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ABSTRACT

Regulatory, low temporal resolution monitoring of freshwater quality does not fully capture the fre-
quency distributions of the requisite parameters, particularly those that are highly skewed and heavy-
tailed. Hence the summary statistics ultimately compared to environmental standards are uncertain.
Quantifying this uncertainty is crucial for robust water quality assessment and possible remediation, but
requires strong assumptions. This paper compares three ways to model the missing data needed to fully
characterise a frequency distribution in a Bayesian framework using multi-year/multi-location ortho-
phosphate (arithmetic mean standard), dissolved oxygen (DO; 10th percentile standard) and ammonia
(90th percentile standard) data from the Tamar catchment in Southwest England. First, fitting an
assumed parametric model of the frequency distribution (lognormal or Weibull), there is appreciable
uncertainty around the “best” model fit. Second, Bayesian Model Averaging is more general in accom-
modating cases where the data are ambiguous with regard to the best model, but does not take into
account possibly missing data. Third, a quasi-nonparametric multinomial model of the monitoring
process that places some weight on those missing data yields wider and heavier-tailed frequency dis-
tributions. One-at-a-time sensitivity analysis suggests that the multinomial model for mean ortho-
phosphate is sensitive to the choice of support range and the prior weights given to the missing data.
Sensitivity is lower for 10th percentile DO and 90th percentile ammonia. The resultant probability
densities of ecological status under the EU Water Framework Directive span several status classes,
meaning ecological status is more uncertain than previously acknowledged. For orthophosphate, the

regulatory, empirical determination of ecological status is not only overly precise but also biased.
© 2017 The Author. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

term extremes. Johnes (2007) demonstrated this effect for daily
data of discharge, suspended solids and total phosphorus, showing

Freshwater quality parameters, such as phosphorus, nitrogen
and oxygen concentrations, are routinely monitored by environ-
mental regulators to assess the status of surface waters and inform
water resources management. In Europe, the legislative driver is
currently the Water Framework Directive (WFD; 2000/60/EC). In
the US, it is the Clean Water Act (33 U.S.C. ch. 26) through the
Impaired Waters and Total Maximum Daily Load Program. The
compliance monitoring is typically done at a low temporal reso-
lution, which in the UK, for example, is fortnightly or monthly, so
that no more than 12—26 samples per year are available. This
sampling pattern does not fully capture the frequency distributions
of the parameters, particularly those that are highly skewed and
heavy-tailed, such as phosphorus which is characterised by short-
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how the upper tails of the empirical frequency distributions con-
tracted progressively as the data were sub-sampled to weekly and
then monthly resolution. Ferrant et al. (2013) showed based on sub-
sampling a 10-min nitrate-N dataset that a fortnightly monitoring
scheme would have missed all extreme concentration values. This
error is partly due to the operational realities of sample collection,
which usually prevent sampling during heavy rainfall events and
other extreme conditions that are highly relevant for pollutant
mobilisation and transport. The sampling error, which of course
remains unknown outside of sub-sampling studies, translates into
uncertainty about the statistical moment or percentile which is
ultimately compared to an environmental standard or objective.
Skeffington et al. (2015) demonstrated based on sub-sampling
hourly dissolved oxygen and total reactive phosphorus data how
the uncertainty of the WFD classification and the risk of misclas-
sification increased progressively when moving to weekly and
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monthly resolution. Despite advances in high-resolution moni-
toring for research purposes (Campbell et al., 2015; Jordan et al.,
2005; Outram et al., 2014), the limitations of the regulatory
monitoring are likely to remain that way (Johnes, 2007). There is
thus an imperative to understand and work explicitly with the
uncertainties associated with these data.

For robust water quality assessment and possible remediation, a
quantification of water quality uncertainty becomes crucial
(Skeffington et al., 2015). The problem, however, is that this type of
uncertainty quantification requires consideration of the data that
could have been sampled but have not, an oxymoron really, which
will always rely on assumptions. The objective of this paper is to
investigate which assumptions about the possibly missing data
might reasonably be made and with what consequences by
comparing three Bayesian approaches that quantify the uncertainty
caused by data limitations probabilistically. The starting point and
first approach studied here is Bayesian inference of an assumed
parametric model of the frequency distribution from the available
data (Gelman et al,, 2013). The pivotal assumption here is the
parametric model, and the problem becomes one of verifying this. [
have not found a straightforward application of this approach to a
water quality problem, though Carstensen (2007) fitted lognormal
distributions to marine nutrient concentration data, albeit using
classic Maximum Likelihood instead of Bayesian inference.
Bayesian water quality studies that did infer frequency distribu-
tions from the data explicitly augmented this procedure with some
process modelling (Patil and Deng, 2011; Qian and Reckhow, 2007).

It will generally be more robust to average over multiple hy-
potheses of the frequency distribution, known as Bayesian Model
Averaging (BMA; Hoeting et al., 1999), which is the second
approach analysed in this paper. BMA has, to my knowledge, not
been applied to frequency distributions in a water quality context,
but there are applications in other fields. Conigliani (2010) used
BMA in a clinical cost-effectiveness context to average lognormal,
gamma, Weibull and inverse normal models of highly skewed and
heavy-tailed patient cost data. In BMA, individual model results are
weighted by the model likelihood. However, the model likelihood is
still conditional on the available data and not those that have not
been sampled. In the case of insufficient sampling, BMA will thus
generally under-estimate the true uncertainty.

