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Introduction
Childhood obesity has increased rapidly since 
the mid-1980s [World Health Organization/
United Nations Environment Programme 
(WHO/UNEP) 2013]. Greater body mass 
index (BMI) in childhood is associated with 
future risk of obesity, cardiovascular disease, 
certain cancers and a range of other diseases 
(Baker et al. 2007; Han et al. 2010). There 
is emerging interest in the possibility that 
exposure to certain xenobiotic chemicals may 
be obesogenic (Grün and Blumberg 2009; 
Holtcamp 2012; La Merrill and Birnbaum 
2011) and may change growth patterns 
and induce weight gain, obesity, and ulti-
mately insulin resistance and type 2 diabetes 
(La Merrill et al. 2013). It has been suggested 
that potential effects of obesogens may be 
strongest when exposure occurs during 
 pregnancy (Huang et al. 2007).

Thus far, the most consistent evidence 
of obesogenic effects in humans has been 
reported for gestational tobacco exposure 
(Oken et al. 2008; Thayer et al. 2012). Over 
the last two decades, a number of longitu-
dinal epidemiological studies have studied 
the potential obesogenic effects of prenatal 
exposures to endocrine-disrupting chemi-
cals (EDCs), and recent literature reviews 

have summarized these studies (La Merrill 
and Birnbaum 2011; Lee et al. 2014; Tang-
Péronard et al. 2011; Wang et al. 2014; 
WHO/UNEP 2013). Most epidemiological 
studies have evaluated potential effects of 
single persistent organic pollutants, and most 
have focused on organochlorine compounds, 
with the most consistent evidence for obeso-
genic effects thus far reported for dichloro- 
diphenyldichloroethylene (DDE) (Delvaux 
et al. 2014; La Merrill and Birnbaum 2011; 
Lee et al. 2014; Valvi et al. 2014; Warner 
et al. 2013). Only a few studies have evalu-
ated potential obesogenic effects of prenatal 
exposure to other groups of EDCs, including 
bisphenol A (BPA), phthalates, and heavy 
metals (Delvaux 2014; Gardner et al. 2013; 
Harley et al. 2013; Tian et al. 2009; Valvi 
et al. 2013). Recent international expert work-
shops (e.g., by the U.S. National Toxicology 
Program) have called for further epidemio-
logical research to establish whether the obeso-
genic effects seen in animals are supported by 
evidence in humans (Thayer et al. 2012).

Until now, epidemiological studies 
on obesogenic effects of in utero exposure 
to EDCs have assessed the risks of single-
pollutant exposures. Most human popula-
tions are exposed to mixtures of EDCs rather 

than to a single pollutant, and isolating 
the potential effects of one EDC exposure 
from another is difficult when exposures are 
correlated due to common sources (Sun et al. 
2013). Only a few studies have evaluated the 
health effects of mixtures of EDCs (Braun 
et al. 2014; Grandjean et al. 2012; Lee et al. 
2007, 2010; Lenters et al. 2015; Patel et al. 
2010) and none have addressed obesogenic 
effects. With an increasing number of chemi-
cals now proposed as suspected obesogens, 
there is a need to identify those most relevant 
for human obesity risk.

The aim of the current study is to use data 
on multiple chemical exposures measured in 
the INMA (“Infancia y Medio Ambiente”—
Environment and Childhood) study to 
evaluate the associations between biomarker 
concentration of 27 EDCs and child weight 
status at age 7 years.

Methods
St u d y  p o p u l a t i o n .  Da t a  f r o m  t h e 
Environment and Childhood Project 
(INMA) in Sabadell (Catalonia, Spain) were 
used. The study protocol has been described 
elsewhere (Guxens et al. 2012). Briefly, 657 
women were enrolled during 2004–2006, 
in the first trimester of pregnancy during 
their first ultrasound visit at the public health 
center. Women were eligible for participa-
tion if they were > 16 years of age, had no 
communication problems, a singleton 
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Background: Prenatal exposure to endocrine-disrupting chemicals (EDCs) may induce weight 
gain and obesity in children, but the obesogenic effects of mixtures have not been studied.

oBjective: We evaluated the associations between pre- and perinatal biomarker concentrations of 
27 EDCs and child weight status at 7 years of age.

Methods: In pregnant women enrolled in a Spanish birth cohort study between 2004 and 2006, 
we measured the concentrations of 10 phthalate metabolites, bisphenol A, cadmium, arsenic, and 
lead in two maternal pregnancy urine samples; 6 organochlorine compounds in maternal pregnancy 
serum; mercury in cord blood; and 6 polybrominated diphenyl ether congeners in colostrum. 
Among 470 children at 7 years, body mass index (BMI) z-scores were calculated, and overweight 
was defined as BMI > 85th percentile. We estimated associations with EDCs in single-pollutant 
models and applied principal-component analysis (PCA) on the 27 pollutant concentrations.
results: In single-pollutant models, HCB (hexachlorobenzene), βHCH (β-hexachlorocyclohexane), 
and polychlorinated biphenyl (PCB) congeners 138 and 180 were associated with increased child 
BMI z-scores; and HCB, βHCH, PCB-138, and DDE (dichlorodiphenyldichloroethylene) with 
overweight risk. PCA generated four factors that accounted for 43.4% of the total variance. The 
organochlorine factor was positively associated with BMI z-scores and with overweight (adjusted RR, 
tertile 3 vs. 1: 2.59; 95% CI: 1.19, 5.63), and these associations were robust to adjustment for other 
EDCs. Exposure in the second tertile of the phthalate factor was inversely associated with overweight.
conclusions: Prenatal exposure to organochlorines was positively associated with overweight at 
age 7 years in our study population. Other EDCs exposures did not confound this association.
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pregnancy, and no assisted conception. 
Questionnaires were administered by trained 
interviewers during the first (around week 12) 
and third trimester (around week 32), at 
delivery, and at 14 months, 4 years, and 
7 years after birth to assess maternal and 
child health status, sociodemographic char-
acteristics, maternal reproductive history, 
and other characteristics. Ethical approval 
was obtained from the Clinical Research 
Ethical Committee of the Municipal Institute 
of Health Care, and informed consent was 
obtained from all subjects at each visit.

