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Introduction
Arsenic contamination of drinking water 
is a major public health problem in many 
countries, with > 137 million people in 
> 70 countries estimated to be exposed 
(International Agency for Research on Cancer 
2004). Chronic exposure to arsenic has been 
linked to a wide array of health conditions 
(Rahman et al. 2009), including cancers 
of the lung, bladder, liver, kidney, and skin 
(Celik et al. 2008; Liu and Waalkes 2008; 
Mink et al. 2008; Yu et al. 2006; Yuan et al. 
2010). Arsenic has also been associated with 
diabetes and cardio vascular disease, as well 
as neurological, reproductive, and respiratory 
conditions (Abhyankar et al. 2012; Golub 
et al. 1998; Huang et al. 2011; National 
Research Council 1999; Parvez et al. 2010; 
Vahidnia et al. 2007). Skin lesions are one 
of the earliest and most prevalent clinical 
manifestations of arsenic exposure and are 
considered the classical sign of arsenic toxicity 
(Yoshida et al. 2004).

Arsenic consumed in drinking water 
enters the blood stream as inorganic arsenic 
(iAs) [i.e., arsenite (AsIII) and arsenate 
(AsV)] and is metabolized primarily in the 
liver. According to the classical Challenger 
model of arsenic metabolism (Rehman and 
Naranmandura 2012), AsIII, the predomi‑
nant form of iAs in Bangladesh, is methylated 
using arsenic (+3 oxidation state) methyl‑
transferase (AS3MT) as the key enzyme and 
S‑adenosylmethionine (SAM) as the methyl 
donor (Thomas et al. 2007) to produce 
monomethyl arsonic acid (MMAV). After 
the reduction of MMAV to monomethyl‑
arsonous acid (MMAIII), a second methyla‑
tion step produces dimethyl arsinic acid 
(DMAV). Some DMAV can then be reduced 
to DMAIII (Thomas et al. 2004, 2007). The 
sum of urinary arsenic species (iAs, MMA, 
and DMA, including AsIII and AsV, MMAIII, 
and MMAV as well as DMAIII and DMAV) 
is regarded as a biomarker of recent inorganic 
arsenic exposure (Biggs et al. 1997), and the 

composition of urinary arsenic metabolites 
relative to total arsenic is believed to reflect 
arsenic methylation capacity. Higher arsenic 
methylation capacity is associated with lower 
risk for arsenical skin lesions, the classical 
sign of arsenic toxicity (Ahsan et al. 2007; 
Gao et al. 2011; Kile et al. 2011; Lindberg 
et al. 2007; Pierce et al. 2013; Valenzuela 
et al. 2005).

Familial aggregation and heritability 
analyses of arsenic metabolic profiles suggest 
that genetic factors influence inter individual 
variation in arsenic methylation capacity 
(Chung et al. 2002; Tellez‑Plaza et al. 2013). 
Candidate gene association studies have 
implicated single nucleotide polymorphisms 
(SNPs) in the AS3MT gene region in arsenic 
methylation capacity (Agusa et al. 2011; 
Rodrigues et al. 2012; Schläwicke Engström 
et al. 2009), and a recent genome‑wide asso‑
ciation study (GWAS) confirmed this finding, 
showing two clear association signals in the 
AS3MT region (Pierce et al. 2012, 2013). In 
the GWAS, AS3MT was the only region in 
the genome that harbored variants showing 
associations of genome‑wide significance. It 
remains unclear whether other SNPs that did 
not surpass the genome‑wide significance 
threshold have weaker associations with 
arsenic methylation capacity.

In this study, we searched for evidence 
that additional genetic variants (other than 

Address correspondence to B.L. Pierce, 5841 S. 
Maryland Ave., MC 2000, Department of Public 
Health Sciences, The University of Chicago, Chicago, 
IL 60637 USA. Telephone: (773) 702‑1917. E‑mail: 
brandonpierce@uchicago.edu; or H. Ahsan, 5841 
S. Maryland Ave., MC 2007, Department of Public 
Health Sciences, The University of Chicago, Chicago, 
IL 60637 USA. Telephone: (773) 834‑9956. E‑mail: 
habib@uchicago.edu

Supplemental Material is available online (http://
dx.doi.org/10.1289/ehp.1408909).

This work was supported by National Institutes 
of Health grants R01ES020506, P42ES010349, 
R01CA102484, R01CA107431, and P30CA014599. 

The funders had no role in study design, data 
collection and analysis, decision to publish, or 
preparation of the manuscript.

The authors declare they have no actual or potential 
competing financial interests.

Received: 2 July 2014; Accepted: 11 March 
2015; Advance Publication: 13 March 2015; Final 
Publication: 1 October 2015.

The Genetic Architecture of Arsenic Metabolism Efficiency: 
A SNP-Based Heritability Study of Bangladeshi Adults
Jianjun Gao,1,2 Lin Tong,1 Maria Argos,1 Molly Scannell Bryan,1 Alauddin Ahmed,3 Muhammad Rakibuz-Zaman,3 
Muhammad G. Kibriya,1 Farzana Jasmine,1 Vesna Slavkovich,4 Joseph H. Graziano,4 Habibul Ahsan,1,2,5,6 and 
Brandon L. Pierce1,2,5

1Department of Public Health Sciences, and 2Department of Human Genetics, The University of Chicago, Chicago, Illinois, USA; 
3UChicago Research Bangladesh (URB), Dhaka, Bangladesh; 4Department of Environmental Health Sciences, Mailman School of Public 
Health, Columbia University, New York, New York, USA; 5Comprehensive Cancer Center, and 6Department of Medicine, The University of 
Chicago, Chicago, Illinois, USA

Background: Consumption of arsenic-contaminated drinking water adversely affects health. There 
is inter individual variation in arsenic metabolism efficiency, partially due to genetic variation in the 
arsenic methyltransferase (AS3MT) gene region.

oBjectives: The goal of this study was to assess the overall contribution of genetic factors to 
variation in arsenic metabolism efficiency, as measured by the relative concentration of dimethyl-
arsinic acid (DMA%) in urine.

