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Abstract
Understanding the environmental drivers of biodiversity persistence and community organization in
natural ecosystems is of great importance for planning the conservation of those ecosystems. This
comprehension is even more important in severely threatened ecosystems. In this context, we
analyzed ant communities in tropical dry forests (TDFs) in Brazil. These forests are embedded
within other biomes, such as Cerrado and Caatinga. In this study, we asked whether (i) ant species
richness and composition changes between TDFs within different vegetation domains; (ii) whether
ant species richness and b-diversity increase north-to-south, possibly related to changes in tree
richness and tree density; and (iii) species replacement contributes relatively more to b-diversity
than does nestedness. We found that species composition is unique to each TDF within different
biomes, and that species richness and b-diversity differ among the vegetation domains, being
smaller in the Caatinga. We also found that replacement contributes most to b-diversity, although
this contribution is lower in Caatinga than in Cerrado. We show that regional context is the main
driver of species diversity, which is likely to be driven by both historical and ecological mechanisms.
By analyzing large spatial scale variation in TDF environmental characteristics, we were able to
evaluate how ant diversity changes along an environmental gradient. The high levels of species
replacement and unique species composition of each region indicates that, to fully conserve TDFs,
we need to have various conservation areas distributed across the entire range of vegetation domains
in which these forests can be found. Thus, we demonstrate that a landscape-wise planning is urgent
and necessary in order to preserve tropical dry forests.
1. Introduction

Ant community structure (i.e. species richness and
composition) is determined by various ecological
mechanisms that operate over several spatial scales
(Lach et al 2010). At the local scale, interspecific
interactions (e.g. competition, mutualism), resource
availability, and environmental variables are often
described as the major drivers of ant community
structure (Srivastava 1999, Baccaro et al 2012,Camarota
et al2016).Examplesof environmental variables include
tree richness, height, and abundance (Ribas et al 2003,
Klimes et al 2012, Sousa-Souto et al 2016), variation in
canopy coverage (Neves et al 2013), and characteristics
of soil structure (Schmidt et al 2013). At larger spatial
© 2017 IOP Publishing Ltd
scales, historical processes of community assembly,
landscape configuration and variation in temperature
and precipitation (both current and historical) are seen
as key factors shaping ant communities (Dunn et al
2009, Jenkins et al 2011, Solar et al 2016).

Tropical dry forests (TDFs) in the Neotropical
region have undergone dramatic changes in both
geographical distribution and the extent of occupation
over geological time (Collevatti et al 2013). Brazilian
TDFs currently exist as disjunct fragments within
the Cerrado, Caatinga and Atlantic forest biomes
(Werneck et al 2011). These TDF fragments have low
floristic similarity (Oliveira-Filho et al 2006, Apgaua
et al 2014, Banda-R et al 2016), mainly due to
environmental characteristics such as temperature and
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humidity rather than historical fragmentation and
isolation (Neves et al 2015, Banda-R et al 2016).

Most studies of ant diversity in TDFs seek to
understand the mechanisms that determine local
community structure (e.g. Gove et al 2005, Delsinne et
al 2007, Zelikova and Breed 2008, Neves et al 2010,
Neves et al 2013, Sousa-Souto et al 2016), with few
studies examining larger spatial scales (but see
Delsinne et al 2010, Silvestre et al 2012, and Marques
and Schoereder 2014). High plant richness and
density, which are good proxies for habitat heteroge-
neity (Ribas et al 2003, Neves et al 2014, Leal et al
2016), likely influence insect communities since more
heterogeneous habitats have been assumed to provide
greater resource availability and variety (Stein et al
2014, Leal et al 2016). Ant community studies in TDFs
have explored the effects of environmental heteroge-
neity on species richness at local scales, mainly in
terms of tree richness and density (Neves et al 2010,
Sousa-Souto et al 2016), but general patterns of ant
community responses to these environmental varia-
bles have not been reported. For example, Neves et al
(2010) found no effect of tree richness and secondary
succession on arboreal ant richness, but observed
compositional changes with the advancement of
secondary succession. At larger spatial scales, historical
processes that characterize local evolutionary history,
such as migration events, extinction, and speciation,
are seen as strong determinants of ant diversity
(Silvestre et al 2012, Marques and Schoereder 2014).