Outcome assessment. Weight (kilograms) 
and height (centimeters) of the children 
at approximately 7 years of age (range, 
64–95 months) were measured by specially 
trained nurses; 470 children participated in 
this follow-up. Child weight and height were 
measured using standard protocols (without 
shoes and in light clothing). Age- and sex-
specific body mass index (BMI) z-scores were 
calculated based on the WHO standard refer-
ence (de Onis et al. 2007, 2009). Overweight 
was defined as BMI z-score (zBMI) ≥ the 
85th percentile.

Chemical exposures. Our analyses included 
27 chemicals, suspected to be EDCs, previ-
ously measured in the cohort in biological 
samples collected during pregnancy or at birth. 
Specific analytical methods for each group of 
chemicals are described in their respective refer-
ence. Maternal urine was collected in the first 
and third trimesters of pregnancy and used to 
measure BPA (Casas et al. 2013), 10 phthalate 
metabolites (Valvi et al. 2015), and metal 
concentrations [arsenic (As), lead (Pb) and 
cadmium (Cd)] (Fort et al. 2014). Maternal 
blood was collected during the first trimester of 
pregnancy and used to measure organochlorine 
pesticides [DDE, hexachlorobenzene (HCB), 
and β-hexachlorocyclohexane (βHCH)] and 
polychlorinated biphenyls (PCBs) (Mendez 
et al. 2011). Cord blood was used to measure 
total mercury (Hg) concentration (Llop et al. 
2012). Maternal colostrum samples collected 
at the hospital during the first 48–96 hr post-
partum were used to measure poly brominated 
diphenyl ethers (PBDEs) (Gascon et al. 
2012). PBDEs were measured in colostrum 
milk because its higher fat content enabled 
better detection rates than did cord blood. 
Further, colostrum levels reflect well the 
accumulation of maternal exposure during 
pregnancy (Gascon et al. 2012). To account 
for urine dilution, the urinary concentrations 
of phthalate metabolites, BPA, and metals 
were divided by the urinary concentrations 
of creatinine (concentrations are expressed in 
micrograms per gram creatinine for phthalates 
and BPA, and in nanograms per gram creati-
nine for metals). For each of these chemicals, 
the two adjusted urine measurements during 
pregnancy were averaged because of the 

high within-person variability characterizing 
these exposures. The serum concentration of 
the organochlorine pesticides and the PCBs 
were lipid-normalized in units of nanograms 
per gram serum lipid. The cord blood total 
mercury concentration was expressed in micro-
grams per liter. The colostrum concentrations 
of the PBDEs were also lipid-normalized in 
units of nanograms per gram colostrum lipid.

Statistical analysis. All chemical concen-
trations were log10 transformed to obtain 
normal distributions. Correlations between 
the transformed concentrations of the 
27 EDCs in the original data sets were assessed 
by computing Pearson correlation coefficients. 
Linearity of the associations between EDC 
levels and zBMI were assessed in the original 
data set using generalized additive models 
(GAM) (data not shown). Because some of 
the EDCs demonstrated significant nonlinear 
associations (p for linearity < 0.1) with zBMI, 
we analyzed all exposure variables in categories 
defined by tertiles. For zBMI at age 7 years 
we fitted multiple linear regression models 
and reported beta coefficients with 95% confi-
dence intervals (CIs). For overweight we fitted 
generalized linear models with Poisson family, 
log link, and robust variance to estimate 
relative risks (RRs) and 95% CIs.

There were missing values in the exposure 
variables ranging from 3% (organochlorine 
pesticides and PCBs) to 59.6% (PBDEs) of 
participants. Only 8.5% of the participants 
had complete data on all 27 exposure variables. 
Overall, 28.7% of exposure data values were 
missing (3,642 data points out of the 12,690 
total values for 27 chemicals × 470 children) 
(see Supplemental Material, Figure S1). 
Therefore, to evaluate multiple pollutant 
exposures in one model, we used a multiple 
imputation approach to impute the missing 
exposure values (Royston and White 2011). 
As recommended, to assess the missing at 
random (MAR) assumption, we first tested 
whether the likelihood of missing exposure 
data (missingness) was associated with either 
of the outcomes (t-test for the continues and 
chi-test for overweight) (data not shown). We 
then tested whether exposure missingness was 
associated with known values of confounders 
and covariates in our data set. To determine 
which of the variables to include as predic-
tors in the imputation process, we evaluated 
correlation, t-test, or chi-square test with each 
one of the imputed variables, as appropriate 
(data not shown). We used imputation models 
that were more general than the analyses 
models and included the health outcomes, 
the variables related to the missingness, and 
auxiliary variables that were associated with 
the exposure (Azur et al. 2011; White et al. 
2011). We imputed 100 data sets based on the 
recommendations of Graham (2009). Detailed 
information regarding the imputation process 

and a list of the variables used is provided in 
Supplemental Material, “Description of the 
Imputation Procedure.” The same approach 
was applied to impute missing values for the 
model covariates [missing data ranged from 
0.2% (breastfeeding data) to 33.6% (sedentary 
behavior at age 7 years)].

Potential confounders were selected based 
on a review of the literature on the deter-
minants of our exposure variables and risk 
factors for increased BMI (Casas et al. 2013; 
Forns et al. 2013; Gascon et al. 2012; Llop 
et al. 2012; Valvi et al. 2013, 2014, 2015). 
All statistical models were adjusted for the 
same set of potential confounders: child’s sex 
(male, female), gestational age (continuous in 
weeks), birth weight (continuous, in grams), 
exact age at the time that the outcome was 
measured (continuous, in months), and 
maternal country of origin (Spain, non-Spain), 
maternal age at delivery (continuous, in years), 
maternal prepregnancy BMI (continuous, in 
kilograms per meter squared), maternal weight 
gain during pregnancy (low, recommended, 
or high) [Institute of Medicine (IOM) 2009], 
maternal social class [managers, technicians, 
and associate professionals (nonmanual); other 
nonmanual workers; and skilled, semiskilled, 
and unskilled manual workers], breastfeeding 
duration (less than or more than 16 weeks), 
and maternal smoking during pregnancy 
(nonsmoking, any smoking during pregnancy).