Methods: Using data on genome-wide single nucleotide polymorphisms (SNPs) and urinary 
DMA% for 2,053 arsenic-exposed Bangladeshi individuals, we employed various SNP-based 
approaches for heritability estimation and polygenic modeling.

results: Using data on all participants, the percent variance explained (PVE) for DMA% by 
all measured and imputed SNPs was 16% (p = 0.08), which was reduced to 5% (p = 0.34) 
after adjusting for AS3MT SNPs. Using information on close relatives only, the PVE was 63% 
(p = 0.0002), but decreased to 41% (p = 0.01) after adjusting for AS3MT SNPs. Regional 
heritability analysis confirmed 10q24.32 (AS3MT) as a major arsenic metabolism locus (PVE = 7%, 
p = 4.4 × 10–10), but revealed no additional regions. We observed a moderate association between 
a polygenic score reflecting elevated DMA% (composed of thousands of non-AS3MT SNPs) and 
reduced skin lesion risk in an independent sample (p < 0.05). We observed no associations for SNPs 
reported in prior candidate gene studies of arsenic metabolism.

conclusions: Our results suggest that there are common variants outside of the AS3MT region 
that influence arsenic metabolism in Bangladeshi individuals, but the effects of these variants are 
very weak compared with variants near AS3MT. The high heritability estimates observed using 
family-based heritability approaches suggest substantial effects for rare variants and/or unmeasured 
environmental factors.
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the known AS3MT variants) influence arsenic 
methylation capacity, measured as the relative 
concentration of DMA in urine, using 
various approaches to evaluate polygenic 
susceptibility. We used SNP‑based heritability 
methods to estimate the heritability in arsenic 
metabolism efficiency that is attributable to 
measured and imputed genome‑wide SNPs, 
which we also refer to as the percent variance 
explained (PVE) by measured SNPs. We also 
used a “family‑based” version of this method 
to estimate the full narrow‑sense heritability, 
which reflects the additive contributions of all 
variants, including unmeasured rare variants 
(Yang et al. 2010; Zhou et al. 2013). We 
also conducted regional heritability analyses 
to estimate the heritability due to common 
SNPs in each segment of the genome 
(Nagamine et al. 2012). We used poly genic 
scoring (Purcell et al. 2007) to assess the 
polygenic contribution of arsenic metabolism 
variants that passed a significance threshold 
to skin lesion risk. In addition, we evaluated 
associations of 20 SNPs reported to be asso‑
ciated with arsenic methylation capacity in 
prior candidate gene studies.

Materials and Methods
Study population. The Health Effects of 
Arsenic Longitudinal Study (HEALS) is a 
large prospective cohort study of the health 
consequences of arsenic exposure. Details 
of the study design have been published 
previously (Ahsan et al. 2006a). A total of 
11,746 healthy married adults (18–75 years of 
age) were enrolled in 2000–2002. At baseline, 
study interviewers collected information on 
demographic and lifestyle characteristics, 
conducted clinical examinations, and obtained 
biospecimens (blood and urine). Water samples 
from all 5,966 wells serving the 25‑km2 study 
area were collected. Follow‑up surveys and 
comprehensive physical examinations are 
conducted every 2 years. Approximately 1,000 
of the HEALS subjects in this analysis were 
randomly selected to have their metabolites 
measured, and > 1,000 additional participants 
had metabolite data available due to prior 
ancillary studies. Only HEALS samples were 
used for the primary analyses described below, 
including chip heritability, regional heritability, 
and associations for candidate SNPs. For the 
polygenetic scoring analyses, in addition to all 
2,053 HEALS samples with metabolite data, 
which constituted the training set, HEALS also 
contributed 1,285 controls and 24 skin lesion 
cases to the “testing” set.

The Bangladesh Vitamin E and Selenium 
Trial (BEST) is a 2 × 2 factorial randomized 
chemo prevention trial evaluating the effects 
of vitamin E and selenium supplementa‑
tion on non melanoma skin cancer risk 
(Argos et al. 2013). A total of 7,000 indi‑
viduals have been randomized to one of four 

treatment arms: vitamin E only (100 IU/day), 
L‑selenomethionine only (200 μg/day), both 
vitamin E and selenium, and placebo. All 
participants were required to have existing 
arsenic‑related skin lesions to be eligible. 
BEST participants are residents of roughly 
the same geographic area as HEALS, and 
the studies have very similar protocols, 
questionnaires, and biospecimen collection 
procedures. Biological samples, including 
blood and urine, were collected at baseline, 
along with clinical and covariate data. In 
this study, 1,990 BEST participants living 
in the Araihazar area were randomly selected 
for genotyping. These 1,990 skin lesions 
cases were included in the polygenic scoring 
analyses only, as a part of the “testing set.” 

SNP genotyping. A sample of 5,499 
individuals was selected from HEALS 
(n = 3,454) and BEST (n = 2,045) for 
genome‑wide SNP genotyping using Illumina’s 
Cyto12 SNP array (~ 300,000 SNPs). For 
HEALS, DNA was extracted from clotted 
blood using Flexigene DNA kits (catalog no. 
51204; from QIAGEN. For BEST, DNA 
was extracted from whole blood using the 
QIAamp 96 DNA Blood Kit (catalog no. 
51161; QIAGEN). Genotyping methods and 
quality control have been described previously 
(Pierce et al. 2012, 2013). Genotyping was 
conducted in two batches. A total of 5,354 
participants and 257,747 SNPs passed our 
quality control (QC) filters. QC included 
sample‑level filters (excluding samples with 
call rate < 0.97, outlying hetero zygosity 
values, and sex mismatches) and marker‑level 
filters (excluding SNPs with call rates < 0.95 
and Hardy–Weinberg p < 10–10, and minor 
allele frequency < 0.01) as described previ‑
ously (Pierce et al. 2012, 2013). The total 
genotyping rate among eligible samples was 
99.8%. Genotype imputation was conducted 
using MaCH (Markov Chain Haplotyping 
algorithm) software and the HapMap 3 GIH 
reference panel (Gujarati Indians in Houston), 
yielding genotypes for 1,211,988 SNPs after 
QC, restricting to SNPs with an imputation 
accuracy of r2 > 0.3 (Li et al. 2010).