BMA will be compared with a third approach, Bayesian infer-
ence of a quasi-nonparametric model, here the multinomial model
of the sampling process (Aitkin, 2010), which does reflect the an-
alyst's prior ignorance of the shape of the frequency distribution.
Under a special case of prior that again neglects possibly missing
data, the multinomial model is known as Bayesian bootstrap
(Rubin, 1981). The Bayesian bootstrap, like the classic bootstrap
(Hirsch et al., 2015), considers the available data representative of
the population, which may again be unjustified for small samples
from skewed and heavy-tailed frequency distributions (Conigliani,
2010). Under the more general multinomial model, as will be seen,
the “prior weight” over the support range of the water quality
parameter becomes the pivotal assumption. It will be discussed
how this assumption can be made in practice. While the multino-
mial model can deal with any type of summary statistics, including
percentiles and means, for percentile standards the quasi-
nonparametric binomial model is a more parsimonious choice
(McBride and Ellis, 2001; Smith et al., 2001; Solow and Gaines,
1995). Hence, the multinomial model results will be briefly
checked for consistency with the binomial model in this paper.

The structure of the paper is as follows. Section 2 describes the
methods of Bayesian inference for an assumed parametric model,
BMA and the quasi-nonparametric multinomial and binomial
models, and how these will be analysed and compared using data
from the Tamar catchment in Southwest England. Section 3

presents the results of the analysis by comparing the summary
statistics and associated uncertainty distributions resulting from
the three approaches for typical moments and percentiles of three
selected water quality parameters. The summary statistics will be
evaluated against existing water quality standards to illustrate the
impact of uncertainty on the assessment of surface waters. A
sensitivity analysis of the multinomial model will be carried out.
Section 4 discusses the limitations and benefits of the individual
approaches, suggests how their assumptions may be best made in
practice and draws out common lessons. Section 5 concludes with
some general implications.

2. Methods

When assessing a water quality parameter we want to make
inference about a population Y, i.e. the instances of the parameter
in a time window (e.g. a year), using a sampley = (y1, ..., yn) of size
n drawn from the population. We are interested in summary sta-
tistics of the population, such as the arithmetic mean and percen-
tiles. In this paper, I compare three methods of estimating these
summary statistics probabilistically. Notes on mathematical nota-
tion: vectors are in bold face throughout this paper; generic
parameter vectors are denoted by 0; super-script [t] denotes the tth
realisation of a quantity from a Monte Carlo sample.

2.1. Bayesian inference of assumed parametric model

The description follows Aitkin (2010). In Bayesian theory,
assuming a parametric model of the population f(y|0), the poste-
rior probability distribution of the model parameters 1t(0|y) is the
prior probability distribution 7(0) updated by the likelihood
function L(0]y) through Bayes rule:

LOw)m(O)
/ L(0ly) 7(0) dO

The likelihood function is the probability of the observed data as
a function of the model parameters given measurement precision 9,

which is generally considered high relative to the variability in the
data:

m(Oly) = (1)

L(6ly) = {Hf(we)} " (2)
i=1

Bayesian theory requires that we express any prior information
as a probability distribution, although this can be non-informative
relative to the information in the data. From the posterior distri-
bution of model parameters, the desired summary statistics of Y
(e.g. arithmetic mean and percentiles) can be calculated, generally
by simulation, in special cases analytically. Here, I compare two
parametric models of the frequency distributions of water quality
parameters, the lognormal and the Weibull distribution, which
were chosen for their flexible and complementary behaviour
(Conigliani, 2010). The lognormal model is right-skewed whereas
the Weibull model may be left-skewed, right-skewed or symmet-
rical, and may thus approximate the normal distribution without
negative support. The models are sensible choices for water quality
data that cannot be negative, are right-skewed (lognormal) with
possibly heavy tails (Weibull) like orthophosphate-phosphorus and
ammonia-nitrogen, or occasionally left-skewed (Weibull) like dis-
solved oxygen. For other data, other models may be chosen based
on our theoretical understanding of their behaviour. However, our
past experience of what might be suitable distributional forms may
be influenced by the very same sample deficiencies that we try to
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model with these distributions.

2.1.1. Lognormal distribution
The likelihood function of the lognormal model with parame-
ters u and o is

L(w, oly) =

(n— 1)52+n(?u)2>‘

_202

(0 vz ) T ‘”‘"<
(3)

with sample mean y= %Z?:l log(y;) and sample variance

= ,11?12?:1 (log(y;) — ¥)* of the log-transformed data. I chose a
non-informative prior (L, 6) = é (Conigliani, 2010; Gelman et al.,
2013). The arithmetic mean of the lognormal model is

Mg = exp<u+%z>.

