristics make this combination an important 
factor. The elderly population is at high risk 
for diabetes (Arizona Department of Health 
Services 2008). In 2010, according to the 
U.S. Census Bureau (2011), 121,943 people 
> 65 years old lived in Phoenix, and about 
27% of them lived alone—a higher proportion 
than in cities neighboring Phoenix. The long 
history of retirement migration to Phoenix 
may have resulted in a large proportion of 
elderly living alone, and this population is at 
high risk of diabetes hospitalization.

Each census tract was assigned a score for 
each factor ranging from 0 to 6, where 0 was 
assigned to tracts with values ≥ 2 SD below 
the mean for the study area as a whole, and 
6 was assigned to tracts with values > 2 SD 
above the mean. The individual factor scores 
were then summed to derive the HVI for 
each tract, with each factor score given an 
equal weight (Figure 1B), as in other vulner-
ability studies (Cutter et al. 2003; Harlan 
et al. 2006; Schmidtlein et al. 2008; Wolf and 
McGregor 2013). Areas with high HVI scores 
were clustered in the downtown Phoenix 
central business district and along the south 
side of the industrial corridor.

MLR models. The results of the MLR 
show that only factor 1 (poverty and minority 
status) was a statistically significant predictor 
(p < 0.05) of a moderate-incidence versus 
zero-incidence tract [odds ratio (OR) = 2.00; 
95% confidence interval (CI): 1.50, 2.65 
for a 1-unit increase in the factor 1 score)] 
(Table 3). Factor 1 was also a significant 
predictor of a high-incidence versus zero-
incidence tract (OR = 2.74; 95% CI: 
2.03, 3.69), along with factor 3 (OR = 2.00; 
95% CI: 1.44, 2.76). These results suggest 
that census tracts with higher proportions of 
residents living in poverty and ethnic minori-
ties (factor 1), and tracts with higher rates of 

Figure 1. (A) Spatial distribution of heat-related hospitalization rate. Census-tract-level hospitalization 
rates for heat-related illness are hospitalizations for heat-related illness between 2004 and 2005 divided by 
census-tract population estimates for 2010 times 100 (percent). Nos. 1, 2, and 3 are the top three census 
tracts with high heat hospitalization rates (> 2.5 SD). (B) Heat vulnerability index (HVI; sum of three factor 
scores) in the city of Phoenix. Each census tract was assigned a score for each factor ranging from 0 to 6 
based on SD above or below mean. HVI scores range from 0 to 16.
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Heat hospitalization rate

0
1 to 10
11 to 12
13 to 14
15 to 16

Vulnerability 
index scores

Table 2. Factor analysis of 10 variables.

Variable Factor 1 Factor 2 Factor 3
Below poverty line 0.78 0.30 0.32
Race/ethnicity other than non-Hispanic white 0.93 0.10 0.04
Less than high school diploma 0.90 0.18 0.14
Age > 65 years –0.65 –0.15 0.49
No central AC 0.19 0.92 0.27
No AC of any kind 0.18 0.92 0.27
Low NDVI 0.44 0.45 –0.14
Age > 65 years living alone –0.06 0.10 0.89
Living alone 0.13 0.23 0.63
Diabetes 0.54 0.27 0.59

Factor 1: poverty, race/ethnic minority and low education; factor 2: lack of AC and vegetation; factor 3: diabetes and 
social isolation.
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hospitalization for diabetes and higher propor-
tions of residents > 65 years of age living alone 
(factor 3) are more vulnerable to heat stress 
than other census tracts.

We used the factor scores to predict the 
category (zero, moderate, and high incidence) 
of heat-related health outcomes in the MLR 
model. We then compared the predicted and 
observed values. From the classification table 
(Table 4), we found that the scores of HVI did 
a better job in predicting nonvulnerable areas 
than vulnerable areas. HVI accurately classified 
zero-incidence census tracts as zero-incidence 
tracts 79% of the time, but was less accurate 
for classifying moderate tracts as moderate 
versus zero or high incidence (27%) or for clas-
sifying high-incidence tracts as high-incidence 
versus moderate- or zero-incidence (48%). 
The overall accuracy rate in predicting heat-
related outcomes was only 54%, suggesting 
that accounting for additional factors beyond 
those in the standard vulnerability index would 
improve risk prediction.

