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Abstract
Transitions inChinese agriculture resulted in industrial animal production systems, disconnected
from crop production.We analyzed side-effects of these transitions on total dissolved nitrogen (TDN)
and phosphorus (TDP) inputs to rivers. In 2000, when transitionswere ongoing, 30%–70%of the
manurewas directly discharged to rivers (range for sub-basins). Before the transition (1970) this was
only 5%.Meanwhile, animal numbersmore than doubled. As a result, TDN andTDP inputs to rivers
increased 2- to 45-fold (range for sub-basins) during 1970–2000. Directmanure discharge accounts
for over two-thirds of nutrients in the northern rivers and for 20%–95%of nutrients in the central and
southern rivers. Environmental concern is growing inChina.However, in the future, directmanure
inputsmay increase. Animal production is the largest cause of aquatic eutrophication. Our study is a
warning signal and an urgent call for action to recycle animalmanure in arable farming.

Introduction

Many aquatic systems in China are polluted with
nitrogen (N) and phosphorus (P), causing eutrophica-
tion and harmful algal blooms [1–4]. Over half of the
Chinese lakes are eutrophic today [5]. For example,
the water quality in Thaihu Lake, the third largest lake
in China, declined from Class I/II (oligotrophic clean
water: Class I suitable for drinking andClass II suitable
for fishing and bathing) in the 1960s to Class IV
(eutrophic pollutedwater by nutrients, not suitable for
drinking or bathing) [5]. Many Chinese rivers show
similar trends. Northern rivers, such as the Huang
(Yellow River), Hai, Liao andHuai, and river deltas are
polluted by nutrients to the extent that their water is
not suitable for human contact (ClassVI) [6]. Leaching
of nutrients from fertilized soils is generally considered
the major cause [3, 6–9]. Nutrient leaching from land

is increased by inputs from synthetic and organic
fertilizers, atmospheric N deposition, and biological N
fixation by crops. This leaching ofN and P from land is
a diffuse source ofN and P in rivers.

Here, we argue that nutrient pollution of Chinese
rivers is largely associated withmanure discharges, i.e.,
point sources. Chinese agricultural transitions, in
particular the recent industrialization of animal pro-
duction and the disconnection of crop and animal
production, result in direct discharges of animal man-
ure to surface waters (figure 1). Existing studies [3, 6–
9] generally do not account for these point sources and
thus may underestimate actual nutrient loads to rivers
(see Results below). Some links between agricultural
transitions and water quality were published in studies
[10–14] focusing largely at national analyses. China’s
pollution report [10] indicates that animal production
is today responsible for around 20% of nitrogen and
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40% of phosphorus pollution in aquatic systems.
However, none of these studies explicitly account for
direct discharges of animal manure to rivers. Clearly,
the implications of agricultural transitions on N and P
inputs to Chinese rivers are not well known, making it
difficult to formulate effective environmental policies.
Our analyses fill these gaps.

In our study, we quantify the nutrient pollution of
large Chinese rivers associated with direct point dis-
charges of animal manure to the rivers as a result of
agricultural transitions. Our analysis includes the fol-
lowing rivers in China: the Huang, Changjiang, Zhu-
jiang (Pearl), Huai, Hai and Liao. The drainage basins
of the largest rivers (Huang, Changjiang, Zhujiang)
were divided into sub-basins (figure S1). Although a
few sub-basin scale analyses of the Changjiang River
[9, 15] exist, ours is the first to assess nutrient pollution
in Chinese rivers by source while accounting for direct
discharges ofmanure by sub-basin.