2.1.2. Weibull distribution
The likelihood function of the Weibull model with parameters A
and Kk is:

L(A kly)

KT (T 1y k=1 S yk
= (H;:k ) exp ')\lk’ . (4)

I chose a non-informative prior w(\, k) = %(Conigliani, 2010; Lee
and Kim, 2008). The arithmetic mean of the Weibull model is

Mg = A F(1 + %) where I'(-) is the gamma function.

2.1.3. Sampling from posterior distribution

For each model, the posterior distribution was sampled by
Markov Chain Monte Carlo (MCMC) exploiting the proportionality
property m(0]y)<L(0]y) 7(0). 100,000 realisations were generated
via the Matlab® Slice sampler with a “burn in” phase of 10,000
samples (algorithm after Neal, 2003). The Slice sampler was chosen
for its limited tuning requirements which could be automated
relatively easily so as to cycle through a large number of datasets
(section 2.4). The only tuning parameters required here were the
two scale estimates of the parameter space (Neal, 2003). These
were adjusted incrementally to achieve adequate sample coverage
of the posterior distribution. For the lognormal model, this method
was verified with samples generated from the analytically derived
posterior distribution (Gelman et al., 2013). The MCMC sample was
used to calculate the posterior distributions of the arithmetic mean
and of two percentiles (10th and 90th) of the population as these
are the summary statistics required for WFD reporting in the UK for
the water quality parameters studied here.

2.2. Bayesian model averaging

The probabilistic treatment of parameters extends to models as
a whole in Bayesian theory, so that several candidate models can be
compared by their respective probabilities. In our case, either of the
two models will be preferred given a dataset, but model probabil-
ities may be very similar. A more general method is Bayesian Model
Averaging (BMA), which averages the posterior distributions of the
candidate model results weighted by the posterior probabilities of
the models. Here, again, we are interested in averaging the poste-
rior distributions of the arithmetic mean and of the two percentiles
of the population. In case of strong evidence in the dataset for a
particular model, this will dominate the average.

Following Aitkin et al. (2009), I used the posterior distributions

of the two model likelihoods for averaging, rather than the inte-
grated likelihoods (Conigliani, 2010; Hoeting et al., 1999). The
posterior probability of model j follows, again, from Bayes rule,
which updates the prior model probability 7w(M;) by the model

likelihood L(M;|y) and normalises for k models:

y )
M 1’— (5)
i) 2oL (Myly) (M)

The prior probabilities of the two models were set equal,
m(M;) = ®(M,) = 1, reflecting prior ignorance. The BMA algorithm
then proceeded as follows (Aitkin et al., 2009):

e For each model j, substitute the samples 0! from the posterior
distribution (section 2.1) into the likelihood function. These are
100,000 independent draws from each posterior likelihood
LI (My]y).

o Compute 7l/(M;|y) as per Equation (5).

e With probability =l(M; ;ly), set average summary statistic
pL,],e = p][ I ie. the summary statistic of model j.

2.3. Bayesian inference of quasi-nonparametric model

2.3.1. Multinomial model

The multinomial model (“sampling with replacement”) can be
considered an always true model of a population and thus allows
nonparametric inference (Aitkin, 2010). It holds for water quality
monitoring if this can be treated as random sampling from a finite
population with measurement precision & and thus D discrete

values Y; with counts N; and proportions p; = ZI:VIN
T

the population can be expressed through the sample counts ny at Y,
most of which will be zero. The randomness assumption holds
approximately at fortnightly to monthly resolution since every
element of the population has approximately equal chance of being
sampled. Water quality parameters also effectively stem from a
finite discrete population as the measurement precision & will al-
ways be finite (e.g. the detection limit) and there will be physical
limits to the smallest and largest population value Y; and Yp,
respectively.

The likelihood function of the multinomial model, constant
combinatorial term omitted, is:

D
L(p1, --.poly) = [ [ p}"- (6)
J=1

I chose the natural conjugate Dirichlet prior

(ZJ 1) 2

T((plﬂ "'7pD) Hj 1]., a] H ] ’ (7)

with a “prior weight” of each possible discrete value of aj = ¢ and a
“total prior weight” of a = ZjDzla] =1 (the proper prior of Ericson,
1969), thus non-informative. As discussed by Aitkin (2010), the
choice of prior is more important here than in parsimonious
parametric models since many of the positive values of n; will be 1
or a small integer. With my choice, the effective information pro-
vided by the prior as a whole is equal to the information provided
by one sample value. The total prior weight a thus augments the
total sample weight n = Z]D:1n] in the posterior. For the choice of
the improper Haldane prior with a; = 0 the term “Bayesian boot-
strap” has been used (Rubin, 1981). The arithmetic mean of the
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multinomial model is mg = Elep] Y.
The posterior distribution was sampled 100,000 times as follows
(Aitkin, 2010):

o For each realisation, generate D independent variables G; from
the Gamma(n; + a;, 1) distribution.