Factor 2, with high loadings on lack of 
AC, was not a significant predictor of heat 
hospitalization in Phoenix (Table 3). AC has 
been recommended as a mitigation strategy 
to reduce heat impacts on health, because 
many studies find that AC prevalence is 
negatively associated with adverse health 
outcomes, especially on extremely hot days 
(Keatinge 2003; McGeehin and Mirabelli 
2001; Semenza et al. 1996, 1999). However, 
having an AC unit does not automatically 
mean being able to use it. According to a 
2009 survey that interviewed 359 households 
in three socially vulnerable neighborhoods in 
Phoenix, many families cannot afford to turn 
on their AC in the hottest season: 33–50% 
of respondents who have AC indicated that 
they avoid using AC to reduce electricity bills 
(Hayden et al. 2011).

Unpredictable neighborhoods. We looked 
at the neighborhood characteristics of the 
14% of census tracts that were oppositely 
misclassified by the model—35 neighbor-
hoods predicted to be zero-incidence neigh-
borhoods that were actually high-incidence 

neighborhoods (Table 5, group 1), and 17 
neighborhoods predicted to be high-incidence 
areas that were actually zero-incidence areas 
(Table 5, group 2). Many group 1 neighbor-
hoods were wealthy neighborhoods on the 
urban fringe (see Supplemental Material, 
Figure S4). Group 2 tracts were scattered in 
central and south Phoenix, and many of them 
were low-income, and their proportion of 
Hispanics and the diabetes rate there were 
higher than the city’s average.

To better understand risk factors beyond 
the scope of the national HVI, we looked at 
variables from other heat vulnerability studies 
which were not included in the study by Reid 
et al. (2009). These variables included the 
size of a census tract’s noncitizen population, 
the proportion of renters, residents living in 
the same residence < 5 years, unemployment 
rate, vacancy rate, and nighttime tempera-
ture (Chow et al. 2012; Harlan et al. 2013; 
Klinenberg 2002). The first variable is a 
proxy for newcomers who may have limited 
access to warnings, medical support, and 
resources that can help them gain relief from 
heat stress (Chow et al. 2012). Proportions 
of renters and new residents are measures of 
population mobility. Short-term renters and 
newcomers are likely to lack social support 
and assistance in their neighborhoods (Chow 
et al. 2012; U.S. Environmental Protection 
Agency 2006). Unemployment and vacancy 
rates are typically used as proxies for social 
stability of a neighborhood; unemploy-
ment rate captures the population’s lack of 
stable economic resources and vacancy rate 
explains a neighborhood’s prosperity. High 
unemployment, vacancy, and a high crime 
rate hinder residents from seeking help in 

their neighborhoods (Klinenberg 2002). We 
were not able to acquire crime-rate data at 
the census-tract scale for Phoenix, but we 
believe that unemployment and vacancy rates 
are adequate proxies for social stability. The 
final factor, nighttime temperature, represents 
the intensity of the urban heat island effect. 
We estimated nighttime surface temperatures 
using the thermal band of three ASTER 
satellite images (LP DAAC) that cover the 
entire Phoenix City. The images were taken 
in June 2003.

The above factors varied widely for the 
two groups of misclassified neighborhoods, 
so taking the averages of these variables for 
the two groups may not adequately repre-
sent the groups’ characteristics. We used the 
city’s average numbers for these variables as 
thresholds, and calculated the percentage of 
neighborhoods above the city average for each 
variable (Table 5). Group 1 neighborhoods, 
with much higher observed hospital admis-
sions than the HVI predicted, have higher 
neighborhood mobility (43%) than group 2 
neighborhoods (35% mobility). This finding 
suggests that high neighborhood mobility 
measured by residency status < 5 years may 
be associated with higher risk of heat-related 
illness. In addition, many of the neighbor-
hoods in group 1 were in low-density areas 
on the urban fringe. The low-density environ-
ment offers a different lifestyle than does the 
urban core, one that may be associated with 
health outcomes of residents. However, more 
work is required to understand why these 
tracts differ from the ones that were better 
predicted by HVI. Many neighborhoods in 
group 2 were located in the city core, and 
had higher population densities and a higher 

Table 3. Odds ratios (ORs) and 95% CIs for asso-
ciations between a 1-unit increase in each factor 
and census tracts with moderate or high inci-
dence of hospitalization for heat-related illness 
relative to zero-incidence census tracts based on 
multinomial logistic regression.

