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Introduction
Global climate change is expected to increase 
the frequency, intensity, and duration of 
extreme weather events, with potential 
adverse effects on human health. High-risk 
areas include those already experiencing a 
scarcity of resources, environmental degrada-
tion, high rates of infectious disease, weak 
infrastructure, and overpopulation (Patz et al. 
2005). Vulnerable populations include the 
elderly, children, urban populations, and 
the poor (Ebi and Paulson 2010; Gangarosa 
et al. 1992; O’Neill and Ebi 2009; Trinh 
and Prabhakar 2007). Understanding the 
relationship between climate variability and 
human health in India is important as India 
integrates existing public health programs 
with climate change adaptation strategies and 
early warning systems (Bush et al. 2011).

Diarrheal disease remains among the top 
five causes of death in low- and middle-income 
countries, particularly among children under 
5 years of age (Boschi-Pinto et al. 2008). 
However, research linking weather variability 
to diarrheal disease in India is sparse. Evidence 

from elsewhere in the world suggests that 
waterborne disease outbreaks are preceded by 
extreme precipitation events (Curriero et al. 
2001) and that the seasonal contamination 
of surface water may explain some of the 
variability in the occurrence of many water-
borne diseases (Patz et al. 2008). Outbreaks 
of Cholera were linked to extreme precipi-
tation and temperature in the Lake Victoria 
Basin (Olago et al. 2007), Bangladesh (Pascual 
et al. 2000, 2008), and Peru (Checkley et al. 
2000). Further evidence suggests that seasonal 
changes in temperature and precipitation affect 
the incidence of cryptosporidiosis around the 
world (Jagai et al. 2009). High levels of water 
volume were associated with infectious gastro-
intestinal (GI) illness in northern Canada 
(Harper et al. 2011) as well as cases of rota-
virus infection in Bangladesh (Hashizume 
et al. 2007). In Taiwan, extreme precipitation 
was linked to waterborne infections (Chen 
et al. 2012). Thus, evaluating the association 
between extreme precipitation and GI ill-
ness in Chennai, India, contributes valuable 
site-specific information to a growing set of 

literature on the topic. The primary goal of the 
present study was to evaluate the association 
between extreme precipitation and GI-related 
hospital admissions over a 15-day period using 
a distributed lag framework.

Data and Methods
Study location. The study was conducted in 
Chennai, the capital city of India’s south-
ern state, Tamil Nadu (Figure 1). Chennai 
has an estimated population of 4.68 mil-
lion people and is one of the most densely 
populated cities in the world. Approximately 
78% of Chennai’s population has access to 
tap water from a treated source and 58% to 
a piped sewage connection (Government of 
Tamil Nadu 2011). Nearly 10% of Chennai’s 
population lives in disadvantaged, slum-like 
settings where access to safe drinking water 
is severely limited (Chandramouli 2003; 
McKenzie and Ray 2009).

Hospital admission data. Daily hospital 
admission data for the period of 2004 to 2007 
were collected from two government hospi-
tals in Chennai (Madras Medical College and 
Kilpauk Medical College) after obtaining rele-
vant approval from the Directorate of Public 
Health, Government of Tamil Nadu. These 
two hospitals account for nearly 50% of avail-
able beds in government facilities in Chennai. 
A third government facility in Chennai, 
Stanley Medical Hospital, provides another 
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Background: Understanding the potential links between extreme weather events and human 
health in India is important in the context of vulnerability and adaptation to climate change. 
Research exploring such linkages in India is sparse.

oBjectives: We evaluated the association between extreme precipitation and gastro intestinal (GI) 
illness-related hospital admissions in Chennai, India, from 2004 to 2007.

Methods: Daily hospital admissions were extracted from two government hospitals in Chennai, 
India, and meteorological data were retrieved from the Chennai International Airport. We evalu-
ated the association between extreme precipitation (≥ 90th percentile) and hospital admissions 
using generalized additive models. Both single-day and distributed lag models were explored over a 
15-day period, controlling for apparent temperature, day of week, and long-term time trends. We 
used a stratified analysis to explore the association across age and season.

results: Extreme precipitation was consistently associated with GI-related hospital admissions. 
The cumulative summary of risk ratios estimated for a 15-day period corresponding to an extreme 
event (relative to no precipitation) was 1.60 (95% CI: 1.29, 1.98) among all ages, 2.72 (95% CI: 
1.25, 5.92) among the young (≤ 5 years of age), and 1.62 (95% CI: 0.97, 2.70) among the old 
(≥ 65 years of age). The association was stronger during the pre-monsoon season (March–May), 
with a cumulative risk ratio of 6.50 (95% CI: 2.22, 19.04) for all ages combined compared with 
other seasons.

conclusions: Hospital admissions related to GI illness were positively associated with extreme 
precipitation in Chennai, India, with positive cumulative risk ratios for a 15-day period following 
an extreme event in all age groups. Projected changes in precipitation and extreme weather events 
suggest that climate change will have important implications for human health in India, where 
health disparities already exist.
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25%, and the last 25% is provided by several 
smaller facilities. In general, Indian govern-
ment hospitals serve lower socio economic 
patients, whereas the majority of middle-class 
and high-income patients are served by pri-
vate medical facilities. Thus, although these 
two government hospitals represent only a 
fraction of Chennai’s overall population, 
they represent a strong majority of the low-
socioeconomic population. These data were 
cleaned and organized in support of previously 
published analyses (Balakrishnan et al. 2011).