Total diversity in a given region—i.e. g-diversity—
can be divided into at least two components,
a-diversity (i.e. the number of species at the local
scale) and b-diversity (differences in species assem-
blage composition among sites, Whittaker 1972,
Tuomisto 2010). Among the several ways to mathe-
matically relate a and b-diversities; multiplicative
partition of diversity (Whittaker 1972) follows the
formula gregion= a � b. Furthermore, b-diversity has
two underlying components, namely turnover (here-
after species replacement) and species richness
differences (hereafter nestedness). Understanding
how diversity is partitioned between a- and b-diver-
sities (Whittaker 1972), as well as how b-diversity is
decomposed in its two components (i.e. species
replacement and nestedness, Baselga 2010) is crucial to
uncover the mechanisms underpinning biodiversity
patterns.

In this context,we studied ant communities inTDFs
located within three different vegetation domains
(Cerrado, Caatinga-Cerrado transition and Caatinga).
Considering that TDFs have historically changed their
distributions and are now isolated patches within
different vegetation types (Pennington et al 2009,
Marques and Schoereder 2014, Banda-R et al2016), and
that, besides regional scale, tree species richness and
density can be proxies for several aspects affecting ant
communities (e.g. resource availability anddiversity and
climatic features; Sousa-Souto et al 2016), we tested the
2

following hypotheses: (i) ant species richness and
composition changes between TDFs within different
vegetation domains; (ii) ant a- (richness) and
b-diversities increases north-to-south, which coincides
with the gradient of rainfall and of tree richness and
density. Finally, as several studies in tropical ant
communities have been describing (e.g. Solar et al
2015, 2016, Bishop et al 2015), we expect that
(iii) species replacement contributes relatively more
to b-diversity than does nestedness.
2. Methods
2.1. Study areas
The study was conducted in tropical dry forests
(TDFs) in three regions of Brazil within the Cerrado
(hereafter Serra do Cipó, central Minas Gerais),
Cerrado-Caatinga transition (hereafter North of
Minas Gerais), and Caatinga (hereafter Paraíba)
domains (figure 1). TDF vegetation consists predomi-
nantly of deciduous trees (≥50% of the trees shed
leaves in the dry season), with a continuous canopy
and low grass density. According to the Köppen
classification, climate in the Serra do Cipó is Cwb
(humid subtropical with dry winters and temperate
summers); in the North of Minas Gerais and Paraiba,
the climate is classified as As (tropical with dry
summer) (Álvares et al 2013). Total average rainfall
ranges between 700 and 2 000 mm and average annual
temperature is 25 °C, with three or more months of
drought in which rainfall is less than 100 mmmonth�1

(Sánchez-Azofeifa et al 2005).
The Serra do Cipó lies in the southern region of

the Espinhaço Range, where TDF fragments are on
limestone outcrops within the Cerrado domain. The
area in North of Minas Gerais includes three protected
areas (PAs): the Lagoa do Cajueiro state park, and the
Jaíba and Serra Azul Biological Reserves. PA’s are part
of the Middle São Francisco Valley, a transition region
between the Cerrado and Caatinga. The study in
Paraíba was conducted at the Fazenda Tamanduá in
the Sertão de Piranhas physiographic region, within
the Depressão Sertaneja Meridional ecoregion in the
Caatinga domain (Velloso et al 2002).
2.2. Ant sampling

Plots (0.1 ha, 20 � 50 m) in different stages of
secondary succession were demarcated in each area.
We established nine plots in the Serra do Cipó, 15 in
the North of Minas Gerais, and 15 in Paraíba. Plots
were located at least 100 m apart. Samples were
collected at different stages of ecological succession
(see Cabral et al 2013, Coelho et al 2012, Madeira et al
2009) in order to cover a broad amplitude of the
variables we used to characterize vegetation structure
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Figure 1. Location and distribution of sampled Tropical Dry Forests within Brazilian vegetational domains. Serra do Cipó
(Cerrado)—circle, North of Minas Gerais (Caatinga-Cerrado transition)—triangle and Paraíba (Caatinga)—diamond.
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(Yang et al 2015). All samples were collected in the wet
season of 2012 between January and May.