Methodology

Model description and inputs
Our study is based on two models: Global NEWS-2
(Nutrient Export from WaterSheds) [16, 17] and
NUtrient flows in Food chains, Environment and
Resources use (NUFER) [18]. Global NEWS-2 is a
spatially explicit model that has been applied to
analyze nutrient-related problems worldwide [19–30]
including China [17, 31–33]. This model quantifies

river export of different nutrients (nitrogen, phos-
phorus, carbon, silica) in different forms (dissolved
inorganic, dissolved organic, particulate) as a function
of human activities on land (e.g., agriculture, sewage)
and basin characteristics (e.g., hydrology, land use).
This basin-scale model has been used to analyze past
(1970, 2000) and future (2030, 2050) trends [16, 34].
NUFER was developed for China to quantify efficien-
cies of nutrients in the food chain at national [13, 35–
37] and provincial [18] scales over time (e.g., the
period of 1980–2010 [18, 37]). This model is also used
to assess management options for efficient nutrient
management in the food chain [38, 39].

We developed a sub-basin version of the Global
NEWS-2 model in which we included information
from NUFER (see extended materials and methods in
supporting information). Novel aspects of our model-
ing approach include (i) the sub-basin scale at which
we run Global NEWS-2 to quantify total dissolved
nitrogen (TDN) and phosphorus (TDP) inputs to Chi-
nese rivers by source, and (ii) the coupling of this sub-
basin version of Global NEWS-2 with NUFER. The
latter we did to include direct discharge of animal
manure as a point source of nutrients in rivers in our
modeling to analyze the consequences of agriculture
transitions on river quality in China. This has not been
done before. TDN and TDP include both dissolved
inorganic and organic forms ofN and P.

To assess the consequences of agricultural trans-
ition on water quality, we modeled TDN and TDP

Figure 1.A simplified historical overview of farming systems inChina. This overview is shown in relation to direct nutrient losses to
rivers, and their environmental impacts [2, 35, 39, 53] including harmful algal blooms (HABs). The transition inChinese agriculture
started in the early-1980s.
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inputs to rivers for 1970 and 2000.We selected 1970 to
reflect the pre-transition period and 2000 to reflect the
ongoing transitions in Chinese agriculture. We also
modeled TDN and TDP inputs to rivers for 2050 as an
illustrative example to show the risks for future river
pollution.

Our model includes point (RSpntF.total.j, kg, see
equation (1)) and diffuse (RSdifF.total.j, kg, see
equation (2)) sources of nutrients in rivers. Point sour-
ces of the nutrients (F: TDN and TDP) include direct
discharges of animal manure to rivers (RSpntF.ma.j, kg)
and human sewage (RSpntF.sew.j, kg). Diffuse sources
of the nutrients (F: TDN and TDP) include manure
(RSdifF.ma.j, kg) and synthetic fertilizers (RSdifF.fe.j, kg)
used in croplands, atmospheric N deposition (only for
TDN; RSdifF.dep.j, kg), biological N fixation (only for
TDN; RSdifF.fix.j, kg), leaching of organic matter (for
dissolved organic N and P as a function of runoff)
(RSdifF.lch.j, kg), and P-weathering (only for TDP;
RSdifF.wth.j, kg)

RSpnt RSpnt RSpnt , 1j j jF.total. F.ma. F.sew. ( )= +

RSdif RSdif RSdif RSdif

RSdif RSdif RSdif .

2

j j j j

j j j

F.total. F.ma. F.fe. F.dep.

F.fix. F.lch. F.wth.

( )

¯ = + +
+ + +

TDN (RSpntTDN.ma.j, kg) and TDP (RSpntTDP.ma.j,

kg) inputs to rivers of sub-basin j from the manure
point sourcewere calculated as:

RSpnt Nexc frN , 3j j jTDN.ma. sw. ( )= ⋅

RSpnt Pexc frP . 4j j jTDP.ma. sw. ( )= ⋅

Here Nexcj and Pexcj are the N and P animal excretion
in each sub-basin (j) (kg), respectively. We used
griddedGlobalNEWS-2 information: 0.5 longitude by
0.5 latitude; i.e. cell areas ranging from 2135 to
2868 km2 for the study area. Gridded information
includes animal manure excretion corrected for losses
of N during storage and housing (see figure S7) [16].
These values were originally derived from the inte-
grated model to assess the global environment
(IMAGE) model [40]. Bouwman et al [41] prepared
these inputs for Global NEWS-2. IMAGE first calcu-
lated country-based manure production based on
animal stocks and excretion rates, and then spatially
allocated this manure over grids using land use maps
(see details in [40, 41]). We used this gridded informa-
tion to calculate animal manure for sub-basins (see
figure S8 for values) using ArcGIS functions. We used
these values for P excretion (Pexcj). We calculated N
excretion (Nexcj) from the available N animal manure
fromGlobalNEWS-2 while accounting for N losses to
the air (these losses were derived from NUFER, see
supplementarymethods).