_ G
e Calculate p; = 6
e Repeat the simulation T times yielding realisations pm

IR

2.3.2. Binomial model

The binomial model can be considered a special case of the
multinomial model where the interest is in the exceedance pro-
portion p of a specific water quality parameter value in a popula-
tion, not in the exact frequency distribution (McBride and Ellis,
2001; Smith et al,, 2001; Solow and Gaines, 1995). This situation
is given when we have a percentile standard where a specific
parameter value must not be exceeded more than say 10% of the
time (the 90th percentile ammonia-N standard of the UK imple-
mentation of the WFD) or where a specific parameter value must be

exceeded at least say 90% of the time (the 10th percentile dissolved
oxygen standard). A sample y from the population can be expressed
through the sample size n and the number of exceedances in the
sample e.

The likelihood function of the binomial model, again omitting
the constant combinatorial term (here the binomial coefficient), is:

L(ply) =p* (1 —p)"°. (8)

As prior I compared the uniform prior m(p) = Beta(1,1)
(McBride and Ellis, 2001; Smith et al., 2001) and the Jeffreys prior
7(p) = Beta(0.5,0.5) (McBride and Ellis, 2001). The posterior dis-
tribution was derived analytically (Gelman et al., 2013).

2.4. Data and analytical steps

The data used to compare the three methods comprise 29 lo-
cations in the Tamar catchment, Southwest England, which have
been monitored routinely by the Environment Agency of England
and Wales (Fig. 1). For each location, I used 17 three-year moving
average windows from 1991 to 2007 (+one year) in keeping with

Cagidworthy
sub-catchment

B Vo
10 kilometre

N

Fig. 1. Tamar catchment with monitoring locations and corresponding sub-catchments. Contains OS data® Crown copyright and database right 2016.
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WED reporting, yielding 493 datasets in total. Summary results will
be reported for these datasets while more detailed examples will be
given for one location, the Caudworthy Water at the Ottery
confluence, for the period 2006—2008.

Three water quality parameters were selected, each requiring a
different summary statistic for the determination of ecological
status: orthophosphate-phosphorus (arithmetic mean), dissolved
oxygen (10th percentile), ammonia-nitrogen (90th percentile). The
multinomial model inference was set up as follows: Y; = 0 for all

parameters; Yp =4 mg 1! for orthophosphate-P, Y, = 150 % for
dissolved oxygen, Yp =20 mg 1! for ammonia-N;

d=0.01 mg ! (detection limit) for orthophosphate-P and
ammonia-N, d = 1% for dissolved oxygen. The Yp values are the
maxima recorded across all datasets from the Tamar, rounded up.

Since especially the choice of Yp is difficult to benchmark, and
might differ between applications, a one-at-a-time (OAT) sensi-
tivity analysis of the multinomial model with respect to its pa-
rameters was carried out for the three selected water quality
parameters using the Caudworthy data 2006—2008. The total prior
weight a was varied between 0 and 2, with a = 0 being the Bayesian
bootstrap which neglects possibly missing data. The largest popu-
lation value Yp was varied between a value just above the
maximum recorded in the Caudworthy data 2006—2008 and a
value about double the maximum recorded across all datasets from
the Tamar. The measurement precision d was varied between the
detection limit (set to 1% for dissolved oxygen) and a value one
order of magnitude higher.

Parametric model preference and resultant BMA for each loca-
tion and water quality parameter will be summarised by the
deviance difference:

D1y = -2 log|Ly/L;], (9)

with negative D;, indicating preference for model 1 (here the

(a) (b)
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lognormal distribution) and positive Dy, indicating preference for
model 2 (here the Weibull distribution).

BMA and the multinomial model will be compared for each
location and water quality parameter by the difference in summary
statistic. The multinomial model will then be used for further
analysis. First, the uncertainties of the summary statistics will be
compared using the interquartile range of the probability density
divided by the median as measure of uncertainty. Second, it will be
illustrated how the probabilistic water quality assessments may be
translated into policy relevant metrics, here probability statements
of ecological status under the WFD and temporal trends. The un-
certainties of ecological status according to the different water
quality parameters will be compared using the Shannon entropy of
the ecological status histogram as measure of uncertainty:

H= - n(s;|0)log, n(si0), (10)

5
i=1
with 7(s;|0) being the posterior probability of the ith ecological
status class. A value of H = 0 means no uncertainty, while greater
values of H mean greater uncertainty, i.e. a distribution approach-
ing uniformity. The biases of the empirical ecological status esti-
mates will be compared using the difference between the empirical
estimate and the mode of the probability density as measure of
bias. Empirical here means calculated straight from the sample.
Third, a comparison to the binomial model for the percentile
standards will be made using the mean absolute difference of the
ecological status distributions of the multinomial and binomial
models.

3. Results

When fitting the assumed parametric models, there is appre-
ciable uncertainty around the fit of the “best” model (Fig. 2a—c)

(c)

035 035 T 0.8
= +logn 95th percentile A = +wbl 95th percentile = +logn 95th percentile
03 = logn MLE 03 n = wbl MLE 0.7 = |ogn MLE
= +logn 5th percentile = +wbl 5th percentile = :logn 5th percentile
0.¢
0.25 6
2 02
G
5
0 0.15
0.1
0.05
0 0.05 0.1 0.15 0.2 00 50 100 150 200 250 0.2 04 0.6 0.8
Orthophosphate—P /mg I"! DO /% saturation Ammonia-N/mg !