We first conducted single-pollutant models 
for each of the 27 EDCs separately to evaluate 
the associations between tertiles of expo-
sures and child weight status at age 7 years. 
Crude and confounder-adjusted models were 
fitted using complete cases (i.e., removing 
missing values) and using imputed data sets. 
Results from multiply imputed data sets were 
combined using standard multiple imputation 
rules (White et al. 2011). We evaluated the 
confounding effect separately for each chemical 
and co-variable (data not shown).

To evaluate multiple chemical exposures 
simultaneously, we used principal component 
analysis. Principal-component analysis (PCA) 
reduces the number of correlated variables 
into a smaller number of artificial variables 
(factors) that capture most of the variance of 
the original variables while being uncorrelated 
with each other (Hatcher 1994). This allows 
the resulting factors to be included within 
the same model, reducing issues of multicol-
linearity. To apply PCA on the imputed data 
set, we first calculated an overall variance–
covariance matrix based on within- and 
between-imputation covariance matrices, and 
this matrix was used to fit the PCA (Li et al. 
1991). We chose to retain four factors based 
on the scree plot and the number of nontrivial 
factors (Brown 2009). We applied a Varimax 
rotation and calculated factor scores for each 
participant. These four factor scores were 
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categorized into tertiles and included in the 
regression models. Models included all four 
factors separately and simultaneously.

Previous studies have suggested that child 
sex, maternal smoking, maternal BMI, and 
maternal socioeconomic status may modify 
the associations between EDCs and later child 
weight status (Mendez et al. 2011; Thayer 
et al. 2012; Wang et al. 2014). We evaluated 
these potential effect modifiers in our study 
by including in the models the interaction 
term between the four PCA factors and the 
possible modifier. We also evaluated the associ-
ations between PCA factors and weight status 
stratified by the categories of the potential 
effect modifiers. We evaluated the p-values 
for the interaction terms and for the strati-
fied analysis for each of the tertiles. Finally, 
as a sensitivity analysis we evaluated further 
adjustment for total daily caloric intake of 
the child during the last year and hours per 
day spent in sedentary activities, including 
time watching television, using computers, 
and playing video games (three categories: 
< 1 hr/day during week and < 2 hr/day 
during weekend; < 1 hr/day during week and 
2–3 hr/day during weekend or 1–2 hr/day 
during week and < 2 hr/day during weekend 
or 1–2 hr/day during week and 2–3 hr/day 
during weekend; > 2 hr/day during week or 
> 3 hr/day during weekend).

Statistical significance was defined as 
p-value < 0.05. All analyses were performed 
using the statistical package STATA version 
12.1 (StataCorp, College Station, TX, USA).

Results
Our analyses included 470 singleton children 
with available data on BMI at 7 years of age. 
Data on 27 EDCs exposure variables and 
demographic variables are presented in Table 1 
and Table 2, respectively. The mean and the 
geometric mean (GM) concentrations of 
the 27 EDCs were generally similar in the 
original and the imputed data set (Table 1). 
The prevalence of overweight children at 
follow-up was 31.9% (n = 150) (Table 2). 
Mothers were predominantly of Spanish 
origin (91.7%), from lower socioeconomic 
class (44.5%), with a high prevalence of 
higher than recommended weight gain during 
pregnancy (38.9%), and a high smoking 
rate during pregnancy (27.2%) (Table 2). 
There were minor differences in the imputed 
data set distributions compared with the 
original data set (Table 2). Correlation coef-
ficients were generally weaker between EDCs 
from different chemical groups compared 
with those within groups (see Supplemental 
Material, Figure S2).

Single-pollutant, complete-case, adjusted 
models for the 27 EDCs exposures showed a 
statistically significant increase in zBMI with 
increasing exposure to HCB [adjusted (adj) 

β tertile 3 vs. 1: 0.49; 95% CI: 0.16, 0.82], 
βHCH (adj β tertile 3 vs. 1: 0.37; 95% CI: 
0.08, 0.82), PCB-138 (adj β tertile 3 vs. 1: 
0.36; 95% CI: 0.04, 0.68), and PCB-180 
(adj β tertile 3 vs. 1: 0.41; 95% CI: 
0.05, 0.77) (Figure 1; see also Supplemental 
Material, Table S1). For DDE, tertile 3 esti-
mates were increased compared with tertile 1 
and nearly reached statistical significance (adj 
β tertile 3 vs. 1: 0.27; 95% CI: –0.02, 0.56). 
For 7OHMMeOP [mono(4-methyl-7-
hydroxyoctyl) phthalate], tertile 3 estimates 
were decreased compared to tertile 1 and 
nearly reached statistical significance (adj β 
tertile 3 vs. 1: –0.29; 95% CI: –0.59, 0.01). 
Certain phthalates and certain PBDEs showed 
nonsignificant negative associations. For 
example, for PBDE-53 and PBDE-54 tertile 2 
estimates were decreased compared with 
tertile 1 (adj β tertile 2 vs. 1: –0.31; 95% CI: 
–0.73, 0.11) (Figure 1; see also Supplemental 
Material, Table S1).

Adjusted estimates based on the imputed 
data set were very similar to those based on 
the complete case analyses (Figure 1; see 
also Supplemental Material, Table S1). 

Adjustment for the covariates in the single-
pollutant models had some small effects on 
the point estimates for most chemical expo-
sures (Figure 1; see also Supplemental Material, 
Table S1). However, for the PCBs, changes in 
the direction of the estimate associations were 
observed. For example, for PCB-180 tertile 3 
estimates compared with tertile 1 were changed 
from negative to positive associations between 
the crude and adjusted models (crude β 
tertile 3 vs. 1: –0.19; 95% CI: –0.47, 0.09; 
adj β tertile 3 vs. 1: 0.41; 95% CI: 0.05, 0.77). 
These changes were attributable mainly to 
adjustment for maternal prepregnancy BMI.

