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Abstract
We assess the utility of seasonal forecasts for the energy industry by showing how recently-
established predictability of the North Atlantic Oscillation (NAO) in winter allows predictability of
near-surface wind speed and air temperature and therefore energy supply and demand respectively.
Our seasonal prediction system (GloSea5) successfully reproduces the influence of the NAO on
European climate, leading to skilful forecasts of wind speed and wind power and hence wind driven
energy supply. Temperature is skilfully forecast using the observed temperature-NAO relationship
and the NAO forecast. Using the correlation between forecast NAO and observed GB electricity
demand, we demonstrate that skilful predictions of winter demand are also achievable on seasonal
timescales well in advance of the season. Finally, good reliability of probabilistic forecasts of above/
below-average wind speed and temperature is also demonstrated.
1. Introduction

For sectors of industry and the economy influenced by
inter-annual climate variability, good seasonal predict-
ability of climate potentially offers considerable socio-
economical benefits (e.g. Palin et al 2016, Emanuel
et al 2012, Cantelaube and Terres 2005, Challinor et al
2005, Morse et al 2005, Katz and Ehrendorfer 2005,
Svensson et al 2015, Palmer 2002, Karpechko et al
2015). Reliable forewarning of cold, calm winters for
example could help decision makers in the energy
industry plan resources effectively to minimise the risk
of power shortages and price shocks from mismatches
in supply and demand. Many studies have recognised
the utility of a skilful seasonal forecast for the energy
industry (e.g. Troccoli 2010, Brayshaw et al 2011,
Buontempo et al 2010), but although Soares and Dessai
(2015) found the energy industrywas relatively advanced
in the use of seasonal forecast information compared to
other sectors, thereare fewpublishedstudiesonactualuse
(De Felice et al 2015 is a rare example).

For some aspects of the climate system, for
example sea surface temperatures and tropical
circulation, predictability at seasonal lead times has
been steadily increasing in recent years as a result of
improved climate models, assimilation of initial
conditions and ensemble production techniques
© 2017 IOP Publishing Ltd
(e.g. MacLachlan et al 2015, Kirtman et al 2014,
Kim et al 2012, Arribas et al 2011, Balmaseda et al
2010, Doblas-Reyes et al 2009). For mid-latitude
regions though, such as Northern Europe, good
predictability of fields useful for climate services, for
example of near-surface wind speed and temperature
has, until recently, remained elusive (Smith et al 2012).
However, with the latest forecast systems, significant
extratropical winter prediction skill is, finally, now a
reality (Scaife et al 2014, Athanasiadis et al 2015,
Siegert et al 2015, Kang et al 2014, Riddle et al 2013).
Scaife et al for example, report a correlation of 0.6
(statistically significant at 1% level) between seasonal
mean values of model simulated and observed surface
NAO, for the 20 years from 1993 to 2012. The NAO is
defined here as the difference in sea level pressure
during winter between two regions of predominantly
high and low pressure (the Azores and Iceland
respectively, (Hurrell 1995, Johansson 2007) and its
improved predictability has particular relevance for
the climate variables of interest to the energy industry.
Aspects of this relevance are discussed in section 3 of
this article, after a brief description of the seasonal
forecast system in section 2.

In section 4 we consider the reliability of the
forecast system. It is essential to establish the extent to
which the probabilities of forecast events (like a
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Table 1. GloSea5 resolution

Horizontal Vertical

Atmosphere N216 (approx. 50 km at 50 °N) 85 levels with

highest at 85 km

Ocean ORCA0.25 (0.25° lat, long,

approx. 27 km at equator)

75 levels
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warmer-than-average winter) can be relied upon for
decision-making, and that the forecast system isn’t
overconfident (Weisheimer and Palmer 2014) or
under-confident (Eade et al 2014, Kumar et al
2014). However, unlike correlation skill, the reliability
of the forecast system can be improved through
calibration, once the behaviour of the raw model
forecasts (which we show here) is known.