Hospital admissions were defined as 
GI-related if the primary, secondary, or ter-
tiary International Statistical Classification 
of Diseases and Related Health Problems, 
Tenth Revision [ICD-10; World Health 
Organization (WHO) 1994] code was listed 
as intestinal infectious disease (codes A00–
A09), helminthiases (codes B65–B83), or 
GI-related symptoms (codes R11-nausea and 
vomiting, R50-fever, R51-headache). Cases 
were selected by matching ICD-10 codes to 
International Classification of Diseases, 1975 
Revision (ICD-9) (WHO 1977) codes used 
in previous research (Morris et al. 1996; 
Schwartz et al. 2000). Data from the two 
hospitals were combined and collapsed into 
daily hospitalization counts of GI illnesses. 
Admissions lacking an ICD-10 code were 
categorized as unclassified.

Meteorological data. Daily meteoro-
logical data, monitored at the Chennai 
International Airport (Figure 1) and available 
from the National Oceanic and Atmospheric 
Administration’s National Climatic Data 
Center (2011) Global Surface Summary of 
the Day were also collected for the period 

2004–2007. Parameters extracted included 
precipitation, temperature, dew point, and 
relative humidity.

For our analysis, daily precipitation was 
categorized using the overall distribution dur-
ing the 2004–2007 study period to assign cut 
points. Precipitation categories were defined 
as 0 mm (reference category); > 0 mm, but 
< 90th percentile (approximately 12 mm, 
or 0.5 inches); and ≥ 90th percentile. The 
90th percentile was chosen as the cutoff based 
on previous research stating that a majority 
of waterborne outbreaks were preceded by 
extreme precipitation, above the 90th percen-
tile (Curriero et al. 2001; Rose et al. 2000). 
This analysis focuses on the effects of extreme 
precipitation relative to zero precipitation.

Statistical analysis. We hypothesized 
that extreme precipitation (≥ 90th percen-
tile) would be associated with an increased 
risk of GI-related hospital admissions but not 
all-cause hospital admissions. Evaluating the 
association between extreme precipitation and 
all-cause admissions served as a negative con-
trol, providing evidence that any observed 
association between extreme precipitation and 
GI illness was not simply an artifact of the 
time–series data.

Generalized additive models were fit 
with daily counts of hospital admissions as 
the dependent variable and categorical daily 
precipitation as the independent variable, 
adjusted for potential confounders (Hastie 
and Tibshirani 1986, 1990). In order to 
control for long-term time trends in hospital 
admissions, a nonlinear smoothing term for 
time (i.e., a penalized spline) was included. 
The smoothing parameters were chosen to 

minimize the generalized cross validation 
(GCV) score in the generalized additive model 
(Hastie and Tibshirani 1986, 1990). An over-
dispersion parameter was included to account 
for instances where the sample variance dif-
fered from the sample mean (McCullagh and 
Nelder 1989). Dean’s test was used to evaluate 
over dispersion (Dean 1992).

Potential confounders. Daily aver-
age apparent temperature (AT), defined as 
2.653 + (0.994 × Ta) + (0.0153 × Td

2), where 
Ta is air temperature (°C) and Td is dew point 
temperature (°C) (Kalkstein and Valimont 
1986; Steadman 1979), was included as a 
potential confounder. AT was used because 
it represents the combined effects of tempera-
ture and humidity, which have been linked to 
the replication, persistence, and transmission 
of pathogens in the environment (Checkley 
et al. 2000; Fleury et al. 2006; Naumova et al. 
2007; Singh et al. 2001) and the health of 
vulnerable populations (Kovats and Akhtar 
2008; Trinh and Prabhakar 2007). All mod-
els included average daily apparent tem-
perature on the day of hospitalization as a 
continuous variable.

An indicator variable representing the day 
of week (DOW) of hospitalization was also 
included as a potential confounder. Because 
the very young and the very old are often 
at increased risk of hospitalization, we per-
formed separate analyses stratified by age. 
“Young” was defined as ≤ 5 years of age, “old” 
was defined as ≥ 65 years of age, and “inter-
mediate” as 6–64 years of age. Models were 
not adjusted for holidays.

Lags. Based on previous reports, GI-related 
hospital admissions were expected to peak 

Figure 1. Location of Chennai, India, depicting the location of Chennai within the state of Tamil Nadu as well as the locations of Kilpauk Medical College, Madras 
Medical College, and Chennai International Airport.
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several days after the occurrence of an extreme 
precipitation event because of delayed envi-
ronmental transport of pathogens and delayed 
onset of clinical symptoms. Previous studies 
have reported a delayed onset of symptoms 
and subsequent hospitalization following 
extreme precipitation (Aramini et al. 2000; 
Curriero et al. 2001; Egorov et al. 2003; 
Schwartz et al. 2000). Incubation periods of 
waterborne pathogens can range from 1 day 
(e.g., for Shigella, Salmonella, and Rotavirus) 
to up to 2 weeks (e.g., for Cryptosporidium 
and Escherichia coli) (Haley et al. 2009; 
Jagai et al. 2009). To account for this vari-
ability, the association was explored across a 
15-day lag.