Measurements of arsenic in water and 
urine. Urinary arsenic was measured at the 
Trace Metals Core Laboratory at Columbia 
University, which is a member of the 
QC program run by the Institute de Sante 
Publique du Quebec and uses their QC 
samples to standardize the measurements of 
urinary arsenic. The laboratory has consis‑
tently measured urinary arsenic concentra‑
tion with correlation > 0.97 for blinded 
quality control samples. Urinary creatinine 
was measured by a colorimetric diagnostics kit 
(Sigma). The sum of urinary arsenic concen‑
tration was divided by creatinine to obtain 
creatinine‑adjusted total arsenic concentra‑
tion (micrograms per gram creatinine) 

(Basu et al. 2005). Of the 3,364 genotyped 
HEALS participants who passed QC, 2,053 
had existing data on arsenic metabolites, as 
described previously (Ahsan et al. 2007). 
High‑performance liquid chromatography 
(HPLC) was used to separate arseno betaine, 
arseno choline, iAsV, iAsIII, MMA, and DMA 
(Reuter et al. 2003), and their concentrations 
were measured using inductively coupled 
plasma‑mass spectrometry with dynamic 
reaction cell. Because AsIII can oxidize to AsV 
during sample transport, storage, and prepara‑
tion, we express total iAs as AsIII + AsV. iAs%, 
MMA%, and DMA% were calculated as 
percentages of the sum of urinary arsenic, after 
subtracting arsenobetaine and arseno choline 
(forms of nontoxic organic arsenic from 
dietary sources) from total arsenic. Drinking 
water arsenic concentrations were analyzed by 
graphite furnace atomic absorption or, when 
concentrations were < 5 μg/L, by inductively 
coupled plasma‑mass spectrometry (Cheng 
et al. 2004; van Geen et al. 2003). 

Ascertainment of skin lesions. At baseline 
and at each follow‑up interview of HEALS, 
skin lesions were ascertained using a struc‑
tured protocol by trained study physicians. 
Through the whole‑body examination, the 
study physician recorded the presence or 
absence of melanosis, leukomelanosis, and 
keratosis as well as their location, size, and 
shape. For the purposes of this analysis, skin 
lesion cases were defined as participants diag‑
nosed with any type of skin lesion. In BEST, 
skin lesions were evaluated using protocols 
similar to those used in HEALS. All BEST 
participants had existing arsenic‑related skin 
lesions at baseline.

Estimation of variance in arsenic 
metabolism efficiency explained by SNPs 
(i.e., heritability). Our analysis sample was 
composed of 2,053 HEALS participants 
with data on genome‑wide SNPs and arsenic 
metabolites. Because HEALS participants are 
selected from a relatively small geographic 
region, a subset of our participants are 
genetically related to another participant, as 
described previously (Pierce et al. 2012). We 
used the DMA% variable to represent arsenic 
metabolism efficiency because it is strongly 
and inversely correlated with both iAs% and 
MMA% and because DMA% showed the 
strongest association with 10q24.32 variants 
in our prior GWAS (Pierce et al. 2012).

To estimate the PVE in DMA% by genetic 
factors (i.e., the “heritability”), we used a linear 
mixed model (LMM) approach originally 
proposed by Yang et al. (2010). This method 
is often referred to as genomic restricted 
maximum likelihood estimation (GREML). 
The general purpose of the GREML method 
is to estimate the proportion of variation in a 
phenotype that is due to all measured SNPs. 
This is fundamentally different from the 
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traditional GWAS approach because our goal 
is to estimate variance explained by all SNPs, as 
opposed to testing individual SNPs for associa‑
tion with a phenotype. The GREML method 
is well established, has been described in detail, 
and exploits the fact that genotypic similarity 
(i.e., “relatedness,” measured using SNPs) will 
be correlated with phenotypic similarity for 
phenotypes that are influenced by genetic 
variation. The GREML method can utilize 
data on very distantly related individuals, indi‑
viduals that are typically considered “unrelated” 
in traditional GWAS. A LMM is used to 
estimate the PVE by measured SNPs for a 
phenotype, as implemented in the Genome‑
wide Complex Trait Analysis (GCTA) software 
package (Yang et al. 2011). For a detailed 
description of the analytic method, see 
Supplemental Material, “LMM Analysis.”

To quantify genetic similarity between 
individuals, we constructed an n‑by‑n genetic 
relationship matrix (GRM), where n is the 
sample size (n = 2,053) and each element repre‑
sents the degree to which a pair of individuals 
are related. Each element of the GRM is the 
genome‑wide proportion of alleles shared IBS 
(identical by state) between two participants, 
as described by Yang et al. (2011), referred to 
here as “KIBS.” Under circumstances where the 
individuals are closely related, KIBS is a good 
estimate of allele sharing IBD, KIBD (identical 
by descent, where the shared alleles are inher‑
ited from the same ancestor), because KIBS 
will capture information on all variants in the 
genome. However, KIBS is not an ideal estimate 
of KIBD for distantly related individuals because 
it will primarily capture only information on 
measured SNPs (Zaitlen et al. 2013). Thus, 
SNP‑based heritability estimates obtained from 
very distantly related individuals will tend to be 
lower than the true narrow‑sense heritability.