Finally in section 5, we assess the degree to which
GloSea5 can be used to predict inter-annual fluctua-
tions in energy demand by comparing seasonal climate
predictions with observed statistics provided by the
UK energy industry.
2. Data and methods

We use data from the Met Office GloSea5 (Global
Seasonal forecast system 5) simulations comprising
20 years of December to February (hereafter DJF),
hindcasts initialised between October 25th and
November 9th prior to each winter. Twenty-four
simulations in total were available for each year using a
combination of lagged initialisation dates and
stochastic physics as described in MacLachlan et al
(2015). These forecasts were produced with the
coupled Met Office HadGEM3 climate model with
atmosphere, land, ocean and sea-ice components
provided by the Met Office Unified Model and JULES
(GA3.0/GL3.0 configuration, Walters et al 2011),
NEMO (GO3.0 configuration, Madec 2008) and CICE
(GSI3.0 configuration, Hunke et al 2004) models
respectively. Resolutions of the components are given
in table 1 and are relatively high with 0.25 ° ocean
resolution and less than 1 ° in the atmosphere.We refer
readers to the references above for more complete
details of the models and model configurations used.

Throughout this article we use ERA Interim
(Dee et al 2011) reanalyses to represent historical
observations.
3. Relevance of the NAO to European wind
and temperature

Before we quantify the influence of the NAO on near-
surface wind and temperature, it is worth considering
the skill of the sea level pressure forecasts fromwhich the
NAO is derived. To do this, figure 1 shows a map of the
correlation between observed and predicted seasonal
means of sea level pressure for winter (DJF). Point
correlation for this season exceeds 0.4 (statistically
2

significant at 10% level, using a t-test) for the individual
regions of climatological low and high pressure over
Iceland and the Azores respectively which form the
NAO dipole. Spatially, the skill varies little, suggesting
that the winter NAO skill reported in Scaife at al is
insensitive to the specific NAO definition (e.g. by using
empirical orthogonal function (EOF) analysis to define
the NAO rather than using predefined locations of the
NAO centres of action).

The NAO is a well known driver of inter-annual
climate variability in Northern Europe for sound
physical reasons (e.g. Luterbacher et al 2004, Trigo et al
2002, Pozo-Vázquez et al 2001, Hurrell 1996) and can
alter the frequency of extreme events (Scaife et al 2008,
Thompson et al 2002). The meridional pressure
gradient it describes largely determines the strength of
the westerly wind in north-western Europe by
geostrophic balance. Observed winters in this region
are therefore usually windy and mild when the NAO is
anomalously positive (Folland et al 2012, Neill et al
2014) but calm and cold when negative (e.g. Jung et al
2011, Scaife and Knight 2008, Fereday et al 2012,
Maidens et al 2013). The opposite relations hold in
south-western Europe. Replication of these observed
teleconnections is thus a requirement of seasonal
prediction systems in order to achieve robust
predictability of near-surface wind speed and temper-
ature. These are shown in figure 2. Regions coloured
red are windier than usual during anomalously
positive NAO winters and blue where calmer than
usual. The GloSea5 seasonal forecast system replicates
the observed patterns remarkably well, reproducing
the strong latitude dependence of the NAO on near
surface wind speed. There is also a large scale
relationship between the observed NAO and tempera-
ture across Europe (figure 2, right column)withpositive
NAOwinters being thewarmest. GloSea5 replicates this
reasonably well (right column, middle row) but its
ensemble mean (bottom right) shows a weaker
correlation which explains the weaker level of skill in
temperature forecasts for this region (Scaife et al 2014).
4. Wind speed, power and temperature
seasonal forecast skill and reliability

Figure 3 shows some diagnostics of relevance to the
energy industry. The first is a time-series of near-
surface wind speed for the UK (10 °W, 50 °N to 3 °E,
60 °N) with a correlation of 0.64 between the GloSea5
ensemble mean and ERA Interim. For each data set,
the wind speeds are normalised by subtracting the
climatologicalwintermeananddividingby the standard
deviation. This is necessary because the inter-annual
variability of the ensemble mean is considerably smaller
than that observed (2% of mean absolute wind speed
values compared to 8%).

The second series is for wind power density,
produced using power density = ½(rU3) where U is
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Figure 1. Correlation between GloSea5 ensemble mean and ERA Interim sea level pressure for DJF compiled from 20 years of
simulation. Mask (white areas) applied to correlations not significantly greater than zero at 10% level.
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Between G5 NAO and
G5 1.5m air temperature (480 samples)

Between G5 EM NAO and
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Figure 2. Correlations between NAO on winter near-surface wind speed (left column) and temperature (right column). Observed
(ERA Interim) relationships are shown in the top row. Middle row shows ensemble member relationships in hindcasts. Bottom row
shows ensemble mean relationships in hindcasts. Mask (white areas) applied to correlations not significant at 10% level.
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the wind speed at 10 m (in m s�1), following the
approach of Manwell et al (2010) in which wind power
is primarily a function of the volume throughput of air
driving the blades of a turbine. r is the air density,
computed here using the ideal gas law (r = P/RT),
where P, T and R are the pressure, temperature and
specific gas constant for dry air (287.058 J kg�1 K�1)
respectively. For reasons of data availability, we use
pressure at mean sea level and temperature at 2 m.
3