Initial exploratory analysis comprised fit-
ting generalized additive models with 15 sepa-
rate single-day lags before the day of hospital 
admission (model 1):

log[E(HAt)] = β0 + β1PRCPt–q + β2ATt  
 + β3DOWt + s1(time), [1]

where HA is the number of hospital admis-
sions, PRCP is the daily precipitation vari-
able, t represents the day of hospitalization, 
q denotes single-day lags 1–15 days before 
the day of hospital admission (q = 1, 2, …, 
15), AT is daily average apparent tempera-
ture, DOW is day of week, and s1(time) is 
a penalized spline using calendar time with 
smoothing parameters chosen to minimize 
the generalized cross-validation score.

The main analysis included a distribu-
ted lag model (Schwartz 2000; Zanobetti 
et al. 2000) to evaluate the cumulative effect 
over a 15-day period following an extreme 
precipitation event (Gasparrini et al. 2010). 
Distributed lag models, common in air pol-
lution studies (Schwartz 2000; Zanobetti 
et al. 2000), provide a systematic way to 
investigate the distribution of effects over 
time. We constrained model coefficients 
using the lag number to fit a polynomial 
function (Schwartz 2000; Zanobetti et al. 
2000) to reduce collinearity resulting from 
correlated levels of precipitation on days that 
are close together in time. This approach 
allows the cumulative effect of precipitation 
to be modeled over the entire lag period, 
simultaneously estimating the non linear and 
delayed effects (model 2):

log[E(HAt)] = β0 + ∑15
q = 1 αqPRCPt–q  

 + β2ATt + β3DOWt  
 + s2(time), [2]

where αq is the effect of extreme precipita-
tion q days before the day of hospitaliza-
tion and s2(time) is a penalized spline using 
calendar time with smoothing parameters 
chosen to minimize the generalized cross 
validation score. The cumulative summary of 

risk ratio estimates corresponding to extreme 
 precipitation is given by ∑15

q = 1 αq.
Seasonal analysis. The Indian mon-

soon season is characterized by extreme 
precipitation that contributes to > 85% of 
India’s annual rainfall (Vialard et al. 2011). 
A stratified analysis explored the associa-
tion across seasons defined according to the 
Indian Meteorological Department (2011) 
and Vialard et al. (2011) as: winter (January–
February), pre-monsoon (March–May), early 
monsoon (June–September), and late mon-
soon (October–December). In considering 
only one season, for example winter, a discon-
tinuous time series associated with the out-
come variable would normally be introduced 
in the transition from one winter to the next. 
Whereas this naïve method would string the 
four winters together and ignore that discon-
tinuity in the temporal profile, we adopted 
a two-stage approach that first estimates the 
spline term based on the entire time series 
using all days and a simple unadjusted Poisson 
regression model (model 3) and then incorpo-
rates the spline estimates as an offset in the full 
regression model (model 4):

 log[E(HAt)] = s3(time), [3]

log[E(HAt)] = β0 + ∑15
q = 1 αqPRCPt–q  

 + β2ATt + β3DOWt  
 + offsett, [4]

where offset represents the estimated spline 
terms s3(time) from the full time series evalu-
ated at day t.

Sensitivity analysis. Because the annual 
precipitation distribution is heavily influenced 
by the monsoon, a sensitivity analysis was 
conducted to compare the effect of extreme 
precipitation between the predominantly wet 
season and the rest of the year: late monsoon 
(October–December) compared with dry 
(January–September). A sensitivity analysis was 
also run excluding 2004 data from all analyses 
in order to confirm that missing data early in 
the study period did not bias the results.

For all models, cumulative risk ratio 
estimates were calculated corresponding to 
extreme daily precipitation (≥ 90th percen-
tile), where zero precipitation was the refer-
ence category. Estimates from the distributed 
lag models represent the cumulative summary 
of risk ratio estimates of a hospital admis-
sion (for GI-related, all-cause, or unclassified 
cases) during 15-day periods corresponding 
to an extreme precipitation event (a day with 
precipitation ≥ 90th percentile) relative to the 
cumulative risk during 15-day periods fol-
lowing days with no precipitation. The level 
of significance for all statistical tests was set 
to 0.05. Analyses were run using SAS (ver-
sion 9.2; SAS Institute Inc., Cary, NC, USA) 
GAM package (Hastie and Tibshirani 1986, 
1990) and R (R Foundation for Statistical 
Computing, Vienna, Austria) DLNM 
 package (Gasparrini et al. 2010).

Results
Descriptive analysis. Daily precipitation 
totals during the study period ranged from 
0 to 283 mm with a daily mean of 4.48 mm 
(Table 1, Figure 2A). The range in daily mean 
precipitation varied from 3.45 mm in 2007 
to 6.40 mm in 2005; there were several more 
days with precipitation totals > 100 mm in 
2005 compared with other years. Seasonal 
precipitation varied with the onset of the 
monsoon; daily mean precipitation varied 
from 0.17 mm in winter to 10.73 mm in late 
monsoon. Precipitation showed a skewed dis-
tribution; out of a total 1,461 days, 991 days 
(68%) had 0 mm precipitation and 424 days 
(29%) had greater than 0 mm. Precipitation 
data were missing on 46 days (3%). The 
90th percentile of precipitation used as the 
cut point in the analysis was 11.94 mm. 
The number of extreme events also varied 
with season with 10 events during winter, 
32 events during pre-monsoon, 70 events 
during early monsoon, and 32 events during 
late monsoon. Daily average apparent tem-
perature was consistently near 33°C (91°F) 
across years (Figure 2B), whereas apparent 

Table 1. Daily average meteorological conditions categorized by year and by season in Chennai, India, 
2004–2007 [mean; median (range)] and number of extreme events within each category.