Using the GREML method, we obtained 
three different types of PVE/heritability 
estimates. First we estimated PVE using all 
partici pants (using the full IBS‑based GRM). 
Next, we estimated PVE using a modified 
GRM in which distant relatives were assumed 
to be unrelated (i.e., KIBS values < 0.05 were 
set to zero), producing an estimate of the 
IBD‑based GRM (Zaitlen et al. 2013). This 
provides an estimate of the full narrow‑sense 
heritability (h2), which includes the additive 
effects of all genetic variation, including 
nongenotyped variants, but it is prone to 
bias due to shared environment. This h2 
estimate is comparable to those generated 
in family‑based heritability studies. We also 
estimated the PVE after excluding indi‑
viduals from close‑relative pairs to produce a 
data set of only distantly related individuals 
(all KIBS < 0.05). This method provides an 
estimate of the heritability due to measured 
SNPs (hg

2). The PVE estimate based on the 
full GRM (the first one described above) is 

essentially a mix of h2 and hg
2. Covariates 

included in the LMM were age (continuous), 
sex (men vs. women), batch (batch 1 vs. 2, 
binary), water arsenic quartiles (categorical), 
smoking status (nonsmoker, former smoker, 
and current smoker, categorical), and body 
mass index (BMI; ≥ 10.2, 18.5–25.0, and 
≥ 25.0 kg/m2, categorical). Twenty principal 
components (PCs; continuous) were included 
to minimize potential biases caused by popu‑
lation structure; PCs were generated using 
EIGENSTRAT (Patterson et al. 2006). PVE 
analyses were first run using only genotyped 
SNPs to construct the GRM, and then run 
again using both genotyped and imputed 
SNPs to construct the GRM.

Regional heritability analysis. We also 
conducted genome‑wide regional heritability 
analysis using Regional Genomic Relationship 
Mapping (REACTA) software (Nagamine 
et al. 2012). This method quantifies the contri‑
bution of a specific genomic region to the heri‑
tability of a phenotype using a mixed model 
that includes random effects for a specific 
region and a residual whole‑genome effect. The 
whole‑genome additive effect was estimated 
by using all SNPs to construct the GRM, 
whereas the regional effect was estimated using 
only SNPs from a specific region to estimate 
a local GRM. We estimated the regional heri‑
tability across all 22 autosomes among all the 
non‑close relatives (KIBS < 0.05, n = 1,338). 
We analyzed 4,924 100‑SNP windows 
for the genotyped SNPs (with an overlap of 
50 SNPs between neighboring windows) and 
4,787 300‑SNP windows for the imputed  
SNPs (with an overlap of 50 SNPs between 
neighboring windows). p‑Values for the 
heritability estimates were assessed using a 
Bonferroni‑corrected p threshold (0.05/4,924 
or 4,787 = 1.0 × 10–5).

Polygenic scoring. Because AS3MT 
variants that influence arsenic metabolism 
also influence arsenical skin lesion risk (Ahsan 
et al. 2006b; Pierce et al. 2013), we assessed 
the potential polygenic contribution of arsenic 
metabolism–related SNPs to skin lesion risk. 
We generated a polygenic model for DMA% 
using data from all 2,053 HEALS participants 
with arsenic metabolite data. Using this model, 
we generated SNP‑based polygenic scores in 
an independent data set of 2,014 skin lesion 
cases (1,990 BEST samples and 24 HEALS 
samples) and 1,285 controls from HEALS, 
and we tested the score for association with 
case–control status. To ensure that our poly‑
genic scoring analysis was not influenced by 
the contributions of highly correlated SNPs, 
we pruned out 170,512 SNPs to produce a 
data set of genotyped SNPs with no pairwise 
r2 values > 0.2 using the ‑‑indep‑pairwise 
command in PLINK (http://pngu.mgh.
harvard.edu/~purcell/plink/). To ensure we 
were evaluating associations for non‑AS3MT 

SNPs only, we further excluded 36 SNPs 
within ± 1 Mb of the AS3MT transcribed 
region. We also removed 9,852 SNPs with 
low minor allele frequencies (MAF < 0.05), 
resulting in 77,347 SNPs that were included in 
the polygenic score analysis.

The polygenic analysis was conducted as 
follows. Among the 2,053 participants with 
DMA% data (the “training set”), we estimated 
a beta coefficient for the association between 
the minor allele of each SNP and DMA%, 
adjusting for age (continuous), sex, concentra‑
tion of water arsenic (continuous), and geno‑
typing batch (binary). For each individual in 
the case–control sample (the “testing set”), a 
polygenic score was calculated as follows: Using 
the results from the analysis of the training set, 
we first set a p‑value threshold to select SNPs 
for inclusion in the polygenic model. Several 
p‑value thresholds were used: 10–4, 10–3, 0.01, 
0.1, 0.3, and 0.5. For each SNP with a p‑value 
below the threshold, the number of minor 
alleles carried by each individual in the testing 
set (0, 1, or 2) was multiplied by the SNP’s 
beta coefficient derived from the training 
set. For each individual, these weighted allele 
counts were then summed over all SNPs 
passing the threshold and divided by the total 
number of summed SNPs to produce the poly‑
genic score (as implemented in the PLINK 
“score” command) (Purcell et al. 2007). These 
scores were then tested for association with 
skin lesion status using mixed linear regression 
models adjusting for sex, age, and genotyping 
batch implemented in genome‑wide efficient 
mixed model association (GEMMA) (Zhou 
and Stephens 2012). To approximate the corre‑
sponding odds ratio (OR), the beta coefficient 
was first divided by [x(1 – x)], where x is the 
proportion of cases in our sample, in order to 
estimate the beta from a logistic model. This 
quantity was exponentiated to obtain an OR.

Analysis of candidate variants identified 
in prior studies. We identified 20 variants in 
15 genes with previously reported associations 
with arsenic metabolism phenotypes (Agusa 
et al. 2012; Breton et al. 2007; Chen et al. 
2012; Chiou et al. 1997; Engström et al. 
2010, 2011; Paiva et al. 2010; Porter et al. 
2010; Rodrigues et al. 2012; Schläwicke 
Engström et al. 2009; Steinmaus et al. 
2007). We examined their associations 
with arsenic metabolism phenotypes in our 
GWAS data using mixed linear regression 
models adjusted by sex, age, and genotyping 
batch. For those candidate SNPs that were 
not genotyped in our study, we identified 
proxy SNPs with r2 > 0.8 that were geno‑
typed in our study based on HapMap2 CHB 
(Han Chinese in Beijing, China) and JPT 
(Japanese in Tokyo, Japan) data. 