Seasonal means of power density were produced for
each gridpoint by averaging over power densities
computed using the daily-mean output from the
GloSea5 hindcasts and 6-hourly means from the ERA
Interim verifying reanalysis. Data at finer temporal
resolution (which was not available) would have been
preferred for this analysis, since the mean of U3 is only
equal to the cube of daily mean U in the absence of
sub-daily variability. The correlation with power
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Figure 3. Time series of GloSea5 hindcast (red) and observed (ERA Interim, black) DJF mean near-surface wind speed, power density
(0.5rU3 where r is the air density and U is the daily mean wind speed) and temperature, averaged over the UK.
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density is slightly smaller (0.58) but still potentially
useful and highly significant. The observed extreme
winters of 2009, 2010 and 2011 are also clearly predicted
by the hindcasts suggesting GloSea5 is of benefit in
planning for extreme worst case events. Normalised
values are again presented in figure 3, given the smaller
standard deviation of GloSea5 compared to ERAI (7%
and 20% of mean absolute values respectively).

Further analysis (not shown) has found a strong
relationship between winter mean wind speeds at 10m
and those at 975 hPa, 950 hPa and 925 hPa in
ERAI (correlations of 0.97 ± 0.01 for all 3 levels).
Consequently, the results shown here are also likely to
be valid for hub height wind speeds (80 m to 130 m
above the surface).

The third time series is for temperature, with a
correlation of 0.27. For temperature however, better
forecasts can be made (0.44 correlation) by simple
linear regression using the NAO itself as the predictor.
The stronger real-world influence of the NAO on UK
temperature, shown in the top right panel of figure 2,
compared to that simulated by the ensemble mean in
themodel (middle right panel of figure 2) is thought to
contribute to this improvement as well as greater real
world predictability compared to that of the Glosea5
ensemble (Eade et al 2014). Sensitivity of the skill to
the definition of the UK region, tested by displacing
4

the region by half its northerly and easterly extent as
well as its size was found to be small (not shown).

Time series of ensemble means and correlations
provide a good guide to certain aspects of the
performance of a forecast system. However, seasonal
predictions are often issued as the probability of a
specific event occurring which requires an alternative
assessment method. Model reliability describes how
closely the forecast probabilities of an event corre-
spond to observed frequencies of that event in the real
world (Wilks 2006). For example, a winter wind speed
might be forecast to be above-average with 60%
probability. Using the hindcast, we could find all the
historical winters when it was forecast to be above-
average with 60% probability, and count how many of
themwere actually observed to be above-average. For a
‘reliable’ forecast system, this should also be around
60% so that forecast probability matches the observed
frequency. This information can be gathered from the
hindcast and observational data for a range of forecast-
probability categories, and plotted as a reliability
diagram (observed frequency against forecast proba-
bility). For a perfectly reliable system, the points for
each probability bin will lie on the 1:1 line.

However, the system could be overconfident, where
the event is observed to occur less frequently than
predicted when it is forecast with high probabilities,
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Figure 4. Reliability (top) and sharpness (bottom) diagrams compiled from UK region grid cells (following the WMO (2010)
standard procedure, see text) for forecasts of winter above-median near-surface air temperature (left) and wind speed (right). The
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climatological frequency of 0.5 (as we are using above-median forecasts). The solid black 1:1 line marks ‘perfect reliability’, where
observed frequencies match forecast probabilities. The red diagonal dashed line is midway between perfect reliability and no
resolution, and marks ‘no skill’; points above that line (in the green area) make a positive contribution to the Brier skill score (Wilks
2006).
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and more frequently than predicted when it is forecast
with low probabilities. This results in a line with a
slope shallower than 1 on a reliability diagram.
Similarly it can be underconfident, forecasting less
extreme probabilities than observed, resulting in a
gradient steeper than 1 on the reliability diagram (e.g.
figure 4 right). Knowing the behaviour of the forecast
system in this way allows the system to be calibrated to
produce reliable probabilistic forecasts.