In each plot, five sampling points were defined
(four at the extremes and one in the center), where we
collected ants in epigaeic (foraging on the ground or in
soil) and arboreal (foraging in the trees) microhabitats
(totalizing 390 pitfall traps: 90 in Serra do Cipó; 150 in
North of Minas Gerais and Paraíba). For further
analyses, all pitfall traps in a plot were pooled in a
single sample to improve site representativeness and
reduce detectability issues. Unbaited pitfall traps
containing 200 ml of capture solution (detergent þ
water) were used to collect ants. In epigaeic habitats,
traps were buried in the soil with openings at ground
level (Bestelmeyer et al 2000). Arboreal pitfalls were
installed at a height of 1.30 m in trees with
circumference at breast height (CBH) ≥15 cm.
The traps remained in the field for 48 hours, after
which the material was sent to the laboratory for
sorting, assembly and identification of specimens to
the lowest possible taxonomic level. Ant species were
identified using Baccaro et al (2015). The specimens
were deposited in the reference collection of the
Laboratório de Ecologia de Insetos at the Universidade
Federal de Minas Gerais in Belo Horizonte, Minas
Gerais, Brazil.

We acknowledge known limitations of pitfall traps,
such as being a passive method that samples primarily
actively foraging species (Bestelmeyer et al 2000) and
the susceptibility to be influenced by habitat structure,
3

since they can hamper ant locomotion (Melbourne
1999). On the other hand, pitfall traps are among the
most popular ant sampling methods and have been
successfully employed in many ecological studies with
ants (Schmidt and Solar 2010, Ribas et al 2012). Still,
the possibility of installing the same trap in the soil and
vegetation (Ribas et al 2003) makes pitfall trap
sampling suitable for comparisons across strata. Thus,
despite the limitations of pitfall traps, this method is
suited to our aims, as well as enabling future
comparisons with a large number of other studies
using the same method.

2.3. Description of vegetation structure
Among the variables that can represent habitat
structure, we measured plant species richness (a
surrogate for resource variety) and number of trees in
each plot (a surrogate for resource availability, table 1).
Phytossociological data were obtained from a survey of
all trees with diameter at breast height (dbh)≥5 cm. In
order to characterize successional stages, a phytoso-
ciological study was undertaken (Yule Nunes, unpub-
lished data) and three successional stages could be
distinguished: (1) early regeneration, with high
dominance of shrub-like species and scattered trees
with a discontinuous canopy; (2) intermediate, with
two vertical strata, one with fast-growing trees and
another with lianas; and (3) late, composed of three
vertical strata, being the first with large trees forming a
continuous canopy, the second with juvenile trees of



Table 1. Description of the structural vegetation characteristics (Mean ± SD), altitude, annual precipitation (Mean ± SD and min/
max) and geographic coordinates of the TDFs inserted in vegetation domains Cerrado, Transição Cerrado-Caatinga and Caatinga.

Vegetation

domain

Tree richness (number

of individuals)

Tree density

(individual/ha)

Elevation

(m)

Annual precipitation

(mm)a
Coordinates Sampling sites

Cerrado 24.33 ± 5.02 1084.44 ± 215.24 964 1439.9 ± 278.3 min 954,

max 1924

19°160S,
43°370W

Serra do Cipó

Cerrado-

Caatinga

23.47 ± 2.41 1226 ± 157.31 505 982.5 ± 229.7 min 558,

max 1296

15°160S,
43°550W

North of Minas

Gerais

Caatinga 9.07 ± 1.07 1058.67 ± 119.72 270 726.1 ± 331.6 min 24,

max 1116

07°010S,
37°240W

Paraíba

a Base data corresponds to the period between 2000 and 2012. Source: INMET—BDMEP (www.inmet.gov.br).
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different sizes and the third with typical understorey
species. In table 1, we also provide mean annual
precipitation for the period between 2000–2012
(Source: INMET—BDMEP—www.inmet.gov.br). In
order to provide a more comprehensive description of
each site, we also downloaded information about
climatic data (Precipitation, Temperature and Radia-
tion) in the study areas from WorldClim (Hijmans
et al 2005). We extracted data using the R package
raster and data were in a resolution of 30 arc-seconds,
using central coordinates for each site.