Predictor OR (95% CI) p-Value
Moderate-incidence tract

Factor 1 2.00 (1.50, 2.65) 0.00
Factor 2 0.84 (0.56, 1.27) 0.41
Factor 3 1.18 (0.85, 1.64) 0.32

High-incidence tract
Factor 1 2.74 (2.03, 3.69) 0.00
Factor 2 1.20 (0.90, 1.60) 0.21
Factor 3 2.00 (1.44, 2.76) 0.00

Reference category: zero-incidence tract.

Table 5. Characteristics of census tracts with misclassified heat vulnerability based on the HVI compared 
with average values for all census tracts in Phoenix City.

Characteristic
Group 1  
n = 35

Group 2  
n = 17

Phoenix City average  
n = 362

Median household incomea $52,972 $27,216 $48,750
Non-Hispanic white (%) 97 6 49
Diabetes (%) 34 94 0.5
Noncitizens (%) 11 71 16
Unemployment (%) 23 59 7.5
Proportion of renters (%) 49 65 42
Proportion living in the same residence < 5 years (%) 43 35 46
Vacancy rate (%) 46 71 13
Average surface temperatureb 26.1°C 26.6°C 25.7°C

The percentage for groups 1 and 2 refer to census tracts, not household. The percentages for Phoenix City are citywide 
average. Group 1: high-incidence census tracts predicted to be zero-incidence census tracts. Group 2: zero-incidence 
census tracts predicted to be high-incidence census tracts. 
aGroup 1: 60% of census tract > average; group 2: 0% of census tract > average. bGroup 1: 54% of census tract 
> average; group 2: 76% of census tract > average.

Table 4. Accuracy assessment (classification table).

Predicted 0 Predicted 1 Predicted 2 Percent correct
Observed 0 115 14 17 78.80
Observed 1 56 29 24 26.60
Observed 2 35 21 51 47.70
Percent correct 56.90 17.70 25.40 53.90

0 = zero-incidence; 1 = moderate-incidence; 2 = high-incidence census tracts.
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proportion of Hispanic residents than neigh-
borhoods in group 1, but experienced no 
heat-related hospitalization.

Discussion
Our findings suggest that low socioeconomic 
status, as well as the proportion of adults 
> 65 years of age living alone, percentage of 
adults living alone, and the rate of hospitaliza-
tion for diabetes, predict vulnerability to heat 
at the census-tract level. This finding coin-
cides with studies that found a strong associa-
tion between poverty, minority, and adverse 
health outcomes (Curriero et al. 2002; Harlan 
et al. 2006; Uejio et al. 2011) and studies 
showing that diabetes was associated with 
higher risk of heat-related illness (Schwartz 
2005; Semenza et al. 1999).

The proportion of dwellings with AC 
was not a significant predictor of heat-related 
hospital admissions in Phoenix, perhaps 
because the incidence of AC is so high or 
because having AC does not imply using it. 
Some heat-related illness occurs in those who 
work outside or engage in outdoor activity. 
Thus, having an AC at home does not elimi-
nate the risk of heat-related health problems. 
Therefore, reducing the risk of heat-related 
hospitalizations requires more than increasing 
home AC units. It also requires a) more 
effective risk mitigation for people who 
work or recreate outside; b) identification 
of socially isolated, diabetic patients; and 
c) awareness of the concentration of effects in 
disadvantaged neighborhoods.

From a political economic perspective, 
the process of marginalization is a funda-
mental factor making some urban residents 
(i.e., low income) more vulnerable to natural 
or environmental hazards (Browning et al. 
2006; Klinenberg 1999). However, there 
are other social characteristics, such as social 
capital or social networks, not measured by 
common social vulnerability indicators, that 
could offset the impact of environmental 
hazards on low-income or minority popula-
tions (Romero-Lankao et al. 2012). Several 
studies have found that some socioeconomi-
cally disadvantaged groups and immigrants 
have strong internal social networks that 
foster social cohesion and fast recovery from 
disasters (Chamlee-Wright and Storr 2009; 
Klinenberg 2002; Li et al. 2010). Klinenberg 
(2002) suggested that strong social networks, 
pedestrian-friendly streets, and shops, restau-
rants, and community organizations are 
sources of resilience that can save lives from 
heat stress. Living in a neighborhood with 
a robust social infrastructure that provides 
an environment for mutual assistance could 
reduce negative health impacts, especially 
during disasters (Sampson 2011).