Variable Precipitation (mm)
Apparent 

temperature (°C)
Extreme events 

(n)
By year

2004 4.05; 0 (0–162) 33; 34 (25–39) 34
2005 6.40; 0 (0–283) 33; 34 (25–39) 44
2006 4.03; 0 (0–143) 33; 34 (25–41) 34
2007 3.45; 0 (0–139) 32; 33 (25–39) 32

By season
Winter (January–February) 0.17; 0 (0–23) 28; 28 (25–33) 10
Pre-monsoon (March–May) 1.35; 0 (0–123) 35; 35 (29–41) 32
Early monsoon (June–September) 4.23; 0 (0–162) 35; 35 (29–39) 70
Late monsoon (October–December) 10.73; 0 (0–283) 31; 30 (25–36) 32
Dry (January–September) 2.38; 0 (0–162) 34; 35 (25–41) 112

Entire period (2004–2007)a 4.48; 0 (0–283) 33; 33 (25–41) 144
aThe 90th percentile for the entire study period (11.94 mm) was used to define extreme precipitation.
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temperature showed slight variation across 
seasons: 28°C during winter and 35°C during 
pre- and early-monsoon.

GI-related hospital admissions accounted 
for approximately 4% of all hospital admis-
sions (Table 2). Although unclassified admis-
sions also accounted for approximately 4% 
of all hospital admissions, they ranged from 
1% during 2004–2006 to 11% in 2007. 
This spike in unclassified admissions could 
not be systematically explained. The number 

of all-cause hospital admissions varied from 
57,237 in winter to 107,809 in early monsoon; 
GI-related admissions varied from 2,344 in 
winter to 4,893 in early monsoon; unclassi-
fied hospital admissions ranged from 1,090 in 
winter to 5,265 in late monsoon (Table 2).

Main effect analysis. Exploratory analysis 
using single-day lag models indicated that 
extreme precipitation was associated with 
GI illness at later lags (lags 6, 8, 10, 11, 14, 
and 15 indicated a positive association) for 

the overall population (see Supplemental 
Material, Table S1). For example, GI-related 
hospital admissions had a risk ratio of 
1.10 (95% CI: 1.02, 1.17) at lag 10 and 
1.14 (95% CI: 1.07, 1.22) at lag 15. 
Unexpectedly, extreme precipitation showed 
a protective effect for unclassified hospital 
admissions at lags 7 through 15.

In the distributed lag model, extreme 
precipitation was significantly associated 
with GI-related hospital admissions with a 
cumulative risk ratio equal to 1.60 (95% CI: 
1.29, 1.98) controlling for AT, DOW, and 
long-term time trends (Table 3).

Among the young, the cumulative risk 
ratio of GI-related hospital admissions was 
2.72 for a 15-day period following an extreme 
event compared with a 15-day period fol-
lowing days with no precipitation (95% CI: 
1.25, 5.92). Among the old, the association 
was also positive, but not statistically sig-
nificant with a cumulative risk ratio of 1.62 
(95% CI: 0.97, 2.70). As expected, results 
for the intermediate age group were consis-
tent with the overall population: there was 
a positive association for GI-related admis-
sions with a cumulative risk ratio of 1.61 for 
a 15-day period following an extreme event 
(95% CI: 1.27, 2.03) and no association for 
all-cause admission. Unclassified admissions 
revealed a negative association among the 
overall, old, and intermediate age groups.

Seasonal analysis. Using the two-stage tech-
nique within the distributed lag framework, 
extreme precipitation was associated with both 
all-cause and GI-related hospital admissions 
during the pre-monsoon season with a cumula-
tive risk ratio of 4.61 (95% CI: 2.57, 8.26) 
and 6.50 (2.22, 19.04), respectively (Table 4). 
Models stratified by both age and season did 
not always converge because of low counts 
of hospital admissions and too few extreme 
precipi tation events (results not shown).

Results from the seasonal sensitivity analy-
sis were largely consistent with the overall 
analysis (Table 4). The dry season, defined as 
January–September, followed a similar pattern 
as the pre-monsoon season, defined as March–
May, with positive associations for both all-
cause and GI-related hospital admissions. 
Cumulative risk ratios during the dry season 
were equal to 1.70 (95% CI: 1.24, 2.33) and 
1.88 (95% CI: 1.06, 3.33) for all-cause and 
GI-related hospital admissions, respectively.

Discussion
GI-related hospital admissions in Chennai 
were consistently associated with extreme pre-
cipitation (≥ 90th percentile) over a 15-day 
lag. A study based in northern Canada 
reported similar results: high water volume 
was associated with a 1.34-times increase in 
the number of GI-related clinic visits over a 
2-week lag (p < 0.05) (Harper et al. 2011). 

Figure 2. Mean daily precipitation (A) and mean daily apparent temperature (B) in Chennai, India, from 
2004 to 2007. The 90th percentile is indicated as a red dashed line in A.
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Table 2. Daily hospital admissions [mean (young, ≤ 5 years; old, ≥ 65 years)] by year, season, age, and 
cause from two government hospitals in Chennai, India, 2004–2007.