Generally, results for single-pollutant, 
complete-case, adjusted models using over-
weight as the outcome measure were similar 
in direction to results using zBMI (see 
Supplemental Material, Figure S3). For HCB, 
βHCH, and PCB-138 associations with 
overweight were statistically significant in the 
third tertiles of exposure (adj RR tertile 3 vs. 
1: 2.17; 95% CI: 1.08, 4.38; adj RR tertile 3 
vs. 1: 1.94; 95% CI: 1.04, 3.61; and adj RR 
tertile 3 vs. 1: 2.14; 95% CI: 1.05, 4.35; 
respectively). For PCB-180, associations with 

Table 1. Concentrations and percentage of quantifiable and missing samples for the 27 EDCs in the 
original data set and the imputed data set (n = 470).

EDCs

Complete case, original data set Imputed data set

< LOD 
(n)

Missing 
(n) Minimum Maximum Mean (95% CI) GM Mean (95% CI) GM

MEPa 0 110 34 9379.9 605.4 (525.2, 685.7) 379.5 597.8 (523.6, 672.1) 376.1
MnBPa 0 110 5.8 835.7 46.1 (39.2, 53) 32.4 45.6 (39.8, 51.4) 32.7
MiBPa 0 110 5.1 334.2 41.5 (37.4, 45.5) 32.6 41.1 (37.5, 44.7) 32.6
MBzPa 0 110 1.5 405.1 19.1 (15.7, 22.5) 12.5 18.8 (16, 21.7) 12.6
7OHMMeOPa 81 122 0.4 343.5 3.4 (1.5, 5.4) 1.7 3.2 (1.7, 4.6) 1.8
MECPPa 0 110 7.7 718.9 51.6 (46.1, 57.1) 40.8 50.9 (46.1, 55.6) 40.6
MEHHPa 0 110 5.3 503.4 38.2 (33.5, 42.9) 28.6 37.6 (33.6, 41.5) 28.6
MEOHPa 0 110 4.1 378.3 27.8 (24.5, 31.1) 21.5 27.4 (24.6, 30.2) 21.4
MEHPa 0 110 1.8 266.9 14.6 (12.8, 16.3) 11.2 14.5 (13, 16) 11.2
MCMHPa 0 182 14.4 1086.5 58.3 (49.7, 66.9) 45.9 56.1 (50, 62.1) 45.3
BPAa 0 97 0.3 69.4 3.7 (3.1, 4.2) 2.7 3.6 (3.2, 4.1) 2.7
Cdb 23 188 0.1 5.9 0.7 (0.6, 0.8) 0.6 0.7 (0.6, 0.8) 0.6
Asb 0 99 2.9 702.2 65.5 (57.7, 73.3) 42.8 66.1 (58.6, 73.6) 43
Pbb 3 190 0.5 25.2 5.1 (4.6, 5.6) 4.2 5.3 (4.9, 5.8) 4.4
Hgc 24 120 1.4 60 8.1 (7.5, 8.8) 6.3 8.2 (7.6, 8.9) 6.4
DDEd 1 14 7.7 17263.4 236.4 (152.3, 320.5) 126.3 235.5 (153.8, 317.2) 126.8
HCBd 34 14 4.5 293 51.9 (48.1, 55.7) 38.5 51.9 (48.1, 55.7) 38.4
βHCHd 45 14 4.4 497.6 41.2 (37.8, 44.6) 31.3 41.2 (37.8, 44.6) 31.3
PCB-138d 100 14 4.5 98.1 20.4 (19.2, 21.5) 16.9 20.3 (19.2, 21.5) 16.8
PCB-153d 33 14 4.5 154.9 37.3 (35.4, 39.2) 31.5 37.3 (35.4, 39.2) 31.4
PCB-180d 75 14 3.9 119.7 25.2 (23.8, 26.6) 20.7 25.1 (23.7, 26.5) 20.6
PBDE-47e 61 280 0.1 15 1 (0.7, 1.2) 0.5 1 (0.8, 1.1) 0.5
PBDE-99e 59 280 0 8.9 0.6 (0.4, 0.7) 0.3 0.6 (0.5, 0.7) 0.3
PBDE-100e 39 280 0 3.2 0.4 (0.3, 0.4) 0.2 0.4 (0.3, 0.4) 0.2
PBDE-153e 24 280 0.1 12.2 1 (0.8, 1.1) 0.7 1 (0.8, 1.2) 0.7
PBDE-154e 25 280 0.1 12.2 1 (0.8, 1.1) 0.7 1 (0.8, 1.2) 0.7
PBDE-209e 37 280 0 5.3 1.1 (1.0, 1.3) 0.8 1.1 (1, 1.2) 0.8

Abbreviations: As, arsenic; βHCH, β-hexachlorocyclohexane; BPA, bisphenol A; Cd, cadmium; CI, confidence interval; 
DDE, dichlorodiphenyldichloroethylene; EDCs, endocrine-disrupting chemicals; GM, geometric mean; HCB, hexachloro-
benzene; Hg, mercury; LOD, limit of detection; MBzP, monobenzyl phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl) 
phthalate; MEHP, mono(2-ethylhexyl) phthalate; MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEP, monoethyl phthalate; 
MiBP, monoisobutyl phthalate; MnBP, mono-n-butyl phthalate; Pb, lead; PBDEs, polybrominated diphenyl ethers; PCBs, 
polychlorinated biphenyls; MCMHP, mono(2-carboxyhexyl) phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; 
7OHMMeOP, mono(4-methyl-7-hydroxyoctyl) phthalate.
aFirst- and third-trimester urine (μg/g creatinine). bFirst- and third-trimester urine (ng/g creatinine). cCord blood (μg/L). 
dFirst-trimester serum (ng/g serum lipid). eColostrum (ng/g colostrum lipid).
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overweight nearly reached statistical signifi-
cance in the third tertiles of exposure (adj RR 
tertile 3 vs. 1: 2.15; 95% CI: 0.99, 4.70). 
For DDE associations with overweight were 
statistically significant in both the second 
(adj RR tertile 2 vs. 1: 2.31; 95% CI: 
1.26, 4.24) and the third tertiles of exposure 
(adj RR tertile 3 vs. 1: 2.21; 95% CI: 
1.17, 4.15). For MECPP [mono(2-ethyl-
5-carboxypentyl) phthalate], inverse asso-
ciations with overweight were statistically 
significant in both the second (adj RR 
tertile 2 vs. 1: 0.49; 95% CI: 0.24, 0.98) and 
the third tertiles of exposure (adj RR tertile 3 
vs. 1: 0.43; 95% CI: 0.22, 0.85). The RRs 
estimates were similar in the imputed data set 
(see Supplemental Material, Figure S3).