2.4. Statistical analysis
A species accumulation curve was constructed to
compare cumulative species richness and to verify the
degree of sampling sufficiency in each area. The
number of species was plotted as a function of the
number of sampled pitfalls, with 10 000 random-
izations performed to generate a confidence interval. A
non-parametric estimator (Jackknife 1) was used to
estimate total species richness in each TDF.

The influence of the vegetation domains where the
TDF is inserted on ant species composition was tested
using Permutational Multivariate Analysis of Variance
(PERMANOVA, Anderson 2006). P-values were
obtained through 999 permutations, using Jaccard
dissimilarities. Non-metric multidimensional scaling
(NMDS) was used to plot variation in species composi-
tion, also using Jaccard dissimilarities (Clarke 1993).

The b-diversity, representing the diversity of
differentiation within the plot (i.e. plot heterogeneity)
was calculated using Whittaker’s formula (Whittaker
1972): b = aplot/apitfall where aplot is cumulative ant
species richness per plot, and apitfall is average species
richness of the five sampling points (pitfall trap)
within a plot; in this approach, b-diversity values are
mathematically independent of a-diversity values
(Jost 2007), which allows comparison of b values
among locations with different a-diversity values
(Chao et al 2012).

Also, to test which underlying components of
b-diversity (species replacement or nestedness) con-
tribute more to differences in within-plot species
composition, we decomposed b-diversity for multiple
sites as proposed by Baselga (2010) and Baselga and
Leprieur (2015). In this analysis the total b-diversity,
4

represented by Sorensen dissimilarity (bSØR), is
decomposed into partial contributions of the species
replacement (i.e. Simpson dissimilarity bSIM) and
nestedness (bSØR� bSIM = bSNE) components. bSØR is
a monotonic transformation of Whittaker’s b, used in
earlier analyses (Baselga 2010). This approach allows
us to calculate the relative contribution of each
component (%) to total b-diversity.

Generalized Linear Models (GLMs) were run using
ant richness per plot (aplot) and b-diversity as response
variables. TDF vegetation domains and tree richness
and density per plot and interactions were used as
explanatory variables in this order, allowing all possible
variance tobe explainedfirstlyby regional context. If any
variance is left to be significantly explained by tree
richness anddensity, we canhavemore confidence there
is still some independent effect of these variables
(Crawley 2012). We acknowledge that plots located
within each vegetation domains are not fully statistically
independent and that some degree of pseudoreplication
(sensu Hurlbert 1984) may be present in our sampling
design. However, we argue that this was the only way to
produce fairly good quality data covering such a large
scale (Davies and Gray 2015), keeping a minimum of
comparability among TDF sites, such as conservation
status,minimumsize andsuccessional trajectory (Neves
et al 2014, Norden et al 2015). This is a frequent issue in
studies dealing with successional stages (Ewers and
Pendall 2008, Neves et al 2014, Sousa-Souto et al 2016).
In our study specifically, any attempt to intersperse our
sampling could have introduced uncontrolled variation
in the data, which could lead to spurious successional
effects being found in the data.

Full models were constructed and subsequently
simplified by removing non-significant explanatory
variables until the minimal adequate model was
obtained. Residual analysis was conducted to test the
suitability of the minimal model for error distribution.
Since species richness is a type of count data, we used
Poisson errors, correcting for overdispersion (Crawley
2012). Significant minimum models with vegetation
domains as the response variable (categorical variable
with more than two levels) were subjected to contrast
analysis, enabling separation of significantly different
levels and lumping of significantly similar levels
(Crawley 2012). To provide a more comprehensive

http://www.inmet.gov.br
http://www.inmet.gov.br
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understanding of how possible effects could influence
anta andb-diversity, we alsomade a Pearson correlation
plot with all climatic variables from WorldClim,
vegetation data, and ant diversity (figure S1 available at
stacks.iop.org/ERL/12/035002/mmedia). Finally,we test-
ed whether within plot b-diversity varied among
vegetation domains. We used a GLM to test whether
the relative contribution (%) of species replacement for
b-diversity per plot variedwithTDFvegetationdomains.