Variable All-cause GI-relateda Unclassified
By year

2004b 46,981 (1,788; 4,295) 2,639 (153; 248) 440 (11; 38)
2005 76,170 (3,570; 7,156) 4,321 (195; 403) 1,094 (30; 38)
2006 117,508 (10,131; 9,541) 4,692 (130; 482) 1,282 (41; 53)
2007 95,065 (9,537; 7,731) 3,071 (73; 345) 10,923 (102; 1,143)

By season
Winter (January–February) 57,237 (3,699; 5,105) 2,344 (69; 241) 1,090 (25; 63)
Pre-monsoon (March–May) 84,444 (5,440; 7,153) 3,550 (117; 353) 3,519 (45; 324)
Early monsoon (June–September) 107,809 (8,616; 8,979) 4,893 (180; 491) 3,865 (81; 273)
Late monsoon (October–December) 86,234 (7,301; 7,486) 3,936 (185; 393) 5,265 (33; 612)

Entire period (2004–2007) 335,724 (25,026; 28,723) 14,723 (551; 1,478) 13,739 (184; 1,272)
aCases were defined as GI-related if the primary, secondary, or tertiary ICD-10 code was listed as intestinal infectious 
disease (codes A00–A09), helminthiases (codes B65–B83), or GI-related symptoms (codes R11-nausea and vomiting, 
R50-fever, R51-headache). b2004 data from Kilpauk Medical College were limited to May–December.

Table 3. Cumulative risk ratio effects of hospitalization associated with extreme precipitation (≥ 90th 
percentile) by cause of admission and age category based on the 15-day distributed lag model.

Age category Cause of admission Cumulative RR (95% CI)
All ages All-cause 1.01 (0.89, 1.16)

GI-relateda 1.60 (1.29, 1.98)
Unclassified 0.33 (0.19, 0.58)

Young (≤ 5 years) All-cause 1.04 (0.82, 1.32)
GI-related 2.72 (1.25, 5.92)

Unclassified 0.86 (0.24, 3.08)
Old (≥ 65 years) All-cause 0.99 (0.82, 1.19)

GI-related 1.62 (0.97, 2.70)
Unclassified 0.11 (0.03, 0.37)

Intermediate (6–64 years) All-cause 1.05 (0.92, 1.21)
GI-related 1.61 (1.27, 2.03)

Unclassified 0.17 (0.10, 0.32)

RR, risk ratio. All models control for daily average apparent temperature on the day of hospitalization, day of week, 
and time.
aCases were defined as GI-related if the primary, secondary, or tertiary ICD-10 code was listed as intestinal infectious 
disease (codes A00–A09), helminthiases (codes B65–B83), or GI-related symptoms (codes R11-nausea and vomiting, 
R50-fever, R51-headache).
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Another study reported that rainfall events 
above the 93rd percentile were associated with 
a 2.28-times (95% CI: 1.22, 4.23) increase 
in the risk of waterborne outbreaks (Thomas 
et al. 2006). Previous work also explored the 
effect of individual infectious agents, sug-
gesting that heavy precipitation was associ-
ated with a 2.45-times (95% CI: 1.59, 3.78) 
increase in Enterovirus and that torrential pre-
cipitation was associated with a 2.85-times 
(95% CI: 2.06, 3.95) increase in Bacillary 
dysentery (Chen et al. 2012). Another study 
concluded that an interquartile range increase 
in drinking-water turbidity (likely a result of 
extreme precipitation) was positively associ-
ated with the increased risk of hospital admis-
sions among children 0–15 years of age at 
lags 8 and 13 (Schwartz et al. 1997); these 
findings are consistent with our results report-
ing a significant association between extreme 
precipitation and GI-related hospital admis-
sions among the young over a 15-day lag. 
Although previous studies have incorporated 
a lagged effect, they have not presented results 
from a distributed lag model as we do here.

The seasonal analysis revealed a significant 
association between extreme precipitation and 
the risk of GI-related hospital admissions dur-
ing the drier, pre-monsoon season. Although 
previous studies have not evaluated the 
impact of extreme events during relatively dry 
periods, they do suggest that admission rates 
are elevated during both high and low rainfall 
extremes in Bangladesh (Hashizume 2007); in 
England and Wales, waterborne disease out-
breaks were preceded by both high and low 
rainfall (Nichols et al. 2009). Although several 
studies have characterized the Indian monsoon 
season, few have examined the impact of heavy 
precipitation on the burden of waterborne dis-
ease in this region. Recent findings report an 
increased frequency of heavy rain events, but 
with a decreased number of rainy days and 
a decrease in total precipitation (Kumar and 
Jain 2011). In addition, the number of severe 
cyclonic storms and the amount of rainfall 
off the Indian Coast has increased, with an 
observed decrease in precipitation during the 
summer monsoon and an increasing trend in 
precipitation during both the pre-monsoon 

and post-monsoon (Dash et al. 2007). In some 
cases, severe outbreaks of waterborne disease 
have been directly associated with flooding 
(Sur et al. 2000).