frNsw.j and frPsw.j are the fractions (0–1) of N and P
in animal excretion that are discharged directly to sur-
face waters (sw) of sub-basin (j), respectively. These
fractions were calculated for each sub-basin from pro-
vincial data by NUFER [18] (figure S2) using ArcGIS
(area-weighted averages). Thus the fraction of manure

that is directly discharged to surface waters of a sub-
basin is Σi (fraction of area covered by province
i·fraction of manure directly discharged for province
i). Fractions of manure discharged for provinces were
taken from NUFER for 1980 and 2005 because
NUFER includes those years. We assume that 1980 is
close to 1970 and 2005 is close to 2000 in our study. In
NUFER discharges of N and P from animal manure to
surface waters were calculated frommanure excretion
by correcting for losses during storage and housing,
and for applications to cropland and to grassland (see
details in [18]). Manure excretion was calculated based
on animal feed from crop and kitchen residues, animal
stocks (e.g., pigs, layer and broiler poultry, milk and
beef cattle, sheep and goat), and excretion rates for N
and P (see ‘Model performance’ for sources of infor-
mation in the supplementary methods). In NUFER
animal production (see details in [18]) includes two
intensities of animal breeding, reflecting traditional
and industrial farming systems. The high intensity
types of animal breeding are defined for pig systems
(>50 heads), dairy cattle (>5 heads), beef cattle (>50
heads), layer poultry (>500 heads), and meat poultry
(>2000 heads) (figure S10 as an example).

Nutrient inputs to rivers from sewage and diffuse
sources were quantified following the modeling
approaches of Global NEWS-2 [16] (summarized in
the supplementarymethods). Most model inputs were
derived from gridded global datasets (0.5 long-
itude×0.5 latitude) developed for Global NEWS-2
[41–43] for 1970, 2000 and 2050, and most of model
parameters are also from this model [16] (figure S7).
Inputs for 2050 were based on earlier studies [41–43]
which are based on interpretations of the storylines of
the millennium ecosystem assessment scenarios
[34, 44]. In this study we usedmodel inputs that reflect
a global orchestration scenario assuming globalized
trends towards socio-economic development and
reactive management of environmental problems.
This scenario was implemented in the sub-basin Glo-
bal NEWS-2 model as a starting point [16, 45]. The
total population is assumed to have increased slightly
by 2050 because of better education (e.g., low mortal-
ity and fertility rates, and high migration). However,
urban population is assumed to have increased fast.
This reflects migration of people to cities to find better
jobs [43]. The demand for animal productionwill have
increased by 2050 and thus agriculture is projected to
intensify for food security reasons [41]. This existing
scenario assumes that all available manure will be
applied on land. However, this may not be likely. Con-
sidering the development of industrial farms today
and the poor manure management it is more likely
that direct discharges of animal manure to rivers will
occur in the coming years without efficient manure
management. Thus, in this study we assumed that
direct discharges of manure to surface waters will still
occur in 2050. Therefore, we used for 2050 the same
fractions of manure directly discharged to rivers as for
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2000 (see details in materials andmethods in support-
ing information).