(d) (e)

==wbl
® empirical

=logn
® empirical

CDF
CDF

0.1
Mean Orthophosphate—P / mg I

02 03 04 05 o 20

40

60
10th percentile DO / % saturation

=logn
® empirical

CDF

0.2
90th percentile Ammonia—N /mg I

80 04 06 08 1

Fig. 2. Caudworthy data 2006—2008. (a—c): Empirical frequency distribution and “best” model fit, lognormal (logn) or Weibull (wbl), for three water quality parameters; 5th and
95th percentiles of Bayesian inference with maximum likelihood estimate (MLE) shown for comparison. (d—f): Empirical summary statistic and cumulative distribution function
(CDF) of “best” model result against background of WFD ecological status classes (blue = "high”, green = "good”, yellow = "moderate”, orange = "poor”, red = "bad”). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. (a—c): Caudworthy data 2006—2008. Empirical summary statistic and densities of three model results for three water quality parameters: lognormal (logn), Weibull (wbl)
and Bayesian Model Averaging (BMA) of the former two. (d—f): All 493 datasets, Caudworthy example highlighted. Cumulative distribution function (CDF) of deviance difference
between lognormal and Weibull model.

which translates into uncertainty around the summary statistics of instances of greater ambiguity demonstrating the benefit of BMA
the population (Fig. 2d—f). Across all datasets and parameters, often when an average of both candidate models is suggested by the data
one model is strongly preferred over the other, although there are (Fig. 3). In Fig. 3b, for example, the Weibull distribution is

@ (b) (©

1 1
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0.6
% w s
8 8 8
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Fig. 4. (a—c): Caudworthy data 2006—2008. Empirical summary statistic and cumulative distribution functions (CDFs) of multinomial model result and Bayesian Model Averaging
(BMA) for three water quality parameters against background of WFD ecological status classes (blue = "high”, green = "good”, yellow = "moderate”, orange = "poor”, red = "bad”).
(d—f): All 493 datasets, Caudworthy example highlighted. CDF of difference in summary statistic between multinomial model result and BMA. (For interpretation of the references
to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. All 493 datasets. Widths of probability densities of three summary statistics for three water quality parameters summarised as boxplots across all locations and years. Width

of density expressed as interquartile range normalised by median.

(a) (b) ()
1 1 1
0.8 0.8 0.8
206 206 206
8 <} 8
© © ©
3 ) 8
& 04 & 04 & 04
0.2 0.2 0.2
w1 0 —

h g m p
Ecological status Orthophosphate—P

m
Ecological status DO

9. m P
Ecological status Ammonia—N

Fig. 6. Caudworthy data 2006—2008. Empirical ecological status (vertical line) and probability of WFD ecological status according to the multinomial model for three water quality

parameters: “high” (h), “good” (g), “moderate” (m), “poor” (p),”bad” (b).
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Fig. 7. All 493 datasets. (a): Shannon entropy as a measure of uncertainty of the ecological status distribution for three water quality parameters. The distributions of values across
all locations and years are visualised as boxplots, see Fig. 5 for legend. Greater entropy values mean greater uncertainty. (b): Bias of the empirical ecological status with respect to
the mode of the probability density for three water quality parameters. The distributions of values across all locations and years are visualised as histograms. Negative values mean

the empirical value is to the left of the mode, positive values mean it is to the right.

unambiguously preferred over the lognormal distribution, and so
BMA selects the Weibull model. Similarly in Fig. 3¢, the lognormal
distribution is preferred over the Weibull distribution, and this is
again reflected in the BMA result. In Fig. 3a, in contrast, BMA yields
a 4:1 average of lognormal:Weibull. For orthophosphate-P and
ammonia-N, the lognormal model is preferred in many cases
(Fig. 3d, f) as these data are mostly right-skewed, whereas for
dissolved oxygen the preference tends towards the Weibull model
(Fig. 3e) as these data are mostly left-skewed. Often both models

yield appreciable likelihoods. Similar tendencies should be ex-
pected for the same parameters in other locations, although model
preference is already highly variable among the 493 small-n data-
sets studied here.

Compared to the BMA results, the quasi-nonparametric multi-
nomial model yields distributions that are consistently wider and
heavier-tailed, particularly towards lower ecological status (Fig. 4).
This behaviour is similar across the parameters. When comparing
the summary statistics for orthophosphate-P and ammonia-N, the
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mean is more uncertain than the 90th percentile, which in turn is
more uncertain than the 10th percentile (Fig. 5a, c). The orders of
magnitude of uncertainty are comparable between the two pa-
rameters. For dissolved oxygen, the uncertainties are an order of
magnitude smaller and similar across the summary statistics, with
the 10th percentile being slightly more uncertain than the mean
and the 90th percentile (Fig. 5b). The uncertainty of dissolved ox-
ygen is smaller than that of the other parameters because dissolved
oxygen is bounded by a narrower physical range and the data are
less variable.