Using PCA on the 27 EDCs, we gener-
ated four factors that accounted for 43.4% 
of the total variance inherent in the data. 
Detailed information regarding the factor 
loading is presented in the Supplemental 
Material, Table S2. The PCA Varimax 
rotation was as follows: Factor 1 was highly 
loaded with PBDEs (explained variation, 
15.0%): PBDE-47 (0.55), PBDE-99 (0.55), 
PBDE-100 (0.37), PBDE-153 (0.31), 
PBDE-154 (0.31), and PBDE-209 (0.23); 
factor 2 was highly loaded with phthalates 
(explained variation 12.7%): MnBP (mono-
n-butyl phthalate; 0.25), MiBP (monoiso-
butyl phthalate; 0.21), MBzP (monobenzyl 
phthalate; 0.28), 7OHMMeOP (0.31), 
MECPP (0.37), MEHHP [mono(2-ethyl-
5-hydroxyhexyl) phthalate; 0.41], MEOHP 
[mono(2-ethyl-5-oxohexyl) phthalate; 0.39], 
MEHP [mono(2-ethylhexyl) phthalate; 0.32], 
and MCMHP [mono(2-carboxymethyl-
hexyl) phthalate; 0.31]; factor 3 was highly 
loaded with organochlorines (explained 
variation 9.6%): DDE (0.24), HCB (0.51), 
βHCH (0.45), PCB-138 (0.36), PCB-153 
(0.38), and PCB-180 (0.37); and factor 4 
(explained variation 6.1%) was highly loaded 
with MEP (monoethyl phthalate; 0.32), As 
(0.67), Hg (0.31), BPA(0.23), PBDE-153 
(0.23), PBDE-154 (0.21), DDE (–0.24), and 
βHCH (–0.21).

In the model that simultaneously included 
all four factors, exposure to the highest tertile 
compared with the lowest tertile of the 
organochlorine factor (factor 3) was associ-
ated with significant increase in the zBMI 
of 0.37 (95% CI: 0.03, 0.72) and with an 
increase in the RRs of overweight of 2.59 
(95% CI: 1.19, 5.63). In tertile 2, zBMI and 
overweight demonstrated a nonsignificant 
increase (adj β tertile 2 vs. 1: 0.12; 95% CI: 
–0.19, 0.43; adj RRs tertile 2 vs. 1: 1.86; 
95% CI: 0.92, 3.76) (Table 3). Exposure to the 
phthalate factor (factor 2) showed a decrease 
in the RRs for overweight of 0.49 (95% CI: 
0.25, 0.96) in tertile 2 and nonsignificant 
negative associations in tertile 3 compared 

with tertile 1 of 0.63 (95% CI: 0.33, 1.19). 
Similar, nonsignificant negative associations 
were observed with zBMI for exposure to 
the phthalate factor (factor 2) in tertile 3 and 
tertile 2 compared with tertile 1. Exposure 
to the PBDE factor (factor 1) showed a 
nonsignificant decrease in the RRs for over-
weight (adj RRs tertile 2 vs. 1: 0.61; 95% CI: 
0.28, 1.34; adj RRs tertile 3 vs. 1: 0.54; 
95% CI: 0.25, 1.17). Similar, nonsignificant 
negative associations with zBMI were observed 
for exposure to the PBDE factor (factor 1) 
in tertile 3 and tertile 2 compared to tertile 1 
(Table 3). Results from models including each 
single factor separately were similar to the 
results of the models simultaneously adjusting 
for all factors (Table 3).

There was no evidence for modification 
of the association between factors of exposure 
and child weight status by child’s sex, maternal 
prepregnancy BMI, maternal socioeconomic 
class and maternal smoking status (p-values for 
interaction > 0.2; data not shown). The results 
of the sensitivity analyses further adjusting 
for child total daily caloric intake and child 
sedentary behavior during the last year were 
also not different from our main analyses (data 
not shown).

Discussion
To our knowledge, this study is the first to 
investigate the combined effects of pre- and 
perinatal exposure to 27 suspected EDCs on 
child weight status, using a multi-pollutant 
approach. Maternal serum concentrations of 
organochlorine compounds were related to 
weight status at age 7 years in single-pollutant 
and PCA, and these associations were robust 
to the adjustment for other EDCs exposures. 
A factor reflecting combined exposure to 
multiple phthalate metabolites showed weak 
evidence for an association with reduced 
BMI. Exposure to other EDCs, whether in 
single-pollutant or combined multi-pollutant 
analyses, showed no evidence for an association 
with child weight status.

Our results are largely consistent with the 
existing literature: We observed an increase in 
zBMI with increased prenatal exposure to the 
organochlorine compounds HCB, βHCH, 
PCB-138, and PCB-180; an increase in over-
weight at age 7 years with exposure to HCB, 
βHCH, PCB-138, and DDE; and increased 
z-scores and overweight with increased 
combined exposures to the PCA factor 
combining these compounds. Our findings 
for HCB are consistent with those of some 

Table 2. Characteristics (mean or percent) of 470 children and their mothers at child’s age 7 years, in the 
original and imputed data sets.a