Model performance
Model uncertainties are associated with model inputs,
parameters and approaches. The original Global
NEWS-2 was validated and calibrated for world rivers
[16], indicating an acceptable performance according
to the Nash-Sutcliffe model efficiency (RNSE

2 : 0.54,
0.51, 0.71, 0.90 for DIN, DIP, DON, DOP, respec-
tively). Strokal et al [17] indicated a satisfactory
performance of the model for DIN and DIP export by
large Chinese rivers for 2000 (Pearson’s coefficient of
determination (R :p

2 ) 0.96; R :NSE
2 0.42; moldel error

(ME): 18%). Yan et al [46] validated themodel for DIN
export by the Changjiang River for 1970–2002
(R 0.93 .p

2 )= Similar conclusions were drawn for
application of Global NEWS-2 to other world regions
(see supplementary methods for references). NUFER
was developed based on validated statistical data, field
surveys, literature, and has been widely applied in
many studies [13, 18, 35–37]. See details in supple-
mentary methods on evaluating the original global
NEWS-2 andNUFER.

We consider our model appropriate for modeling
N and P inputs to the Chinese rivers at the sub-basin
scale for three main reasons (see details in supplemen-
tarymethods for references). First, ourmodeled nutri-
ent pollution levels in rivers are generally in line with
observations. Our model captures the increasing
trends in dissolved N and P inputs to the Chinese riv-
ers since 1970, which is in agreement with other stu-
dies (e.g., [8, 48–50]). Second, the comparison of
model inputs with independent county data (figure
S9) convincingly shows that our model inputs for sub-
basins are of good quality (e.g., R :P

2 0.73–0.98 for stu-
died rivers for N and P synthetic fertilizers and animal
manure). Third, we verified relevant model para-
meters with experts and local information (e.g., nutri-
ent removal during treatment in the Dongjiang basin,
fractions of direct manure discharges from NUFER;
see supplementarymethods).

Results and discussion

Here we first discuss agricultural transitions in China.
Next, we show consequences of agricultural transi-
tions on river quality and discuss the risk for future
river pollution by nutrients in China. We finish this
section by comparing our results with existing studies.

Understanding agricultural transitions inChina
Chinese agriculture has been in transitions since the
1980s [11, 12, 51]. These transitions include changes
in animal and crop production systems. Pre-1980,
Chinese agriculture was dominated by small tradi-
tional farms with combined crop and animal produc-
tion [12, 35, 52] (figure 1 and figure S3). Synthetic

fertilizer was not widely used. Instead, farmers used
most animal manure collected in confinements or
from other places as a fertilizer [52]. Thus direct
discharge of manure to surface waters was mini-
mal [52].

Since the 1980s Chinese agriculture has been
industrializing to ensure food security (figure 1)
[12, 35, 51, 52]. Crop production gradually separated
from animal production in large parts of the country.
This happened when the centrally planned economy
shifted to a market-oriented economy [12, 52]. The
human population increased over this period (figure
S4, table S1). With the increasing prosperity and urba-
nization, the human diet shifted towards more meat
consumption. This all led to an increasing demand for
agricultural products [18]. Synthetic fertilizers are
now preferred over animal manure, because of their
relatively low prices and low labor demand [52, 53]
(figure 1).

Animal production has thus shifted from tradi-
tional to industrial, land-less farming systems
(figure 1, figures S3 and S10). This allows for a higher
production needed to meet the demand for meat in
China, but also in the world (e.g., around half of the
pork, and 18% of the poultry meat produced world-
wide are from China in 2005) [11, 12, 54]. Between
1970 and 2000 the total number of pigs, poultry, cattle,
sheep and goats increased 1.5- to 8-fold (range for the
different animal categories) in China. By 2000 10%–

40% of these animals, and by 2010 over two-thirds of
the pigs and poultry were grown in industrial farms in
China (figure S3) [18, 35]. Pigs and poultry production
accounts for over half of the total manure produced
(figure S5). Most of the produced manure is con-
sidered waste because industrial farms are largely dis-
connected from crop production, and often lack
facilities to treat or recycle animal manure [18, 35, 52].
Treatment is considered as separation of animal man-
ure into solid and liquid fractions. The solid fraction
after composting can be transported and applied to
vegetable and fruit farms. The liquid fraction is further
treated and then discharged ultimately to water sys-
tems. However, the separation and treatment of the
liquid fraction is not very effective, and therefore large
amounts of N and P are discharged to water systems
(figure 1, [52]). For example, treatment ratios for ani-
mal waste in industrial farms are reported as [52]: 3%
for dairy cows, 10% for chicken and 43% for pigs.
Both the treated and untreatedmanure from these sys-
tems are point sources rather than diffuse sources of
nutrients inChinese rivers.