All statistical analyses were performed using the
statistical program R v.3.1.1 (R Core Team 2016).
Correlation plots were made using the package
corrplot v.0.77, analyses of sample sufficiency and
species composition were carried out using the
package vegan v.2.4 (Oksanen et al 2013), while
decomposition of b-diversity was done using the
package betapart v.1.3 (Baselga and Orme 2012).
3. Results

In total we sampled 166 ant species distributed in eight
subfamilies and 42 genera (table S1). The subfamilies
Formicinae and Myrmicinae represent 71.25% of all
sampled species, with 84 and 35 species, respectively.
The richest genera were Camponotus (24 species),
Pheidole (23 species) and Solenopsis (15 species)
(table S1).

The TDF in the North of Minas Gerais (Cerrado-
Caatinga transition zone) had the highest cumulative
species richness (112 species), followed by Serra do
Cipó (Cerrado, 76 species), and Paraíba (Caatinga, 40
species). North of Minas Gerais contained 61 exclusive
species (i.e. only found in that area), Serra do Cipó
contained 40 exclusive species, and Paraíba contained
12 exclusive species. Eight species were common to all
5

three regions: Brachymyrmex sp.4, Camponotus
melanoticus (Emery 1894), Camponotus crassus (Mayr
1862), Cephalotes pusillus (Klug 1824),Odontomachus
bauri (Emery 1892), Pheidole gr. Diligens sp., Pheidole
sp.10 and Pseudomyrmex gracilis (Fabricius 1804).

TDF cumulative species curves tended to stabilize
(figure 2). According to the Jackknife 1 estimator, TDF
sampling sufficiency was 87.48% in Serra do Cipó
(observed richness: 76; estimated richness: 86.88),
73.81% in North of Minas Gerais transition (observed
richness: 112; estimated richness: 151.73), and 80.11%
in Paraíba (observed richness: 40; estimated richness:
49.43). Finally, the composition of ant species differs
among the vegetation domains (figure 3, PERMA-
NOVA: Pseudo-F = 9.12; R2 = 0.34, p < 0.001).

3.1. Influence of ecological processes
TDFs among vegetation domains have significantly
different plot a and b-diversities (figure 4). Average
ant richness per plot was lower in Paraíba TDFs
(Deviance = 37.60, df = 36, p < 0.001; figure 4(a)).
b-diversity was highest in Serra do Cipó plots followed
by the North of Minas Gerais, and lowest in Paraíba
(Deviance = 6.54, df = 36, p< 0.001; figure 4(b)). Ant
species richness and b-diversity did not have any
relationship with tree richness, as well as we found no
effects with tree richness, tree density or interactions
between tree richness and density and region
(Deviance = �2.66, df = 35, p = 0.20 for a-diversity
and F3,35 = 0.11, p = 0.97 for b-diversity).

Species replacement is numerically the primary
mechanism that determines the b-diversity among
plots in the same region (figure 5). Nonetheless, the
average proportional contribution of species replace-
ment within each plot (bSIM) was highest in the Serra
do Cipó (91.67%) and in the North of Minas Gerais

http://stacks.iop.org/ERL/12/035002/mmedia
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(89.56%) regions, and lowest in Paraíba (74.11%,
p < 0.01; figure 5).
4. Discussion

Ant community structure differed among the study
vegetation domains. We provide evidence that these
differences may be related to historical and climatic
processes at a regional scale and we also discuss the
absence of environmental heterogeneity effects.
Tropical dry forests in Paraíba, within Caatinga, had
the lowest cumulative species richness per plot.
Among the processes contributing to these differences
in ant species composition and diversity, we can
highlight environmental severity (Yang et al 2015)
geographic distances among forests and the biological
context in which each forest is inserted (Apgaua et al
2014, Neves et al 2015, Banda-R et al 2016).