The probabilistic water quality assessment can be translated
into policy relevant metrics. Fig. 6 exemplifies this for probability
statements of ecological status under the WFD, based on the
multinomial model. Conversely, the probability of site misclassifi-
cation can be quantified. Ecological status is most uncertain for
orthophosphate-P, followed by ammonia-N, with dissolved oxygen
being much less uncertain (Fig. 7a). The empirical ecological status
for orthophosphate-P is negatively biased with respect to the mode
of the probability distribution, i.e. over-predicting ecological status,
by one status class in 35% of the cases and by two status classes in
11% of the cases. Ammonia-N and dissolved oxygen are unbiased to
89% and 96%, respectively (Fig. 7b). The results are similar to those
resulting from the binomial model for percentile standards when
using a uniform prior for ammonia-N and a Jeffreys prior for dis-
solved oxygen. The mean absolute difference between the two
probability densities of ecological status is below 0.01 in 73% of the
cases for ammonia-N and in 78% of the cases for dissolved oxygen.
The results are not exactly the same because using a non-
informative prior on the support of the water quality parameter,
as in the multinomial model, is not the same as using a non-
informative prior on the exceedance proportions, as in the bino-
mial model. Demonstrating these differences in detail is beyond the
scope of this paper. Another policy relevant application is trend
analysis allowing probabilistic comparisons of years and locations.
Fig. 8 exemplifies this for temporal trends, based on the multino-
mial model. If the 90% credible intervals in these plots are especially
wide then this is caused by a few extreme sample values in those
years.

The multinomial model is sensitive to the choices of prior
weights of possibly missing data, largest population value and
measurement precision (Fig. 9). Based on the OAT sensitivity
analysis for the Caudworthy data 2006—2008, mean
orthophosphate-P shows high sensitivity to total prior weight a and
largest population value Yp , and low sensitivity to measurement
precision d. Increasing Yp widens the probability distribution
(Fig. 9d), while increasing a widens the distribution as well as
shifting its mode to higher values (Fig. 9a). When a = 0 (Bayesian
bootstrap) then possibly missing data are neglected and hence the

resultant distribution is similar to that resulting from BMA (Fig. 4a).
Increasing d by one order of magnitude above the detection limit
from 0.01 to 0.1 has little effect (Fig. 9g). Note 0.09 is the largest
orthophosphate-P value recorded in the Caudworthy data
2006—2008. Increasing levels of aggregation beyond this point (not
shown) shift the mode of the distribution linearly to higher values
as the centre of the increasingly wider bin containing all the data
increases. The effect of decreasing & below the detection limit of
0.01 (not shown) is negligible, and physically unrealistic.

The 10th percentile dissolved oxygen and the 90th percentile
ammonia-N show lower sensitivities to the multinomial model
parameters than mean orthophosphate-P. Both parameters are
moderately sensitive to d (Fig. 9h—i), with increasing values shifting
the distributions to lower values, which in the case of dissolved
oxygen means lower ecological status. Increasing d has the effect of
increasing the widths of the bins containing the data and hence
reassigning the data values to new centre points. Extreme per-
centiles are more sensitive to these reassignments than the mean,
which for the data used here leads to lower values. The effect can be
confirmed when calculating the percentiles empirically from the
raw histograms using the same variation of bin widths.

The sensitivity of both the 10th percentile dissolved oxygen and
the 90th percentile ammonia-N is low with respect to a (Fig. 9b—c)
and negligible with respect to Yp (Fig. 9e—f). Increasing Yp while
keeping a constant has the effect of rebalancing the total prior
weight between the two ranges either side of the cluster of ob-
servations, assigning a relatively greater weight to the range of
values above the observations, while also extending this range to
greater values. While this affects the mean, as shown above, the
effect on percentiles depends on the previous size of the ranges
either side of the observations. For the ammonia-N data used here,
the range below the cluster of observations is small. Hence
increasing Yp while keeping a constant does not appreciably
change the prior weight of extreme values; only the range of the
extreme values increases. While greater values will be sampled, the
proportion of values above a certain percentile remains unchanged,
resulting in no discernible effect on the 90th percentile ammonia-N
(Fig. 9f). For the dissolved oxygen data used here, the range above
the cluster of observations is much smaller than the range below,
because of the physical limits to the upper range. Hence increasing
Yp rebalances the total prior weight slightly in favour of the upper
range, meaning this range is relatively over-sampled and the 10th
percentile dissolved oxygen distribution contracts slightly towards
greater values (Fig. 9e).

The effect on the percentiles of increasing a is greater than that
of increasing Yp because the increase in total prior weight re-
inforces the dominance of the larger of the two ranges either side of
the observations, leading to relatively more samples being drawn