Consequences of agricultural transitions on river
quality inChina
Our results indicate that manure point sources have a
much larger share in total TDN and TDP inputs to
rivers than other nutrient sources (figures 2 and 3,
figure S6). In 1970 less than 5% of the animal manure
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was directly discharged to rivers of the sub-basins as
waste. In 2000 this had increased to 30%–70%
(figure 2). As a result, the calculated basin area-
weighted averaged TDN inputs to rivers from only
animal manure (diffuse and point) increased 8-fold,
from 156 kg km−2 of basin area in 1970 to
1316 kg km−2 in 2000. The TDP inputs increased 22-
fold, from 11 kg km−2 in 1970 to 243 kg km−2 in 2000.
These inputs are mainly from direct discharges of
manure to rivers (point source). These manure point
sources are responsible for around half of the total
TDN and 80% of TDP inputs to rivers in 2000, which
is much higher than in 1970 (around 6% for TDN and
37% for TDP) (table 1).

The increases in TDN and TDP inputs to rivers
and the shares of manure point sources differ largely
among rivers and their sub-basins (figure 3; table 1).
Sources of TDN and TDP in rivers include animal
manure, synthetic fertilizers, atmospheric N deposi-
tion, biological N fixation, leaching of organic matter,
weathering of P-minerals and human waste. Nutrient
inputs to rivers have increased by a factor 2 to 45 for
sub-basins between 1970 and 2000 (figure 3). These
increases are particularly large for the northern rivers,
including the Huang, Huai, Hai and Liao (figure S6).
For example, the total inputs of TDN to these north-
ern rivers increased 11-fold, from 280 to 3000 kton
between 1970 and 2000. TDP inputs increased 20-

fold, from 27 to 546 kton (figure S6). The sub-basin
areas of these rivers are characterized by low precipita-
tion and runoff [55]. As a result, nutrient inputs from
diffuse sources are typically low, and direct discharge
of manure thus accounts for at least two-thirds of the
TDN and over 80% of TDP inputs to these northern
rivers (figure 3). The remainder is from synthetic ferti-
lizers or sewage. Animal manure use in cropland
accounts for less than 4%of the nutrients in the north-
ern rivers (figure 3, figure S6). More than half of the
total nutrients are concentrated in rivers of the down-
streamHuang delta, Huai andHai basins (figure 3).

For the central (Changjiang) and southern (Zhuja-
ing) rivers we calculate an increase in TDN inputs
from 2500 to about 7000 kton (a 2.8-fold increase),
and in TDP from 62 to almost 600 kton (a 9.5-fold
increase) between 1970 and 2000 (figure S6). Manure
point sources are responsible for 20%–60% of these
TDN and 50%–97% of TDP inputs to rivers in 2000
(range for sub-basins; figure 3). The remainder is
mainly from synthetic fertilizers (sub-basin range:
12%–46%), and atmospheric N deposition on land
(sub-basin range: 12%–40%). Animalmanure as a dif-
fuse source contributes less than 10% to TDN and
TDP inputs to rivers. Sewage effluents are important
sources of both TDN and TDP inputs particularly in
river deltas.