Related concepts are sharpness and resolution. The
sharpness of a forecast system refers to its ability to
forecast extreme probabilities, rather than just the
climatological average. This is shown in the sharpness
diagram in the bottom panel of our reliability
diagrams, as a histogram of the forecast probabilities
in the hindcast data. Ideally, these histograms should
be flat across all probability categories, such that the
hindcast has a good sample of data at all probabilities
with which to judge the reliability. A system that is not
sharp will always produce probabilities at the
climatological level, with a strongly-peaked sharpness
diagram. The combination of the reliability and
sharpness diagrams fully describes the joint distribu-
tion of the hindcast and observational data (Wilks
2006).

The forecast resolution refers to the ability of the
system to resolve the set of forecast events into groups
(probability categories) which have different observed
frequencies. The ‘no resolution’ case, where all forecast
5

probabilities correspond to observational frequencies
at the climatological rate, is marked on the reliability
diagram as a horizontal line.

Figure 4 shows reliability diagrams for above-
average wind speed and temperature, following Wilks
(2006) and the WMO (2010) standard procedure
including cross-validation. We aggregate the hindcast
data from each grid cell in our UK region when
calculating the forecast probabilities and quantiles. We
primarily focus on above-median events to ensure
results are as robust as possible, given the limited
number of years available. Reliability diagrams for
terciles and outer quintile events are however available
in the supplementary information but should be
treated with caution because of the smaller sample
sizes of the data used in their computation.
Nevertheless, an increased probability of above/below
average events can point towards a greater risk of
associated extremes. In our diagrams, we also include
the best-fit lines and their uncertainties, calculated
using weighted least squares, taking the uncertainty in
the forecast probabilities due to the sampling into
account. The uncertainties in the gradient of the fit are
given by the 75% confidence limits (following
Weisheimer and Palmer, 2014) calculated using two-
tailed t-tests.

The results for above-median temperature fore-
casts show good reliability, with a gradient consistent
with unity (0.94 ± 0.16). Following the reliability



Table 2. Reliability category definitions. The definitions for
categories 1–5 correspond to those of Weisheimer and Palmer
(2014). Category 6 has been added here to account for
underconfident forecasts. In this table, R refers to the gradient of
the best-fit line to the reliability diagram. The lower and upper
bounds of the 75% confidence limits are denoted Rlo and Rhi

respectively, and the gradient of the ‘no skill’ line is denoted
Rnoskill.

Category Definition

6 ‘underconfident’ Rlo > 1

5 ‘perfect reliability’ Rhi ≥ 1 and Rnoskill � Rlo � 1

4 ‘still very useful for

decision making’

Rhi < 1 and Rlo ≥ 0.5

3 ‘marginally useful’ 0 < Rlo � 0.5

2 ‘not useful’ R ≥ 0 and Rhi > 0 and Rlo < 0

1 ‘dangerously useless’ R < 0
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classification of Weisheimer and Palmer (2014), the
temperature forecasts for the UK are in the ‘perfect’
category (see table 2 for details of the category
definitions). However, the model sharpness shows a
peak around probabilities of 50%–60%, with fewer
high-probability forecasts, resulting in the reliability
line being noisier at the upper end.

For wind speeds however, the model is under-
confident: the gradient of the best-fit line, 1.51 ± 0.12,
is significantly greater than 1. This unusual situation is
in accordance with Scaife et al (2014) and Eade et al
(2014), who discuss the issues surrounding the under-
confidence of seasonal and decadal predictions in the
Atlantic in more detail, and which has been considered
more generally by Kumar et al (2014). In terms of
sharpness, GloSea5 appears to produce most wind
speed forecasts with probabilities of between 50% and
60%, and with very few low and high probabilities.
The underconfidence and deficient sharpness shows
the system would benefit from calibration of raw
forecasts.

Figure 5 puts the reliability findings from figure 4
into a wider context by showing a map of the reliability
categories across Europe, based on the Weisheimer
and Palmer (2014) classification (table 2 here). These
are more informative than simply mapping the
reliability curve gradient, as they take the uncertainty
in the best-fit lines into account. For each grid cell, we
calculate reliability-diagram information for the
rectangular region defined by ±8 grid cells in
longitude and ±8 grid cells in latitude (the size of
such a box is shown as an example on the map). The
gradient of the reliability line and its uncertainty are
used to determine the reliability category for that
grid cell.

For forecasts of above-median temperature, the
British Isles is in a category-5 area, indicating perfect
reliability (as seen in figure 4). Much of continental
Europe however is in category 3 (‘marginally useful’);
Scaife et al (2014) showed that the skill in forecasting
temperature is also much lower in these regions.