Tropical dry forests within Caatinga in Paraíba are
subject to low annual rainfall, as well as dramatic
variation from year to year (see table 1), and at
intervals of 10–20 years, a phenomenon known as
‘green drought’ where annual rainfall is below the
historical average (see Velloso et al 2002). This
unpredictability of weather conditions in the Caatinga
coupled with very low annual rainfall might have
negatively influenced the ant diversity in this region.
Thus, the abiotic environmental filter in Caatinga
should limit species richness, in areas with high
environmental severity, mainly due to the lower
numbers of species in the regional pool that can cope
with stressful conditions (see Yang et al 2015).
Differently, tropical dry forests located in the North
of Minas Gerais are in a major transitional region
between Cerrado and Caatinga tropical dry forests
6

domains (Banda-R et al 2016) as well as the TDFs in
Serra do Cipó, which are located within Cerrado.
These vegetation domains present lower environmen-
tal severity than Caatinga and are also under the
influence of species from other vegetation types (e.g.
high-altitude grasslands and Atlantic forest).

The evolutionary history of TDFs is marked by
episodes of expansion and contraction, and disjunct
distribution for long periods (Collevatti et al 2013),
exposing TDFs to the influence of distinct vegetational
formations over its history (Pennington et al 2009).
The unique species composition in TDFs inserted
within different vegetation domains was firstly
observed by Marques and Schoereder (2014), who
showned that more than 65% of variation in ant
species composition across TDFs is due to species
replacement among vegetation domains, attributing
this variation to historical contingency. We argue that
the historical component is indeed important,
however it must be coupled with the influence of
recent ecological conditions inherent from the
surrounding vegetation domains, such nesting site
availability and colony establishment (e.g. Guimarães
et al 2007, Andersen 2008), as well as species
interactions outcomes (Cerdá et al 2013, Camarota
et al 2016), which are likely to be responsible for the
compositional uniqueness we observed in the ant
community among vegetation domains.

While we found that species richness, b-diversity
and species composition are tightly dependent on the
identity of the vegetation domains in which each TDF
was inserted, we did not find any relationship between
these variables and tree richness or tree density. In a
recent comprehensive meta-analysis, Stein et al (2014)
found that environmental heterogeneity is a universal
driver of species richness across taxa, biomes, and
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spatial scales. However, the shape of the relationships
between environmental heterogeneity and biodiversity
depends on environmental severity, with positive
effects at either ends of the gradient (Yang et al 2015).
Hence, we found that regional context appears to
overcome these local effects either by historical
contingency (Marques and Schoereder 2014, Banda-
R et al 2016) or by embracing multiple local factors
that could drive species diversity (Sanders et al 2007).

Species replacement is the component that most
contributed to b-diversity in all vegetation domains,
and was more important in Cerrado and transition
TDFs than in Caatinga TDFs. Areas with greater tree
richness also had higher species replacement. Despite
the overall high contribution to b-diversity, replace-
ment was lowest in Caatinga. This suggests that
environments with lower species richness and less
predictable weather conditions favor fewer wildlife
7

species and hence, have increased contribution of
nestedness to b-diversity processes in ant communi-
ties (Dobrovolski et al 2012, Solar et al 2015).

In general, species composition provides a much
more sensitive community metric than species
richness for ants (Solar et al 2016). We can offer
partial support for this statement with our results.
While at the plot scale richness is only different in
Caatinga, rarefaction curves show a marked difference
in species richness between sites. Regarding species
composition, we found that TDFs within each region
markedly differ in ant species composition; only eight
species were shared among all three vegetation
domains. Phytosociological studies in these regions
show that floristic composition also differs between
TDFs (Banda-R et al 2016). Species composition was
more similar between Serra do Cipó and North of
Minas Gerais than Paraíba. Despite we have not tested



Species replacement
Nestedness

b

aa

Serra do Cipó North of
Minas Gerais

Paraíba

100%

80%

60%

40%

20%

0%

R
el

at
iv

e 
co

nt
rib

ut
io

n 
to

 β
so

r

Figure 5. Partition of total ant b-diversity (bSØR) into its components, species replacement (bSIM) and nestedness (bSNE), in TDFs
within the three vegetation domains Cerrado, Cerrado-Caatinga transition, and Caatinga, located in central and northern Minas
Gerais State, and Paraiba, Brasil, respectively. In the figure, we show values of species replacement and its complementary nestedness
component (ther sum accounts for 100% of bSØR).