Characteristic
Missing 

(n)
Original data set  

mean or percent (95% CI)
Imputed data set  

mean or percent (95% CI)
Child characteristics
zBMI at age 7 years (mean) 0 0.7 (0.6, 0.8) 0.7 (0.6, 0.8)
Overweight at age 7 years (%) 0 31.9 (27.7, 36.1) 31.9 (27.7, 36.1)
Female sex (%) 0 51.3 (46.7, 55.8) 51.3 (46.7, 55.8)
Gestational age (weeks) (mean) 7 39.7 (39.6, 39.9) 39.7 (39.6, 39.9)
Birth weight (g) (mean) 0 3261.9 (3223.8, 3299.9) 3261.9 (3223.8, 3299.9)
Exact age at 7 years (months) (mean) 0 81.8 (81.4, 82.2) 81.8 (81.4, 82.2)
Any breastfeeding > 16 weeks (%) 2 68.4 (64.2, 72.6) 68.3 (64, 72.5)
Child time spent watching TV or playing video games 

(hr/day)
158

< 1 during week and < 2 during weekend 18.3 (14, 22.6) 15.8 (12, 19.7)
< 1 during week and 2–3 during weekend,  

1–2 during week and < 2 during weekend,  
1–2 during week and 2–3 during weekend

43.9 (38.4, 49.5) 45.4 (40, 50.8)

> 2 during week or > 3 during weekend 37.8 (32.4, 43.2) 38.8 (33.7, 44)
Child daily total caloric intake 58 1635.3 (1601.9, 1668.9) 1641.9 (1608.2, 1675.6)
Maternal characteristics  
Age at delivery (years) (mean) 1 31.8 (31.5, 32.2) 31.8 (31.5, 32.2)
Prepregnancy BMI (kg/m2) (mean) 0 23.8 (23.4, 24.2) 23.8 (23.4, 24.2)
Maternal weight gain during pregnancy (IOM) (%) 15  
Recommended 42.9 (38.3, 47.4) 43 (38.5, 47.6)

Lower than recommended 18.2 (14.7, 21.8) 18.3 (14.8, 21.9)
Higher than recommended 38.9 (34.4, 43.4) 38.7 (34.2, 43.1)

Country of origin, Spain (%) 3 91.7 (89.1, 94.2) 91.6 (89.1, 94.2)
Social class (ISCO-88 code) (%) 0  

Professionals and managers (I, II) 22.8 (19, 26.6) 22.8 (19, 26.6)
Other nonmanuals (III) 32.8 (28.5, 37) 32.8 (28.5, 37)
Skilled, semiskilled, and unskilled manual (IV, V) 44.5 (40, 49) 44.5 (40, 49)

Smoking during pregnancy (%) 6 27.2 (23.1, 31.2) 27.3 (23.2, 31.3)
Daily total caloric intake during pregnancy (kcal/day) 0 1641.9 (1608.2, 1675.6) 1641.9 (1608.2, 1675.6)

ISCO-88, International Standard Classification of Occupations.
aImputation model for each variable was more general than the analyses models and included the health outcomes, 
the variables related to the missingness and auxiliary variables that were associated with the exposure (100 data sets 
were imputed). Detailed information regarding the imputation process and a list of the variables used is provided in 
Supplemental Material, “Description of the Imputation Procedure.”
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previous studies (Smink et al. 2008; Valvi et al. 
2014), but others did not observe any asso-
ciations (Delvaux et al. 2014; Mendez et al. 
2011; Verhulst et al. 2009). Only one study 
evaluated prenatal exposure to βHCH, and 
associations were positive but not statistically 
significant (Mendez et al. 2011). Results of 
the 13 studies that investigated PCBs were not 
consistent, and associations in some studies 
were shown to be modified by sex (Blanck 
et al. 2002; Delvaux et al. 2014; Gladen et al. 
2000; Hertz-Picciotto et al. 2005; Jacobson 
et al. 1990; Karmaus et al. 2009; Lamb et al. 
2006; Mendez et al. 2011; Patandin et al. 
1998; Tang-Péronard et al. 2014; Valvi et al. 
2012, 2014; Verhulst et al. 2009). Consistent 
with our study, a number of previous longi-
tudinal studies have reported associations 
between prenatal DDE exposure and increased 
BMI and overweight risk (Cupul-Uicab et al. 
2010; Delvaux et al. 2014; Gladen et al. 
2000, 2004; Karmaus et al. 2009; Mendez 
et al. 2011; Valvi et al. 2012, 2014; Verhulst 
et al. 2009; Warner et al. 2013). In our study, 
we did not find significant associations with 

BPA, cadmium, lead, mercury, arsenic, and 
PBDE exposure with child weight status later 
in life. Only two longitudinal studies evalu-
ated the effect of prenatal BPA exposure on 
child BMI: Harley et al. (2013) found no 
significant associations, and Valvi et al. (2014) 
reported a weak but nonsignificant positive 
association with BMI. For cadmium, Gardner 
et al. (2013) reported an inverse association 
with child weight, whereas two other studies 
reported nonsignificant positive associations 
with child weight (Delvaux et al. 2014; Tian 
et al. 2009). For lead, two studies evaluated 
the associations with weight, and results were 
nonsignificant (Tian et al. 2009; Gardner et al. 
2013). One study has reported an associa-
tion with lower weight with arsenic exposure 
(Gardner et al. 2013). In the INMA cohort, 
using the same data set, we have recently 
shown that the sum of high-molecular-weight 
phthalates was inversely associated with BMI 
in boys but not in girls (Valvi et al. 2015). The 
results of our present PCA analysis showing 
a lower BMI for the second-tertile exposure 
compared with the first are consistent with 

this; however, we did not observe evidence of 
effect modification by sex (data not shown). 
To the best of our knowledge, the present 
study is the first longitudinal analysis of child-
hood body weight and prenatal exposure to 
PBDEs and mercury. For these chemicals 
there is some evidence for obesogenic effects 
from previous cross-sectional and toxicolog-
ical studies (La Merrill and Birnbaum 2011; 
Tang-Péronard et al. 2011; Wang et al. 2014; 
WHO/UNEP 2013).