Standard protocol approvals, registrations, 
and patient consent. The study protocol was 
approved by the institutional review boards 
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of The University of Chicago, Columbia 
University, and the Bangladesh Medical 
Research Council, and all study participants 
provided informed consent.

Results
Characteristics of HEALS participants and 
their associations with DMA% are shown 
in Table 1. In a multi variate model, older 
age (> 50), female sex, and lower arsenic in 
either water or urine were associated with 
higher arsenic metabolism efficiency (higher 
DMA%). Compared with participants 
with BMI between 18.5 and 25.0, people 
of both higher and lower BMI had elevated 

DMA%. No association was observed for 
smoking status. BEST participants do not 
have DMA% data and were only involved 
in the polygenic scoring analyses; thus, these 
participants are not included in Table 1.

Two types of PVE estimates for DMA% 
are presented in Table 2, those based on geno‑
typed SNPs only, and those based on geno‑
typed and imputed SNP. Below we discuss the 
results obtained using genotyped and imputed 
SNPs. The PVE estimate for DMA% was 16% 
(p = 0.08) when using a GRM calculated from 
all 2,053 participants. After adjusting for sex, 
age, concentration of water arsenic (quartiles), 
genotyping batch, BMI, and smoking status, 

the estimate decreased to 12% (p = 0.16). 
After adjustment for the top 20 principal 
components, the estimate changed to 15% 
(p = 0.10). The PVE estimate decreased to 5% 
after adjusting for two SNPs in the AS3MT 
region identified in our prior GWAS (rs9527 
and rs11191527) (Pierce et al. 2012, 2013).

The PVE estimates for DMA% based on 
the modified GRM in which KIBS < 0.05 were 
set to zero (i.e., based on all participants and 
defining distant relationships as unrelated) 
was 63% (p = 0.0002). After adjusting for 
covariates, the estimate decreased to 54% 
(p = 0.001). This estimate decreased to 41% 
(p = 0.01) after adjusting for the two SNPs 
in the AS3MT region. After eliminating 
close relative pairs from the data set (no 
KIBS > 0.05), our sample size was too small 
(n = 1,338) to generate a non‑zero heritability 
estimate using GCTA (data not shown).

However, we were able to use the data set 
of distant relatives (no KIBS > 0.05) to conduct 
regional heritability analysis. The most signifi‑
cant regional PVE estimates were obtained for 
two adjacent windows in the 10q24.32 region 
harboring AS3MT, and these accounted for 
approximately 7% of the variation in DMA% 
(p = 4.4 × 10–10 and 8.2 × 10–8) (Figure 1, 
w1 and w2). The regional heritability results 
based on genotyped data are the same as those 
based on imputed data (data not shown). After 
Bonferroni correction, no region showed a 
significant PVE estimate other than 10q24.32. 
Regional heritability analyses using the full 
data set (i.e., both close and distant relatives) 
produced very similar results (see Supplemental 
Material, Figure S1).

Polygenic scores for DMA% were not 
significantly associated with skin lesion status 
when using p‑value thresholds of p < 10–4, 
p < 10–3, and p < 0.01 (unless including 
AS3MT SNPs when using a threshold of 
< 10–4); however, polygenic scores for DMA% 
were associated with skin lesion status when 
p‑value thresholds of < 0.1, < 0.3, and < 0.5 
were used to construct the score (Table 3). 
For example, when a threshold of p < 0.5 
was applied, the beta coefficient for the 

Table 1. Characteristics of HEALS participants and their associations with arsenic metabolism efficiency, 
that is, DMA% (n = 2,053).a

Characteristic No. (%)b
DMA%

β SE p‑Value
Sex 

Women 1,015 (49.4) Referent
Men 1,038 (50.6) –2.98 0.41 < 0.0001

Age
17–29 438 (21.3) Referent
30–39 589 (28.7) –0.06 0.44 0.90
40–49 557 (27.1) 0.16 0.46 0.74
50–70 469 (22.8) 1.20 0.51 0.02

Water arsenic (μg/L)
Quartile 1 (0–8) 514 (25.3) Referent
Quartile 2 (9–49) 503 (24.8) –1.04 0.43 0.02
Quartile 3 (50–127) 507 (25.0) –1.68 0.43 < 0.0001
Quartile 4 (128–864) 507 (25.0) –2.57 0.43 < 0.0001

Smoking status
Never 1,161 (56.6) Referent
Ever 892 (43.5) –0.15 0.44 0.73

BMI (kg/m2)
10.2–18.4 864 (42.1) Referent
18.5–24.9 1,059 (51.6) 0.89 0.32 0.005
25.0–51.8 130 (6.3) 2.22 0.65 0.0006

Urinary arsenic adjusted for creatinine (μg/g)
Quartile 1 (11–89) 426 (20.9) Referent
Quartile 2 (90–176) 556 (27.2) –0.19 0.44 0.66
Quartile 3 (177–343) 595 (29.2) –1.25 0.43 0.004
Quartile 4 (344–8,556) 464 (22.7) –2.74 0.46 < 0.0001

Prevalent skin lesion
No 1,974 (96.7) Referent
Yes 67 (3.3) –0.59 0.87 0.49

aβ, SE, and p-values were obtained from mixed linear regression models, adjusting for age, sex, genotyping batch, 
smoking, BMI, and arsenic concentrations in drinking water. bCategorical variables are presented as counts and 
percentages. 

Table 2. Estimates of the percent variance explained (PVE) by genetic factors for DMA% obtained from linear mixed regression models.