The association between extreme precipi-
tation and GI-related hospital admissions 
could have important implications for pub-
lic health and water-resource professionals in 
low- and middle-income countries that have 
a high burden of GI illness. Sanitation, access 
to treated tap water, and piped sewage con-
nections are necessary to reducing the overall 
risk of GI-related hospital admissions. These 
findings suggest that heightened vigilance 
after an extreme precipitation event, rais-
ing awareness of the potential link between 
extreme precipitation and GI-related hospital 
admissions, and the creation of early-warning 
systems based on weather prediction models 
could form an interim solution.

In a majority of low- and middle-income 
countries, meteorological data are not easily 
linked to health data. Although ecological 
studies using time–series analysis can serve 
as a cost-effective design for examining asso-
ciations, the logistical challenges of data col-
lection often preclude development of an 
analytical framework. We were able to use 
a high-quality data set, leveraging data col-
lected for a study investigating air pollution 
and health effects in Chennai (Balakrishnan 
et al. 2011). Studying health impacts across 
seasons and during extreme weather events 
can aid in preparation for a future in which 
such extremes are expected to become more 
common (Cooney 2011).

The primary limitation of the present 
study is that GI illness remains highly under-
reported so only a subset of cases are identi-
fied (Charron et al. 2004; Ford 1999). A 
second limitation is related to data quality. 
It is clear that 2004 had fewer daily hospital 
admissions than other years because data from 
Kilpauk Medical College were limited to May–
December. To confirm that this trend did not 
bias the results, models were rerun excluding 
2004 data. The cumulative risk ratios corre-
sponding to GI-related hospital admissions 
among the young were very consistent, 2.71 
(95% CI: 1.27, 5.78); however, the cumulative 

risk ratios corresponding to GI-related hospi-
tal admissions among the general population 
and among the old were no longer signifi-
cant, with estimates of 1.09 (95% CI: 0.79, 
1.51) and 1.37 (95% CI: 0.76, 2.49), respec-
tively (see Supplemental Material, Table S2). 
Acknowledging this limitation, we included 
2004 data in our primary analy sis in order to 
maximize our sample size. Nevertheless, our 
use of a unique 4-year time series of cause-
specific hospital admission data and meteoro-
logical data for one of the largest cities in India 
is an important contribution to the climate-
health literature; future work should focus on 
additional climate- sensitive health outcomes in 
low- and middle-income countries.

Changing water consumption patterns 
and increased pressure on water systems from 
growing urban populations and expanding 
agriculture will add additional pressure to an 
already overburdened water system. These vari-
ous factors related to water quality and quan-
tity could create high-risk scenarios for water 
contamination during heavy rain events. Thus, 
future work should evaluate how changing land 
use patterns and population density influence 
the risk of waterborne disease. In light of the 
multiple environmental threats that India may 
face in the years ahead (Rao 2010), the impacts 
of climate change must be evaluated in the 
context of other global environmental factors. 
Environmental parameters measured by remote 
satellite imaging and subsequent indicators have 
the potential to not only provide global cover-
age of changing environmental conditions, but 
to also predict future risks and inform adapta-
tion strategies (Ford et al. 2009).

Conclusions
We explored the association between 
extreme precipitation (≥ 90th percentile) and 
GI-related hospital admissions in Chennai, 
using a 4-year time–series data set. The cumu-
lative risk ratio for GI-related hospital admis-
sions following extreme precipitation events 
was higher among the young (≤ 5 years of 
age) compared with the overall population. 
These results, in combination with projected 
changes in precipitation, suggest that climate 
change will have important implications for 
human health in India where global health 
disparities and challenges in water resource 
management already exist.

RefeRences

Aramini J, McLean M, Wilson J, Holt J, Copes R, Allen B, 
et al. 2000. Drinking water quality and health care utiliza-
tion for gastro intestinal illness in Greater Vancouver. Can 
Commun Dis Rep 26:211–214.

Balakrishnan K, Ganguli B, Ghosh S, Sankar S, Thanasekaraan V, 
Rayudu VN, et al. 2011. Short-term effects of air pollution 
on mortality: results from a time-series analysis in Chennai, 
India. Res Rep Health Eff Inst 157:7–44.

Boschi-Pinto C, Velebit L, Shibuya K. 2008. Estimating child 
mortality due to diarrhoea in developing countries. Bull 
World Health Organ 86:710–717.

Table 4. Comparing cumulative risk ratio effects of hospitalization associated with extreme precipitation 
(≥ 90th percentile) across seasons by cause of admission for all ages based on the 15-day distributed 
lag model.

Cause of admission
Pre-monsoon 
(March–May)

Early monsoon 
(June–September)

Late monsoon 
(October–December)

Dry  
(January–September)

All-cause 4.61 (2.57, 8.26) 1.17 (0.73, 1.87) 0.79 (0.69, 0.92) 1.70 (1.24, 2.33)
GI-relateda 6.50 (2.22, 19.04) 0.63 (0.28, 1.45) 0.95 (0.75, 1.20) 1.88 (1.06, 3.33)
Unclassified 3.15 (0.29, 34.23) 1.86 (0.35, 9.79) 1.00 (0.45, 2.19) 1.68 (0.41, 6.95)

All models control for daily average apparent temperature on the day of hospitalization, day of week and time. Season-
specific estimates are reported for all ages due to a lack of model convergence when stratified by both age and season. 
No results are presented for Winter (January–February) because of a lack of model convergence.
aCases were defined as GI-related if the primary, secondary, or tertiary ICD-10 code was listed as intestinal infectious 
disease (codes A00–A09), helminthiases (codes B65–B83), or GI-related symptoms (codes R11-nausea and vomiting, 
R50-fever, R51-headache).