For the wind speed, there is a large region
around the British Isles where GloSea5 produces
6

underconfident forecasts (category 6), as suggested in
figure 4. This shows that that result was not confined
to the particular region we chose, and is in fact a large-
scale feature in the GloSea5 system.

Good levels of reliability are maintained for wind
speed forecasts in France and the North Sea, in
contrast to our results for temperature. Again, this
corresponds broadly to the area of higher correlation
skill shown in Scaife et al (2014).

Overall, our results show that these seasonal
forecasts are reliable enough to be useful for the energy
sector.
5. Predictability of energy demand

Temperature is an important driver of Britain’s
electricity demand. For example, two-thirds of the
variability of daily electricity demand is linearly
accounted for by daily temperature variability, after
socio-economic influences have been removed
(Thornton et al 2016). In addition to temperature,
the grid operators also use forecasts of wind speed and
solar irradiance to improve their day ahead demand
forecasts (Taylor and Buizza 2003). Given the strong
relationship between the NAO and climate over
Britain, and the higher predictability of the NAO
compared to individual climate components, espe-
cially temperature, we assess the predictability of
demand using the NAO directly.

We compare observed winter mean GB total
electricity demand, with observed and GloSea5
predicted NAO (figure 6). Prior to comparison, we
remove low frequency variability from the daily
electricity demand timeseries provided by National
Grid, as this is thought to be predominantly driven by
socioeconomic changes (for further details see
Thornton et al 2016).

The linear relationship between the observed NAO
and electricity demand is strong with a correlation of
�0.67, statistically significant at the 1% level (figure 6,
top). In winter, temperature and electricity demand
are strongly anti-correlated, r = 0.8 (Thornton et al
2016). The strong anti-correlation between the NAO
and electricity demand therefore has the expected sign
and arises principally from the NAO’s influence on
temperature as discussed earlier.

From the bottom panels of figure 6, the correlation
between the predicted NAO and observed electricity
demand is also strong (r = 0.57, significant at 1%
level). This result suggests for the first time, that skilful
real time seasonal forecasts of the weather dependent
component of Britain’s winter electricity demand are
achievable. A skilful forecast of winter mean electricity
demand from the preceeding November offers many
potential benefits. For example advance warning of
very low temperatures and hence high demand, would
allow the grid operator to contract additional supply
or pursue demand reduction options. Individual plant
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Figure 5. Maps of reliability category, following Weisheimer and Palmer (2014), for GloSea5 hindcasts of above-median air
temperature (left) and wind speed (right). The category definitions are described in table 2. Note that we have added an additional
category 6 for underconfident forecasts, which dominate the British Isles area for wind speeds. The black box demonstrates the size of
the moving window used to produce reliability estimates at each grid point, comprising 17 � 17 grid cells.
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operators could also reconsider scheduled mainte-
nance outages.
Discussion and conclusions

Deterministic and probabilistic skill of the Met
Office’s seasonal forecast system has been assessed for
the 20 year period from 1993 to 2012. Statistically
significant predictability has been shown to occur for
mean sea level pressure for most of western Europe
and consistent with the NAO skill reported by Scaife
et al (2014).
7

The forecast ensemble successfully reproduces the
observed patterns of the influence of the NAO on near-
surface wind speed and temperature. This is essential to
ensure that the good predictability of the NAO follows
through to that of weather diagnostics in Europe,
allowing forecasts useful for industry to be made.

Analysis also suggests that for Europe, real-time
seasonal forecasts of near-surface wind speed and
temperature for energy supply forecasting are reliable
enough to be useful. The system does however have a
tendency to be underconfident in the prediction of
atmospheric circulation and wind speed while direct
temperature forecasts also show weaker skill.
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Strong, statistically significant relationships have
also been demonstrated between observed UK
electricity demand and both the observed and
predicted NAO. This suggests that skilful seasonal
predictions of winter energy demand are possible.
Similar results could be expected for other Northern
European countries or other applications with similar
sensitivity to the winter NAO (e.g. Karpechko et al
2015, Palin et al 2016, Svensson et al 2015). The skill in
forecasting the winter NAO could also be useful for
energy management in southern parts of Europe. For
example in Spain, wind and hydro power are higher
during negativeNAOwinters compared to positiveNAO
winters, whilst solar power is lower (Jerez et al 2013).
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