HEALS participants Covariate adjustment

All genotyped SNPs 
(n = 257,747)

All genotyped and imputed SNPs 
(n = 1,211,988)

PVE (%) SE p‑Value PVE (%) SE p‑Value
All participantsa (n = 2,053) No adjustment 13 10 0.09 16 12 0.08

Adjusted for covariatesb 10 10 0.15 12 12 0.16
Further adjusted for PCsc 11 11 0.16 15 12 0.10
Adjusting for two 10q24.32 SNPs  3 10 0.36  5 12 0.34

All participants, defining distant relationships 
as “unrelated”d (n = 2,053)

No adjustment 48 13 0.0004 63 16 0.0002
Adjusted for covariatesb 42 14 0.002 54 17 0.001
Adjusted for two 10q24.32 SNPs 35 14 0.007 41 17 0.01

PCs, principal components.
aUsing the full GRM, KIBS on all individuals. The PVE is in between the full narrow-sense heritability and the heritability due to measured SNPs. bCovariates including sex, age 
(continuous), concentration of water arsenic (quartiles), genotyping batch, BMI, and smoking status. cTwenty principal components as additional covariates to minimize inflation in 
significance testing caused by population stratification. dUsing a modified GRM, with KIBS set as 0 if KIBS < 0.05 (i.e., ignoring distant relationships); this approximates the KIBD for all 
individuals. The PVE corresponds to the full narrow-sense heritability. After eliminating close relative pairs from the data set (KIBS > 0.05), our sample size was too small (n = 1, 338) to 
generate a non-zero heritability estimate using GCTA. 
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association polygenic scores for DMA% was 
–0.05 (p = 0.02), suggesting that many alleles 
that cause very small increases in DMA% are 
also inversely associated with skin lesions. The 
beta coefficients (and ORs) in Table 3 corre‑
spond to a one standard deviation change in 
the polygenic score.

Table 4 shows associations between arsenic 
metabolite percentages and variants that have 
shown suggestive evidence of association with 
arsenic metabolites in prior candidate gene 
studies. No SNP showed significant evidence 
of association (p < 0.05) except for MTHFR‑
rs1801133 (p = 0.03 for MMA%) and 
DNMT1‑rs2228612 (p = 0.04 for DMA% 
and p = 0.03 for iAs%). The directionality 
of association was consistent with the prior 
publications for MTHFR‑rs1801133, but 
DNMT1‑rs2228612 showed an association 
in the opposite direction to the association 
previously reported.

Discussion
In this study, we have assessed, for the first 
time, the overall contribution of genetic 
variation to arsenic methylation capacity, as 
measured by DMA%, using SNP‑based heri‑
tability methods. The PVE estimates obtained 
using only information on close relatives were 

63%, consistent with estimates obtained from 
a recent family‑based study (59%) (Tellez‑
Plaza et al. 2013). When distantly related 
individuals were included in the analysis, PVE 
estimates were much lower (16%). Overall, 
these results suggest that the excess herita‑
bility observed in studies of close relatives 
is due to variants not represented on the 
genotyping/imputing array (e.g., rare variants) 
or bias due to shared environmental factors. 
In regional heritability analyses, the AS3MT 
region produced the only significant PVE 
estimate. These results suggest that among 
common variants captured on our genotyping 
platform, AS3MT SNPs are the major genetic 
determinants of arsenic methyla tion capacity 
in this population and that contributions 
of other common variants to methylation 
capacity are substantially weaker than the 
effects of AS3MT variants.

Prior studies have examined familial 
aggregation patterns for arsenic methyla‑
tion phenotypes. A study of Chileans with 
long‑term exposure to high levels of arsenic 
in drinking water demonstrated that urinary 
concentrations of iAs, MMA, and DMA, as 
well as their ratios, were strongly correlated 
among siblings (r = ~ 80), after adjustment 
for total urinary arsenic (Chung et al. 2002). 

The authors observed lower correlations for 
father–mother pairs (r = 0.18), suggesting that 
genetic factors influence arsenic metabolic 
profiles. A population‑based study in Taiwan 
found that patients with Blackfoot disease, an 
arsenic‑induced peripheral vascular disease, 
were three times more likely to have a family 
history of Blackfoot disease than community 
controls (Chen et al. 1988), also suggesting 
that genetic factors influence arsenic metabo‑
lism and/or toxicity. Our heritability estimate 
for DMA% based on close relatives (48% or 
63%) is similar to the heritability estimated 
in a recent study of Native American families 
(59%) (Tellez‑Plaza et al. 2013).

The association between variants in the 
10q24.32/AS3MT region with arsenic 
methyla tion capacity is consistent across many 
candidate gene studies (Agusa et al. 2011; 
Rodrigues et al. 2012; Schläwicke Engström 
et al. 2009) and has recently been confirmed 
in a GWAS (Pierce et al. 2012, 2013). In 
addition to AS3MT, dozens of candidate 
genes have been examined for association 
with arsenic methylation capacity in prior 
studies, based on various hypotheses related 
to methyl transferases, one‑carbon metabolism, 
and reduction reactions (Schläwicke Engström 
et al. 2009). SNPs in GSTO1, GSTO2 (Paiva 
et al. 2010; Rodrigues et al. 2012), MTHFR 
(Steinmaus et al. 2007), PNP (De Chaudhuri 
et al. 2008), GSTM1 (Breton et al. 2007; 
Chiou et al. 1997; Steinmaus et al. 2007), and 
several other genes have even been reported 
to be associated with arsenic methylation 
capacity (Agusa et al. 2012; Engström et al. 
2010, 2011; Ghosh et al. 2008; Hernández 
and Marcos 2008; Porter et al. 2010; 
Schläwicke Engström et al. 2009). However, 
many of these studies were limited by small 
sample sizes, and the genetic variants under 
investigation have not shown a great deal of 
consistency across studies (e.g., Ahsan et al. 
2007; Hernández and Marcos 2008; Xu et al. 
2009). In this study, we observed evidence of 
replication for only one SNP with a previously 
reported association (MTHFR rs1801133), 
and this association is very weak compared 
with SNPs in the 10q24.32 region. However, 
lack of replication could potentially be due 