Only a few studies related to EDCs 
exposures and health outcomes have used a 
multi-pollutant approach (Braun et al. 2014; 
Grandjean et al. 2012; Lee et al. 2007, 2010; 
Lenters et al. 2015; Patel et al. 2010). To 
our knowledge, there is no epidemiological 
study on the association between gestational 
exposure to multiple EDCs and child weight 
status. Generally, the main strength of multi-
pollutant approaches is the ability to evaluate 
associations for many exposures simultane-
ously, which may differ from summing the 
separate effects of each chemical from single-
pollutant models (Billionnet et al. 2012; 

Figure 1. Crude and adjusted associations [β coefficient (95% CI)] between maternal exposure to tertiles of 27 EDCs and child zBMI at age 7 years, 
single- pollutant models, for complete case and imputed data (n = 470). Abbreviations: As, arsenic; BDE, polybrominated diphenyl ethers congeners; βHCH, 
β-hexachlorocyclohexane; BPA, bisphenol A; Cd, cadmium; CI, confidence interval; DDE, dichlorodiphenyldichloroethylene; EDCs, endocrine-disrupting chemi-
cals; HCB, hexachlorobenzene; Hg, Mercury; MBzP, monobenzyl phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEHP, mono(2-ethylhexyl) phthalate; 
MEOHP, mono(2-ethyl-5-oxohexyl) phthalate; MEP, mono-ethyl phthalate; MiBP, monoisobutyl phthalate; MnBP, mono-n-butyl phthalate; Pb, lead; MCMHP, 
mono(2-carboxyhexyl) phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; 7OHMMeOP, mono(4-methyl-7-hydroxyoctyl) phthalate; PCBs, polychlorinated 
biphenyl congeners; zBMI, body mass index z-score.
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Mauderly et al. 2010; Sun et al. 2013). We 
used PCA to evaluate multi-pollutant expo-
sures, and estimated a statistically significant 
association between an organochlorine-loaded 
factor and child weight status (zBMI and over-
weight) at age 7 years. PCA is widely used 
in dietary studies to describe dietary patterns 
and to study the associations of these patterns 
(factors) with health outcome (Kant 2004). To 
our knowledge, in studies of environmental 
pollutant exposures, PCA has been used in 
only two previous studies of air pollution and 
respiratory outcomes (Arif and Shah 2007; 
Qian et al. 2004). The use of PCA has some 
advantages. First, it minimizes the multi-
collinearity problem because the loaded factors 
are orthogonal and the correlated variables 
are blocked within their factor. Second, each 
factor represents a weighted combination 
of the individual EDCs that it represents. 
Because the relationship between the expo-
sures and outcome is not accounted for in the 
generation of the factors, the same factors can 
be used to evaluate associations with other 
health outcomes. However, this may also be a 
limitation in the specific case where the single 
pollutant that is most related to the health 
outcomes is not represented in the factors that 
created the PCA (Sun et al. 2013). Our PCA 
produced four factors of which three were 
clearly defined by specific exposure groups 
(PBDEs, phthalates, organo chlorines). The 
fourth factor, though, was a mix of chemi-
cals from different exposure groups, reflecting 
a pattern of higher MEP, As, Hg, BPA, and 
PBDE exposure and lower DDE and βHCH 
exposure. The reasons for this patterning are 
not clear and require further evaluation. A 
further limitation of the PCA approach is 
that it does not explicitly allow for the evalu-
ation of interactions between chemicals (such 
as synergism, antagonism, or inhibition). 
However, the PCA method enabled us to 
evaluate the integrated effect of exposure to 
an organochlorine mixture, and this can be 
considered a useful complementary approach 
to identifying the individual effects of single 
chemicals. Future studies may consider statis-
tical methods that account for the association 
between exposure and health outcomes in 
the selection of exposure variables, such as 
semi-Bayesian models (Braun et al. 2014) 
and penalized regression methods (Lenters 
et al. 2015), or consider summing the EDCs 
according to their biological activity and toxi-
cological aspects that are relevant to obesity 
etiology (Lee et al. 2010). Also, approaches 
that allow for interactions between chemi-
cals to be tested require further consideration; 
here, boosted regression tree techniques 
have been suggested as a useful approach 
(Lampa et al. 2014), but their interpreta-
tion can be complex. Multiple comparison 
issues are important in the interpretation of 

multi-pollutant studies. In our study we did 
not adjust statistically for multiple testing 
in the single-pollutant models. Instead, we 
complemented the single-pollutant models 
with a PCA approach to reduce the dimen-
sion of the data, taking into account the 
correlations between exposure variables. This 
resulted in a test of four PCA factors only. 
Furthermore, instead of applying an overly 
conservative multiple comparison adjust-
ment, we draw our conclusions based on 
the consistency of results between the single-
pollutant and PCA approach (Perneger 1998; 
Rothman 1990).

In our study there were missing values 
for many exposure variables. In epidemio-
logical studies, the most common strategy 
for dealing with missing data is a complete-
case analysis where participants with missing 
data on any variable are excluded from the 
analyses. This may introduce selection bias 
because the analysis sample no longer retains 
proportions of the original population. In 
addition, dropping observed values on some 
variables for a subject with missing values on 
other variables may lead to a loss of informa-
tion. This issue is a special concern when 
dealing with many exposures (Basagaña 
et al. 2013). We used multiple imputation 
to address the missing data problem. This 
technique provides valid results under the 
MAR assumption (Desai et al. 2011a, 2011b; 
Heitjan 2011; Sterne et al. 2009; White et al. 
2011). Given the large number of important 
variables included in the imputation process, 
we believe it is a fair assumption to consider 

that missingness was probably unrelated to 
the actual (unmeasured) exposure after condi-
tioning on these covariates, and thus the MAR 
assumption held. Multiple imputation of 
missing values is still not common practice in 
epidemiological studies (Klebanoff and Cole 
2008), and future studies evaluating multiple 
exposures may consider the technique to 
decrease bias and inaccuracy of estimates. We 
fitted the single-pollutant models separately 
in the original and imputed data sets and 
found no differences in effect estimates. This 
supported the evaluation of multi-pollutant 
models in the imputed data set.