Bush et al.

254 volume 122 | number 3 | March 2014 • Environmental Health Perspectives

Bush KF, Luber G, Kotha SR, Dhaliwal RS, Kapil V, Pascual M, 
et al. 2011. Impacts of climate change on public health in 
India: future research directions. Environ Health Perspect 
119:765–770; doi:10.1289/ehp.1003000.

Chandramouli C. 2003. Slums In Chennai: a profile. In: 
Proceedings of the Third International Conference on 
Environment and Health, Chennai, India. Chennai, 
India:Department of Geography, University of Madras, 
York University, 82–88.

Charron DF, Thomas MK, Waltner-Toews D, Aramini JJ, 
Edge T, Kent RA, et al. 2004. Vulnerability of waterborne 
diseases to climate change in Canada: a review. J Toxicol 
Environ Health A 67:1667–1677.

Checkley W, Epstein LD, Gilman RH, Figueroa D, Cama RI, 
Patz JA. 2000. Effects of El Niño and ambient temperature 
on hospital admissions for diarrhoeal diseases in Peruvian 
children. Lancet 355:442–450.

Chen MJ, Lin CY, Wu YT, Wu PC, Lung SC, Su HJ. 2012. Effects 
of extreme precipitation to the distribution of infectious 
diseases in Taiwan, 1994–2008. PLSo One 7:e34651; 
doi:10.1371/journal.pone.0034651.

Cooney C. 2011. Climate change and infectious disease: is 
the future here? Environ Health Perspect 119:A395–A397; 
doi:10.1289/ehp.119-a394.

Curriero FC, Patz J, Rose J, Lele S. 2001. The association 
between extreme precipitation and waterborne disease 
outbreaks in the United States, 1948–1994. Am J Public 
Health 91:1194–1199.

Dash SK, Jenamani RK, Kalsi SR, Panda SK. 2007. Some evi-
dence of climate change in twentieth-century India. 
Climatic Change 85:299–321.

Dean CB. 1992. Testing for overdispersion in Poisson and bino-
mial regression models. J Am Stat Assoc 87:451–457.

Ebi KL, Paulson JA. 2010. Climate change and child health in 
the United States. Curr Probl Pediatr Adolesc Health Care 
40:2–18.

Egorov AI, Naumova EN, Tereschenko AA, Kislitsin VA, Ford TE. 
2003. Daily variations in effluent water turbidity and diar-
rhoeal illness in a Russian city. Int J Environ Health Res 
13:81–94.

Fleury M, Charron DF, Holt JD, Allen OB, Maarouf AR. 2006. A 
time series analysis of the relationship of ambient tem-
perature and common bacterial enteric infections in two 
Canadian provinces. Int J Biometeorol 50:385–391.

Ford TE. 1999. Microbiological safety of drinking water: United 
States and global perspectives. Environ Health Perspect 
107(Suppl 1):191–206.

Ford TE, Colwell RR, Rose JB, Morse SS, Rogers DJ, Yates TL. 
2009. Using satellite images of environmental changes to 
predict infectious disease outbreaks. Emerg Infect Dis 
15:1341–1346.

Gangarosa RE,  Glass RI ,  Lew JF,  Boring JR.  1992. 
Hospitalizations involving gastroenteritis in the United 
States, 1985: the special burden of disease among the 
elderly. Am J Epidemiol 135:281–290.

Gasparrini A, Armstrong B, Kenward MG. 2010. Distributed lag 
non-linear models. Stat Med 29:2224–2234.

Government of Tamil Nadu. 2011. Chennai District. District Profile. 
Available: http://chennai.nic.in/chndistprof.htm#CENSUS 
[accessed 5 November 2012].

Haley BJ, Cole DJ, Lipp EK. 2009. Distribution, diversity, 
and seasonality of waterborne Salmonellae in a rural 
watershed. Appl Environ Microbiol 75:1248–1255.

Harper SL, Edge VL, Schuster-Wallace CJ, Berke O, 
McEwen  SA. 2011. Weather, water quality and infec-
tious gastro intestinal illness in two Inuit communities in 
Nunatsiavut, Canada: potential implications for climate 
change. Ecohealth 8:93–108.

Hashizume M, Armstrong B, Hajat S, Wagatsuma Y, 
Faruque AS, Hayashi Y, et al. 2007. Association between 
climate variability and hospital visits for non-cholera diar-
rhoea in Bangladesh: effects and vulnerable groups. Int J 
Epidemiol 36:1030–1037.

Hastie T, Tibshirani R. 1986. Generalized additive models. Stat 
Sci 1:297–318.

Hastie T, Tibshirani R. 1990. Exploring the nature of covariate 
effects in the proportional hazards model. Biometrics 
46:1005–1016.

Indian Meteorological Department. 2011. Indian Meteorological 
Department Homepage. Available: http://www.imd.gov.in/ 
[accessed 30 August 2011].

Jagai JS, Castronovo DA, Monchak J, Naumova EN. 2009. 
Seasonality of cryptosporidiosis: a meta-analysis approach. 
Environ Res 109:465–478.