High socioeconomic status does not 
necessarily mean low heat vulnerability, and 

vice versa. Our misclassified neighborhoods 
included wealthy, non-Hispanic white neigh-
borhoods with higher hospital admissions 
than the HVI would have predicted. Many 
of these neighborhoods had a higher propor-
tion of households that have relocated to the 
neighborhood in the past 5 years than the 
city average. Programs that enhance residents’ 
awareness of heat risks might also reduce the 
incidence of negative health outcomes in 
transient neighborhoods.

Our findings provide information that 
can help the city government plan effective 
interventions. We recommend a two-stage 
strategy to reduce heat-related hospital admis-
sions in Phoenix. The first stage should focus 
on immediate and short-term heat-mitigation 
among socioeconomically disadvantaged 
populations, especially in central Phoenix. 
We suggest that the municipal government 
relocate resources to neighborhoods with high 
HVI scores in the urban core. Interventions 
might include opening cooling centers during 
extreme heat events, providing information 
about how to prevent heat-related illness to 
disadvantaged populations, and increasing the 
efficiency and affordability of residential AC. 
The second-stage policy should focus on long-
term planning. Because high social isolation 
is associated with higher risk of heat-related 
illness, programs to care for people living 
alone or making warning information acces-
sible to those living alone are likely to reduce 
heat-related hospital admissions.

Good planning practices that improve 
health can bring co-benefits to the residents. 
It has been shown that changing urban design 
to reduce automobile dependency and carbon 
dioxide emissions (for example, creating a 
comfortable, pedestrian-friendly environment 
that increases walkability in neighborhoods) 
can also reduce the risks of cardiovascular 
disease, obesity, and diabetes (Lathey et al. 
2009), all of which that exacerbate the 
outcomes of heat stress.

We acknowledge that this study has 
several limitations. For the present analysis 
we used ICD-9-CM code 992 as the only 
outcome because this category is a straight-
forward measurement of heat impact on 
human health. However, using only this data 
set, we might underestimate heat impacts on 
human health because a) this data set records 
only serious cases that require hospitaliza-
tion, and, b) there are other human-health 
problems relevant to excessive heat, such as 
cardiovascular disease and respiratory diseases 
(Reid et al. 2012). The second limiting factor 
is that we assume the heat-related illness 
will have an equal probability of resulting in 
hospitalization in any census tract. However, 
compared with other residents, low-income 
people without health insurance and non-U.S. 
citizens may be less likely to seek medical care, 

and less likely to be hospitalized if they do 
seek care, even if they have the same severity 
of heat-related illness. Furthermore, the neigh-
borhood mobility indicators (e.g., residence 
for < 5 years) may not necessarily represent the 
actual social conditions, such as lack of social 
cohesion. Moreover, data used to characterize 
the predictors and the outcomes are defined 
at the census-tract scale. Although group-level 
associations are informative and relevant for 
planning group-level interventions, asso-
ciations with group-level characteristics cannot 
be assumed to represent associations with 
the same characteristics defined at individual 
level. Last, we used 2010 U.S. Census data to 
define HVI, but health outcomes were from 
2004 to 2005. Although this may not result 
in substantial bias or misclassification, this 
remains a potential limitation.

Conclusions
Generic indicator systems can predict the risk 
of heat-related health problems adequately 
and provide a useful picture of the spatial 
distribution of risk, but they are sensitive to 
scale, measurement, and context. Decision 
makers need to reflect on the particular char-
acteristics of their cities to determine how 
well the vulnerability maps reflect actual 
risk of harm. In Phoenix, the variables used 
on a national scale allowed us to accurately 
classify only about 54% of the census tracts 
based on heat hospitalizations. There is, 
however, a larger story about heat stress that 
is not captured by the standard vulnerability 
measures. There is no one-size-fits-all vulner-
ability indicator. Different types of problems 
and concerns require multiple strategies to 
evaluate the degree of vulnerability. Our 
study demonstrated that researchers need to 
take into account the wide institutional and 
social context that determines vulnerability, 
as expressed by the concept of “contextual 
vulnerability” (Hinkel 2011). In addition, 
vulnerability studies should not be limited to 
just the identification of vulnerable people and 
places, but should also include the explora-
tion of the sources of resilience in commu-
nities. Further research can build upon our 
heat vulnerability map to identify the source 
of resilience to heat in Phoenix and further 
investigate the factors that put neighborhoods 
at risk of heat-related illness.
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