Figure 1. Regional heritability estimates (A) and corresponding p-values (B) for DMA%, excluding close 
relatives (KIBS < 0.05, n = 1,338). Estimates were obtained using measured and imputed SNPs with a 
window size 100 SNPs with a 50 SNP overlap between windows. A total of 4,924 tests were conducted. 
The red line represents the Bonferroni-corrected p-value threshold. The two adjacent/overlapping 
windows that surpass the p-value threshold reside in the 10q24.32 region and are labeled “w1” and “w2.” 
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Table 3. Associations between polygenic scores for DMA% and skin lesion status.a

p‑Value threshold

non‑AS3MT SNPs AS3MT SNPs included

No. of SNPs Betab SE p‑Value OR (95% CI)c No. of SNPs Betab SE p‑Value OR (95% CI)c

p < 10–4 11 –0.007 0.007 0.34 0.97 (0.91, 1.03) 13 –0.02 0.007 0.01 0.93 (0.87, 0.98)
p < 10–3 87 0.001 0.008 0.89 1.00 (0.94, 1.07) 89 –0.005 0.008 0.53 0.98 (0.92, 1.05)
p < 0.01 801 0.01 0.01 0.22 1.06 (0.97, 1.15) 803 0.01 0.01 0.35 1.04 (0.96, 1.14)
p < 0.1 7,810 –0.03 0.02 0.04 0.87 (0.76, 0.99) 7,812 –0.04 0.02 0.03 0.86 (0.75, 0.99)
p < 0.3 23,281 –0.04 0.02 0.04 0.85 (0.73, 0.99) 23,283 –0.04 0.02 0.03 0.85 (0.73, 0.98)
p < 0.5 38,644 –0.05 0.02 0.02 0.82 (0.70, 0.96) 38,646 –0.05 0.02 0.01 0.82 (0.70, 0.96)

CI, confidence interval.
aThe polygenic model was developed using all 2,053 participants with DMA% data and SNP data; the testing set was an independent set of 2,014 cases and 1,285 controls. bThe 
polygenic scores have been standardized, so the β coefficients from the mixed linear regression model correspond to a 1-SD change in the polygenic score, adjusted for sex, age, and 
genotyping batch. cOdds ratios (ORs) were calculated by dividing the beta coefficient by [x(1 – x)], where x is the proportion of cases in our sample, in order to estimate the beta from a 
logistic model; this quantity was exponentiated to obtain an OR. 
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to the fact that genetic variants can have 
different patterns of association in different 
populations because of population differences 
in linkage disequilibrium (LD) with causal 
variants, differences in allele frequency, and/or 
differences in the prevalence of environmental 
exposures that interact with the variant to 
influence the phenotype of interest.

In the present study, we used four 
different modeling approaches to estimate 
heritability (i.e., PVE). First, we estimated 
overall heritability using the full IBS‑based 
covariance matrix for all study participants, 
including closely related individuals. This 
estimate should fall between the full narrow‑
sense heritability and the heritability due to 
measured SNPs (hg

2). Second, we estimated 
heritability by focusing on close relatives, 
using only an IBD‑based kinship matrix 
assuming zero relatedness between pairs of 
individuals whose estimated relatedness was 
< 0.05. This is an estimate of the full narrow‑
sense heritability (h2), capturing contribu‑
tions of rare variants, but this estimate is 
prone to bias due to shared environmental 
factors. Third, we estimated heritability due 
to genotyped SNPs (hg

2) using the IBS‑based 
matrix constructed after removing close rela‑
tives from the data set. This is a more conser‑
vative approach to estimating heritability, 
as the presense of close relatives may cause 
bias due to shared environ mental exposures. 
Fourth, we conducted regional heritability 
analyses, obtaining many heritability esti‑
mates corresponding to many small regions 
of the genome. Although the low heritability 
observed may reflect a limited contribution 
of common variants to arsenic methylation 
capacity, we do not have ideal power to accu‑
rately estimate modest heritability values. 
Excluding close relatives is an impotant 
consideration when conducting SNP‑based 
heritiability estimation because relatives may 
be more likely to share similar (unmeasured) 
environmental exposures that influence 
the phenotype, potentially inflating herita‑
bility estimates (Yang et al. 2010). We have 
a substantial number of related individuals 
in our analysis, with only 1,338 samples 
remaining after removing related pairs with a 
relationship coefficient > 0.05.

The polygenic scoring analyses suggests 
that there may be common SNPs with 
weak effects on arsenic metabolism outside 
of the AS3MT region. For these analyses 
we assumed that SNPs influencing arsenic 
metabolism will also influence skin lesion 
risk. This assumption holds for DMA%‑
associated variants in the AS3MT region and 
is supported by multiple studies reporting 
an inverse association between DMA% and 
skin lesion risk (Ahsan et al. 2007; Gao et al. 
2011; Kile et al. 2011; Lindberg et al. 2007; 
Pierce et al. 2013; Valenzuela et al. 2005). 

The observation that associations are present 
only when less stringent p‑value thresholds 
are used implies that there are many variants 
with very weak effects on arsenic metabolism 
that also influence skin lesion risk. In order to 
identify such variants with very weak effects, 
association studies with larger sample sizes 
would be needed.

Arsenic‑induced skin lesions are also 
influenced by many nongenetic factors, and 
we have assessed associations for several such 
factors in prior studies of this population. 
For example, we have reported that skin 
lesion risk is associated with arsenic, BMI 
(Argos et al. 2011), dietary patterns (Pierce 
et al. 2011), smoking, and occupational risk 
factors (Melkonian et al. 2011). Although 
these associations are clearly important as 
potential determinants of arsenic toxicity, 
we do not consider them in our polygenic 
scoring analysis because they are not poten‑
tial confounders of the association between a 
SNP (or a SNP score) and skin lesion status.