146

T. Krueger / Water Research 115 (2017) 138—148

(a) (b) (©)
1 == 1 1
—, =
= =02
— = ()
08 08f{mmo =04 08 —a=02
=—a=06 —a=04
06 o6l _ 7 0%8 06 —0=06
— " —_— =08
w w o o R
5 8 —a=12 (v} —_—= 1
04 04f=—a=14 04 —a=12
== =16 = =14
a=18 —y
02 02 a=16
0.2 a= 2 a8
o= 2
0 0 05 -1 0 1 2
0 0.1 0.2 0.3 04 0.5 30 40 50 60 70 80 920 10 10 10 10 10
Mean Orthophosphate—P / mg | ~' 10th percentile DO / % saturation 90th percentile Ammonia—N/mg| '
¢ (e) ®
1 1 1
_YD =110
—v _-o0. —_Y_=120
08 p=02 08 b 038
—_=15 —_Y,=130
—Y =25 —YD =140
0.6 D 0.6 _ 0.6
" _YD:3_5 " _YD_150 n
O —Y, =4 8 —Y, =160 u04
04 04 = g
—_Y, =45 —Y,=170
= Y_ =180
" —Y,=55 b o
g YD=5_5 0.2 YD='|90
YD =75 :
0 0 -2 ~1 [ 1 2
0 0.1 0.2 0.3 0.4 0.5 30 40 5 60 70 80 90 10 10 10 10 10
Mean Orthophosphate—P /mg | - 10th percentile DO / % saturation 90th percentile Ammonia—N/mg | -
()} (h) (i)
1 1 1
—_—c=1
—_—(= 2
08 08f{mmp=3 08 —5=001
=—3=4 —5=002
06 o6f| 03 06 —5=003
n L |80 u —5-004
o S |—8=7 o —5=005
04 04f=5=8 o —5=006
8=9 —8=007
02 55 5=10 02 —5=008
5=0.09 ’ 5=0.09
3= 0.1 [ — 8= 0.1
o o (W 0= =] 0 1 2
0 0.1 0.2 0.3 0.4 0.5 30 40 50 60 70 80 92 10 10 10 10 10

Mean Orthophosphate—P / mg | 4

10th percentile DO / % saturation

90th percentile Ammonia-N/mg| ™'

Fig. 9. Caudworthy data 2006—2008. Sensitivity of multinomial model for three water quality parameters to choice of (a—c) total prior weight a, (d—f) largest population value Yp
and (g—i) measurement precision d. Choices made in the remainder of the paper are in red. The case a = 0 (a—c), where possibly missing data get zero weight, is known as the
Bayesian bootstrap. Note the log-scale for ammonia-N. Note the CDFs of the percentiles (b, c, e, f, h, i) are step-like because the posterior distributions of percentiles under the
multinomial model are discrete (Aitkin, 2010). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

from that side. Hence, for the data used here, the 10th percentiles
dissolved oxygen distribution expands towards smaller values
(Fig. 9b) while the 90th percentile ammonia-N distribution ex-
pands towards greater values (Fig. 9¢). Still, for reasons explained
above, the effects are smaller than for the mean.

4. Discussion

If we assume a theoretical model of the frequency distribution of
a water quality parameter then Bayesian inference provides
coherent information about the uncertainty of a summary statistic
given the available data and some prior belief about the model
parameters; in our case effectively complete uncertainty. However,
how do we know the model is right?

A more general approach is Bayesian Model Averaging (BMA),
which provides an average probability density for a summary sta-
tistic across the candidate models (see Fig. 3a). In case of strong
evidence in the available data for a particular model, this will
dominate the average (see Fig. 3b, c). Because the individual model
results are weighted by the model likelihood, which is still

conditional on the available data and not those that have not been
sampled, BMA will in the general case of insufficient sampling still
under-estimate the true uncertainty. How then to place more
emphasis on the data that have not been collected, but could have
been?

The quasi-nonparametric multinomial model has the desired
property of increasing the spread of the probability density of a
summary statistic towards possibly missing data. However, critical
assumptions are the largest population value, the measurement
precision, and the “prior weights” of the missing data. The smallest
population value is uncritical as this can be fixed at zero. For the
measurement precision, a physically defensible choice is the
detection limit. The OAT sensitivity analysis suggests that the
choices of prior weights and largest population value have large
effects on mean orthophosphate-P, whereas they have small effects
on the 10th percentile dissolved oxygen and the 90th percentile
ammonia-N (Fig. 9). Setting the largest population value for each
parameter at the maximum value recorded anywhere in the Tamar
between 1990 and 2008 was a pragmatic choice, but meant that
aspects of the data entered the analysis a prior, in principle violating
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orthodox Bayesian reasoning. In future analyses it would seem
more reasonable to determine physical bounds of the largest
population values.

Choosing the prior weights will be more ambiguous. A “total
prior weight” of 1 as used here effectively assigns the missing data
collectively the weight of one data point. This may be considered a
reasonable lower limit. Increasing the total prior weight shifts the
probability density towards extreme values (Fig. 9). Certainly for
mean orthophosphate-P this shift is rapid and hence values should
be chosen with care. The exact choice of the total prior weight as
well as its distribution over the discrete prior weights a; will be best
made by expert elicitation, as is commonly done in Bayesian
analysis. However, even experts will find it difficult to weigh total
prior weight against total sample weight as these are abstract
concepts. Moreover, the experts' experiences will again be biased to
the data ranges that have been observed in the past, not the
extreme values that might have been missed. If the monitoring
purpose is compliance regulation, as the WFD posits (Skeffington
et al., 2015), then pollution incidents such as industrial or farm
yard spills that are commonly at least partially missed by standard
monitoring schemes are real concerns that can increase means and
percentiles, despite deviating considerably from past experience.
Hence expert elicitation will have to find novel ways of elaborating
(O'Hagan, 2012) the prior weights.