Kalkstein LS, Valimont KM. 1986. An evaluation of summer dis-
comfort in the United States using a relative climatological 
index. Bul Am Meteorol Soc 67:842–848.

Kovats S, Akhtar R. 2008. Climate, climate change and human 
health in Asian cities. Environ Urban 20:165–175.

Kumar V, Jain SK. 2011. Trends in rainfall amount and number 
of rainy days in river basins of India (1951–2004). Hydrol 
Res 42:290–306.

McCullagh P, Nelder JA. 1989. Generalized Linear Models, 2nd 
ed. London:Chapman and Hall.

McKenzie D, Ray I. 2009. Urban water supply in India: status, 
reform option and possible lessons. Water Policy 11:442–460.

Morris RD, Naumova EN, Levin R, Munasinghe RL. 1996. 
Temporal variation in drinking water turbidity and diag-
nosed gastroenteritis in Milwaukee. Am J Public Health 
86:237–239.

National Climatic Data Center. 2011. National Climate Data 
Online. Available: http://www7.ncdc.noaa.gov/CDO/
cdoselect.cmd [accessed 19 April 2011].

Naumova EN, Jagai JS, Matyas B, DeMaria Jr, A, MacNeill IB, 
Griffiths JK. 2007. Seasonality in six enterically transmit-
ted diseases and ambient temperature. Epidemiol Infec 
135:281–292.

Nichols G, Lane C, Asgari N, Verlander NQ, Charlett A. 2009. 
Rainfall and outbreaks of drinking water related disease 
and in England and Wales. J Water Health 7:1–8.

Olago D, Marshall M, Wandiga SO, Opondo M, Yanda PZ, 
Kanalawe R, et al. 2007. Climatic, socio-economic, and 
health factors affecting human vulnerability to cholera 
in the Lake Victoria basin, East Africa. Ambio 36:350–358.

O’Neill MS, Ebi KL. 2009. Temperature extremes and health: 
impacts of climate variability and change in the United 
States. J Occup Environ Med 51:13–25.

Pascual M, Cazelles B, Bouma MJ, Chaves LF, Koelle K. 2008. 
Shifting patterns: malaria dynamics and rainfall variability 
in an African highland. Proc R Soc B 275:123–132.

Pascual M, Rodo X, Ellner SP, Colwell R, Bouma MJ. 2000. 
Cholera dynamics and El Niño–Southern Oscillation. 
Science 289:1766–1769.

Patz JA, Campbell-Lendrum D, Holloway T, Foley JA. 2005. 
Impact of regional climate change on human health. 
Nature 17:310–317.

Patz JA, Vavrus SJ, Uejio CK, McLellan SL. 2008. Climate 
change and waterborne disease risk in the Great Lakes 
region of the U.S. Am J Prev Med 35:451–458.

Rao M. 2010. The impact of climate change on health in India. 
Perspect Public Health 130:15–16.

Rose JB, Daeschner S, Easterling DR, Curriero FC, Lele S, 
Patz JA. 2000. Climate and waterborne disease outbreaks. 
J Am Water Works Assoc 92:77–87.

Schwartz J. 2000. The distributed lag between air pollution and 
daily deaths. Epidemiology 11:320–326.

Schwartz J, Levin R, Goldstein R. 2000. Drinking water turbidity 
and gastro intestinal illness in the elderly of Philadelphia. 
J Epidemiol Community Health 54:45–51.

Schwartz J, Levin R, Hodge K. 1997. Drinking water turbidity 
and pediatric hospital use for gastro intestinal illness in 
Philadelphia. Epidemiology 8:615–620.

Singh RBK, Hales S, de Wet N, Raj R, Hearnden M, 
Weinstein P. 2001. The influence of climate variation and 
change on diarrheal disease in the Pacific Islands. Environ 
Health Perspect 109:155–159.

Steadman RG. 1979. The assessment of sultriness. Part II: 
effects of wind, extra radiation and barometric pressure 
on apparent temperature. J Appl Meteorol 18:874–885.

Sur D, Dutta P, Nair GB, Bhattacharya SK. 2000. Severe cholera 
outbreak following floods in a northern district of West 
Bengal. Indian J Med Res 112:178–182.

Thomas MK, Charron DF, Waltner-Toews D, Schuster C, 
Maarouf AR, Holt JD. 2006. A role of high impact weather 
events in waterborne disease outbreaks in Canada, 
1975–2001. Int J Environ Health Res 16:167–180.

Trinh C, Prabhakar K. 2007. Diarrheal diseases in the elderly. 
Clin Geriatr Med 23:833–856.

Vialard J, Terray P, Duvel JP, Nanjundiah RS, Shenoi SSC, 
Shankar D. 2011. Factors controlling January–April rainfall 
over southern India and Sri Lanka. Clim Dyn 37:493–507.

WHO (World Health Organization). 1977. International 
Classification of Diseases, 1975 Revision (ICD-9). 
Geneva:WHO.

WHO (World Health Organization). 1994. International 
Statistical Classification of Diseases and Related Health 
Problems. Tenth Revision. Geneva:WHO.

Zanobetti  A, Wand MP, Schwartz J, Ryan LM. 2000. 
Generalized additive distributed lag models: quantifying 
mortality displacement. Biostatistics 1:279–292.