In this work, we chose to use DMA% as 
a measure of arsenic methylation capacity. 
Alternative measures of methylation capacity 
include iAs%, MMA%, and metabolite ratios, 
which are highly correlated with DMA%. 
We chose to present results for DMA%, in 
part, because in our prior GWAS (Pierce 
et al. 2012), DMA% showed the stron‑
gest associations with SNPs in the AS3MT 
region compared with iAs%, MMA%, and 

metabolite ratios. Furthermore, PVE esti‑
mates for MMA% or iAs% were similar to 
those for DMA%, but somewhat weaker in 
magnitude (results upon request).

Although our study is the first SNP‑based 
heritability study of arsenic methylation 
capacity, it has several limitations. First, 
our total sample size for metabolism study 
was only 2,053, which is relatively small 
for SNP‑based heritability estimation. This 
hindered our ability to estimate heritability 
with high precision and to estimate heri‑
tability using a smaller, “unrelated” subset 
of study participants. Larger sample size, as 
well as denser SNP measurements (such as 
genome‑wide sequencing), would enhance 
our ability to estimate heritability and 
conduct polygenic scoring analysis. We were 
able to measure arsenic metabolites only in 
urine and not in other relevant specimens 
such as blood, although this is a limitation of 
most studies of arsenic metabolism.

Conclusions
In this SNP‑based heritability study of arsenic 
metabolism efficiency, we estimated total 
narrow‑sense heritability for DMA% to be 
48–63% (using data on close relatives only), 
but the heritability due to measured SNPs was 
substantially lower (13–16%). Because the 
larger narrow‑sense (“family‑based”) estimate 
captures the effects of measured common 
variants and unmeasured rare variants (as 

Table 4. Association between arsenic metabolism phenotypes and candidate SNPs with associations 
reported in prior studies.

Gene Reported SNP Function Population
Sample 

size References

p for associationa

DMA% MMA% iAs%
GSTO1-1 rs4925 Ala140Asp Bangladesh 1,800 Rodrigues et al. 2012 0.46 0.94 0.60

Taiwan 247 Chen et al. 2012
GSTO2-2 rs2297235 UTR‑5 Bangladesh 1,800 Rodrigues et al. 2012 0.96 0.78 0.54

rs156697 Asn142Asp Chile 207 Paiva et al. 2010 0.51 0.72 0.55
CHDH rs9001b Glu40Ala Argentina 111 Schläwicke Engström 

et al. 2009
0.51 0.23 0.79

rs7626693 Intron Argentina 111 0.28 0.19 0.44
MTRR rs1801394c Ile49Met Argentina 111   
GLRX rs3822751c Intron Argentina 111
PRDX2 rs10427027 3’‑UTR Argentina 111 0.26 0.82 0.21

rs12151144b Intron Argentina 111 0.26 0.82 0.21
DNMT rs16999593 His97Arg Argentina 111 0.15 0.59 0.11
TXNRD2 rs5746847b Intron Argentina 108 Engström et al. 2010 0.48 0.61 0.62
Apex1 rs1130409c Asp148Glu Argentina 108  
GSTM1 Gene deletion 

 
Bangladesh 97 Breton et al. 2007   
Taiwan 115 Chiou et al. 1997   
Argentina 170 Steinmaus et al. 2007   

GSTT1 Gene deletion Taiwan 115 Chiou et al. 1997
MTHFR rs1801133 C677T Argentina 170 Steinmaus et al. 2007 0.053 0.03 0.20

rs1801131 A1298C Argentina 170 0.75 0.14 0.78
GSTP1 rs1695 Ile105Val Vietnam 190 Agusa et al. 2012 0.85 0.52 0.49
CBS rs234709c Intron Argentina 142 Porter et al. 2010   

rs4920037 Intron Argentina 142 0.25 0.21 0.50
DNMT1 rs2228612b Intergenic Bangladesh 361 Engström et al. 2011 0.04 0.31 0.03
DNMT3B rs6087990 Intergenic Bangladesh 361 0.66 0.15 0.61
DNMT3B rs2424913 Intergenic Bangladesh 361 0.46 0.19 0.97
ap-Values are based on a linear mixed regression model (GEMMA) to account for relatedness; adjustments include sex, 
age, and genotyping batch. bUsing rs2241807 data as a proxy of rs9001 (r 2 = 0.81); rs10427027, rs5748485, and rs11672909 
are proxies for rs12151144, rs5746847, and rs2228612 (r 2 = 1.0); r 2 values are based on HapMap GIH data. cNo data on 
tag SNPs was available for rs1801394, rs3822751, rs1130409, and rs234709.
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well as shared environmental influences), and 
the smaller “unrelated” estimate captures the 
effects of measured common variants only, our 
results suggests that rare variants (e.g., AS3MT 
coding variants) and/or unknown or poorly 
measured environmental/lifestyle factors that 
cluster in families (e.g., dietary factors) make 
a substantial contribution of inter individual 
variation in arsenic methylation capacity. 
Moderate associations between a polygenic 
score for DMA% (composed of non‑AS3MT 
SNPs) and skin lesion status were detected, 
suggesting the existence of additional common 
variants that have very weak effects on 
arsenic metabolism efficiency. Our regional 
heritability analyses did not detect addi‑
tional susceptibility regions, consistent with 
the hypothesis that the effects of common 
variants outside of the 10q24.32/AS3MT 
region are likely to be very weak. Although 
these findings may not apply to other popula‑
tions, our results suggest that future studies 
of Bangladeshi individuals with comparable 
exposure levels will have to have large sample 
sizes in order to detect associations between 
DMA% and common SNPs outside of the 
AS3MT region. Studies of rare variants may 
reveal genetic effects that contribute to the 
high heritability estimates observed in our 
family‑based heritability analyses.

This work enhances our knowledge 
regarding the genetic architecture of arsenic 
methylation capacity in a population where 
the public health impact of arsenic exposure 
is substantial. Understanding the determi‑
nants of arsenic metabolism is critical because 
metabolism efficiency will likely affect the 
internal (or biological effective) dose, which 
will in turn impact risk for all arsenic‑related 
health conditions. Understanding these deter‑
minants will improve our ability to identify 
high‑risk subgroups and develop inter‑
ventions to enhance metabolism efficiency or 
reduce exposure.
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