Environ. Res. Lett. 12 (2017) 035002
for the specific reasons that could be leading to this
pattern, the current disjunct distribution of TDFs,
distinct vegetation domains, and regional species
pools may explain the lack of shared species
(Tscharntke et al 2012, Apgaua et al 2014, Banda-R
et al 2016). Since Paraíba is the more distant site in our
sampling, this could be responsible for the largest
differences observed. An alternative explanation could
also be that, by presenting lower species richness, this
region has lower probability of sharing species with the
other regions, increasing dissimilarity.

The unique species composition of TDFs in each
vegetation domain is responsible for much of the
overall ant diversity (54% in Cerrado-Caatinga
transition zone, 53% Cerrado zone and 30% in
Caatinga), which makes exclusive species the rule and
shared species the exception in this scenario.
Interestingly, the few shared species among all TDFs
are broadly-ranged, generalist species that can use
different types of resources, prey or habitats.
Specifically, Camponotus crassus and Cephalotes
pusillus are species that use different types of resources
in plants such as extrafloral nectaries, trophobiont
insects, flowers and fruits (Costa et al 2016).
Odontomachus bauri is a generalist epigaeic predator
that feeds on leaf litter invertebrates of varying sizes,
with preference for arthropods with a similar body size
to its own (Brandão et al 2012). Pseudomyrmex gracilis
exhibits strong phenotypic plasticity and is found in a
variety of vegetation types, with wide distribution in
the Americas (i.e. from Uruguay and Argentina to the
United States, Wetterer 2010). In addition to TDFs,
these species are found in distant fragments within
different vegetation domains that have historically
been degraded by human activity, which may favor the
8

presence of generalist species (Montine et al 2014).
Therefore, while most of the species present in TDFs
located in different vegetation domains, the shared
species are widespread and of very low conservation
value and reinforce that TDFs are compositionally
complementary across their ranges.

Conservation of tropical dry forests should be
prioritized since these areas are under threats
(Pennington et al 2009, Quesada et al 2009,
Portillo-Quintero and Sánchez-Azofeifa 2010). The
annual rates of deforestation are the highest among
tropical forests (0.96% of the remaining area each year,
Whitmore 1997). On a global scale, almost 50% of the
TDFs have been converted to other land-uses
(Hoekstra et al 2005) and, in Latin America, these
rates are as high as 66% (Portillo-Quintero and
Sánchez-Azofeifa 2010). Importantly, these rates
regard deforestation alone, and do not consider the
dire consequences of forest disturbance (e.g. fire and
logging, Barlow et al 2016). Given the unique
compositional characteristics of TDFs embedded in
different vegetation domains, we suggest creating
landscape-wise strategies for the development and
conservation of areas of TDFs across their entire
geographic range, also considering the degree of
protection of patches of natural vegetation within
different ecoregions.
5. Conclusion

This work demonstrates that TDFs fragments in
different vegetation domains significantly differ in ant
species composition, accumulated species richness,
and a- and b-diversities. Specifically, we found that
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composition ismoremarkedly different and thata- and
b-diversities are lower in vegetation domains that
present high environmental severity (e.g. Caatinga).
Furthermore, species replacement contributed more
than nestedness to b-diversity among TDFs. Thus, the
high levels of species replacement and unique species
composition of each region indicates that, to fully
conserve TDF species diversity, we need to prioritize
various conservation areas distributed across the entire
range of vegetation domains in which these forests can
be found. Taken together, these results provide insights
into conservation strategies inTropicalDryForests sites.
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