In multi-pollutant studies, it is likely 
that different exposures are measured with 
different degrees of accuracy. Different 
levels of exposure misclassification may lead 
to different levels of bias in the effect esti-
mates, limiting to some extent the conclu-
sions that can be drawn from a comparison 
of effect sizes for different pollutants. In our 
study, for example, serum concentrations of 
organochlorines give a reliable estimate of 
long-term exposure because their half-lives 
are on the order of several years, whereas 
urine concentrations of nonpersistent EDCs 
(e.g., the phthalates and BPA) give an estimate 
of very short-term exposure because their 
half-lives are on the order of hours or days 
(WHO/UNEP 2013). Although we averaged 
the concentrations of this latter group of 
chemicals over two points during the preg-
nancy, thus giving a better approximation of 
average exposure, nondifferential exposure 
 misclassification may occur.

Table 3. Association between maternal exposure to tertiles of the four factors from principal-component 
analysis and BMI z-score or overweight at age 7 years based on single- and multiple-factor models 
(imputed data, n = 470).

Exposure

zBMI Overweight

Single-factor model 
β (95% CI)

Multiple-factor model 
β (95% CI)

Single-factor model 
RR (95% CI)

Multiple-factor model 
RR (95% CI)

Factor 1: PBDEsa
1 Reference Reference Reference Reference
2 –0.12 (–0.47, 0.23) –0.15 (–0.50, 0.21) 0.69 (0.33, 1.44) 0.61 (0.28, 1.34)
3 –0.14 (–0.48, 0.20) –0.19 (–0.54, 0.16) 0.59 (0.29, 1.22) 0.54 (0.25, 1.17)

Factor 2: phthalatesb
1 Reference Reference Reference Reference
2 –0.15 (–0.44, 0.15) –0.15 (–0.45, 0.15) 0.49 (0.26, 0.94) 0.49 (0.25, 0.96)
3 –0.10 (–0.38, 0.18) –0.13 (–0.42, 0.17) 0.66 (0.36, 1.19) 0.63 (0.33, 1.19)

Factor 3: organochlorinec
1 Reference Reference Reference Reference
2 0.10 (–0.20, 0.41) 0.12 (–0.19, 0.43) 1.68 (0.85, 3.32) 1.86 (0.92, 3.76)
3 0.34 (0.0, 0.68) 0.37 (0.03, 0.72) 2.17 (1.05, 4.49) 2.59 (1.19, 5.63)

Factor 4: MEP, As, Hg, BPA, PBDE-153, PBDE-154d
1 Reference Reference Reference Reference
2 –0.05 (–0.36, 0.26) –0.04 (–0.36, 0.28) 0.96 (0.48, 1.93) 0.99 (0.47, 2.11)
3 0.04 (–0.27, 0.35) 0.06 (–0.27, 0.38) 0.89 (0.47, 1.67) 0.95 (0.47, 1.90)

All models were adjusted for child’s sex, gestational age, birth weight, exact age at the time that the outcome was 
measured (months), maternal country of origin, maternal age at delivery, maternal prepregnancy BMI, maternal weight 
gain during pregnancy, maternal social class, breastfeeding duration and maternal smoking during pregnancy. Multiple- 
factor models were also adjusted for all four factors in a single model.
aFactor 1 loaded with PBDEs: BDE-47, BDE-99, BDE-100, BDE-153, BDE-154, BDE-209. bFactor 2 loaded with phthalates: 
MnBP, MiBP, MBzP, 7OHMMeOP, MECPP, MEHHP, MEOHP, MEHP, MCMHP. cFactor 3 loaded with organochlorines: DDE, 
HCB, βHCH, PCB-138, PCB-153, PCB-180. dFactor 4 loaded with MEP, As, Hg, BPA, PBDE-153, PBDE-154, DDE, and βHCH; 
had negative loading values.
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A strength of this study is that we were 
able to evaluate an extensive list of potential 
confounders, including sociodemographic, 
dietary, and physical activity–related factors 
in the mothers and children. Because our 
effect estimates in the single-pollutant 
analyses generally did not change between the 
crude and the adjusted models after inclu-
sion of child and maternal characteristics, we 
conclude that these factors did not in fact 
have a large overall confounding effect and 
are unlikely to explain our findings. Even 
so, for each of the PCBs, maternal prepreg-
nancy BMI changed the direction of effect 
estimates. This has been noted before in a 
previous analysis of our study population in 
earlier childhood (Mendez et al. 2011). We 
further examined the effect of several potential 
effect modifiers—child sex, maternal smoking, 
maternal BMI, and maternal socioeconomic 
status—because these have previously been 
reported to modify the associations between 
prenatal EDC exposure and later child weight 
status (Mendez et al. 2011; Thayer et al. 2012; 
Wang et al. 2014). However, we did not find 
any evidence for these variables to modify 
the effect of the single pollutants or the 
PCA-derived factors, and our results were rela-
tively consistent in the different strata defined 
by these variables: boys and girls, smokers and 
nonsmokers, higher and lower social classes, 
and normal and overweight/obese mothers.

A limitation of this study is that we did 
not have data for other potential obesogens 
such as perfluorinated chemicals, poly-
chlorinated dibenzodioxins (PCDDs), or 
organotins (La Merrill and Birnbaum 2011; 
Tang-Péronard et al. 2011; Wang et al. 2014; 
WHO/UNEP 2013). Evidence for obesogenic 
effects of these compounds comes mainly 
from experimental studies, with human 
studies so far available only for perfluorinated 
chemicals (Andersen et al. 2013; Halldorsson 
et al. 2012; Maisonet et al. 2012). In our 
study we focused only on the potential obeso-
gens that were already measured previously 
in our population. Although it would have 
given a more complete comparison of obeso-
genic effects of different chemicals, because no 
confounding effect was observed between the 
factors in our analysis, we consider it unlikely 
that the inclusion of data on these other 
groups of chemicals would have changed the 
current results.

Conclusions
In our study population, prenatal exposure 
to organochlorine compounds was associ-
ated with overweight in children at 7 years 
of age, and this association did not appear to 
be confounded by other EDC exposures. We 
recommend that other epidemiological studies 
consider multi-pollutant approaches together 
with single-pollutant approaches, especially 

when dealing with correlated exposures. Our 
findings for organochlorine exposures high-
light the fact that it is difficult, if not impos-
sible, to disentangle individual associations of 
highly correlated exposures; therefore public 
health action is needed to reduce exposure to 
mixtures of organochlorines as a whole.
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