Perhaps the weighing of evidence that was collected against that
which was not, but could have been is more of a value judgement,
reflecting one's aversion or not to the possibility of surprise and
one's affinity or not to precaution. In this case, the choice of prior
weights would be best deliberated by the stakeholders affecting or
affected by the management decisions made on the basis of the
water quality assessment (Krueger et al., 2012). The process of
stakeholder deliberation, just like expert elicitation, would require
grappling intensely with the inner workings of the multinomial
model so that participants understand the impacts of their choices.
However, not many stakeholders will want to engage with such
technical problems; and if they do, the process will take consider-
able time (Krueger et al., 2016). It certainly seems easier to assume a
parametric model for which parameter estimation is straightfor-
ward, but if the underlying data are biased then any parametric
model will be grossly misleading. Hence we should invest the time
and effort required to deliberate what assumptions we should
make about those possibly missing data.

Important as it is to discuss the appropriateness of uncertainty
models, we must remind ourselves that water quality status, such
as defined by the WFD, is uncertain — no matter which uncertainty
model we choose. This uncertainty has been recognised in other
elements of the WFD, such as the biological quality elements and,
often forgotten, the boundaries of the ecological status classes
themselves (Noges et al., 2009). In the UK, for example, the class
boundaries of orthophosphate-P in rivers have been revised in 2013
(UK Technical Advisory Group on the Water Framework Directive,
2013). My results back up the conclusion of Skeffington et al.
(2015) that there is considerable risk of misclassification of
ecological status. Moreover, the uncertainty has implications for
trend detection (Hirsch et al, 2015), resulting in potentially
spurious trends in water quality that are artefacts of the sampling
scheme (Skeffington et al., 2015).

Contrary to Skeffington et al. (2015), I found the empirical class
estimates for orthophosphate-P based on standard sampling to be
frequently (in 46% of the cases) incongruent with the modes of the
probability densities; meaning the empirical analysis is often
biased, not just overly precise. This phenomenon follows from my
parameterisation of the a priori ignorance of missing data, which
implies an expectation that greater values of orthophosphate-P

could have been collected, in line with empirical evidence
(Ferrant et al.,, 2013; Johnes, 2007). The sub-sampling study of
Skeffington et al. (2015) shows cases where this expectation holds a
posteriori for 98th percentile temperature, but not for mean total
reactive phosphorus. Their uncertainty distributions for the per-
centiles are also wider than those for the means, while I found the
opposite for orthophosphate-P and ammonia-N, but comparable
uncertainties of means and percentiles for dissolved oxygen. The
sign and magnitude of the empirical bias and the width of the
uncertainty distribution will depend on the water quality param-
eter, the summary statistic and the pollution dynamics in specific
locations. While the statistical methodology is readily transferable
to other locations and other applications, the particular setup of the
multinomial model used in this paper will require validation
against high-resolution data in sub-sampling experiments.

5. Conclusions

Statements of freshwater quality such as ecological status under
the EU Water Framework Directive (WFD) are uncertain because
standard low-resolution monitoring does not resolve the full fre-
quency distributions of the requisite water quality parameters.
Using a Bayesian multinomial model of the monitoring process to
quantify this uncertainty yields probability densities of ecological
status that span several status classes. The modes of the probability
densities can be very different from the empirical summary sta-
tistics, such as in the orthophosphate-P datasets studied here
where the mode was frequently one status class below the
empirical status, occasionally two. This means that standard reg-
ulatory practice leads not only to overly precise but occasionally
biased results.

The quantification of freshwater quality uncertainty requires
strong assumptions about the missing data needed to fully char-
acterise the frequency distribution. Three assumptions that might
be made in a Bayesian framework were compared in this paper.
First, assuming a parametric model of the frequency distribution is
straightforward, but the model is impossible to validate. Second,
Bayesian Model Averaging (BMA) alleviates the problem of model
validation to some extent by comparing and averaging over mul-
tiple candidate models, but yields overly precise results when
sampling is insufficient. Third, the multinomial model is a quasi-
nonparametric choice that places some weight on the missing
data, including the tails of the frequency distribution, which makes
it preferable over the other two models. However, crucial as-
sumptions here are the upper bound of the possibly missing
parameter values and the prior weights given to these missing data.
In limiting cases, the three methods overlap, i.e. BMA selects a
single parametric model when the available data are unambiguous
and the multinomial model is similar to BMA when possibly
missing data are ignored (Bayesian bootstrap).

I have argued that the model assumptions are best deliberated
by the stakeholders affecting or affected by the management de-
cision made on the basis of the water quality assessment, as these
choices really are value judgements related to surprise and pre-
caution. It will be interesting to discuss whether the conventional
precautionary practice of WFD implementation that uses the
lowest of several indicators to determine overall status (“one-out-
all-out” principle) should be retained in the probabilistic assess-
ment (and how), or whether an average across all indicator distri-
butions should be preferred instead.
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