Figure 2. Losses of nitrogen (N) and phosphorus (P) from animalmanure toChinese rivers in 1970 and 2000. (a)Percentage of the
total nitrogen (TN) and phosphorus (TP) in animalmanure excretion that is discharged directly to rivers in 1970 (the pre-transition
period) and in 2000 (reflecting the ongoing transitions in farming systems) (%). (b)The area-weighted averaged inputs of TDNand
phosphorus (TDP) frommanure to rivers (kg km−2 yr−1) in China. Total areas were used to calculate area-weighted averaged inputs.
Percentages of directmanure discharges to rivers are calculated fromprovincial information ofNUFER [18, 39]. Animalmanure
production is fromGlobalNEWS-2 [16] (see figure S2 for sub-basin information).
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Risks for future river pollution by nutrients
Nutrient pollution in Chinese rivers may increase in
the coming years if future manure management stays
as it is during the ongoing transition. Furthermore, the
demand for animal products inChinawill remain high
causing further development of industrial farms. We
analyzed river pollution in 2050 as an example to
illustrate the environmental consequences of future
trends without improved manure management.
Figure 4 illustrates to what extent TDN and TDP
inputs to Chinese rivers may increase in 2050 com-
pared to 2000 (reflect the ongoing transition). In 2050
the total inputs of TDN and TDP to Chinese rivers are
calculated to be 8%–325% higher (range for sub-
basins) than in 2000, except for one sub-basin in the

Zhujaing River (figure 4). Manure point sources are
projected to remain the main contributor to river
pollution by nutrients in 2050 (22%–91% of the
nutrients in rivers from this source, table S2). In our
scenario with a rapid economic development, the total
area used for agriculture is projected to decrease
between 2000 and 2050 in some sub-basins (up to
46%, figure S11); this results from rapid urbanization
(table S1). Riversmay also receive nutrients fromother
sources. These are, for example, use of synthetic
fertilizers to grow more crops, and sewage effluents
from urbanized areas [17, 43]. However, we calculate a
lower contribution of these sources to nutrients in
Chinese rivers (up to 40%) compared tomanure point
source (table S2). Therefore, the risk for future river

Figure 3.Total dissolved nitrogen (TDN) and phosphorus (TDP) inputs to rivers by sub-basin inChina in 1970 and 2000 (kton yr−1).
The relative share of sources to these TDNandTDP inputs (source attributions in fractions) are shown in pie charts. Other sources
include sewage effluents (TDN,TDP), synthetic fertilizer use (TDN, TDP), biological N2fixation by agricultural crops and by natural
vegetation, atmosphericN deposition (TDN), leaching of organicmatter (TDN,TDP), andweathering of P-containedminerals
(TDP) from agricultural and non-agricultural soils (see the supplementarymaterial formodel descriptions and sources ofmodel
inputs, andfigure S6 for details on source attribution).
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pollution by nutrients will largely depend on how food
production will develop, in particular for animal
production because of the large contribution of
manure towater pollution currently.

Comparisonwith other studies
Some studies have already quantified N and P
transport to waterbodies of the large Chinese rivers
[56], in particular of the Changjiang River
[9, 15, 46, 57–59]. A few studies exist on sub-basin
analyses of the Changjiang River [9, 15, 59]. However,
these studies ignore direct discharges of manure to
rivers. Therefore, the current nutrient pollution of
rivers may be underestimated. For example, our
estimates of the total TDN inputs (from all sub-basins)
to the Changjiang are comparable with the results of
Liu et al [9] and Bao et al [15] for 1970 when direct
discharges of animal manure were small, but higher
than the results of Liu et al [9] and Xing et al [56] for
2000when direct discharges ofmanure were consider-
able. Liu et al [9] and Bao et al [15] quantified around
2 Tg N transported to waterbodies of the Changjiang
River in 1980, which is close to our estimate of 1.7 Tg
TDN in 1970. For 2000 Liu et al [9] quantified
approximately 4.5 Tg of N, of which around 0.4 Tg N
is from animal manure used in agriculture. We,
however, calculated 5.3 Tg TDN, of which 2.2 TgTDN
from direct discharges of animal manure and 0.4 Tg N
from animalmanure use (figure S6).We argue that the
impact of direct discharges of animal manure from
livestock production on river quality is much larger
than the impact of over-fertilization of soils by
synthetic fertilizers.

Few studies consider direct discharges ofmanure to
rivers, but not at the sub-basin scale [13, 18, 60]. For
example, Ma et al [13] quantified that 30% of N and
45% of P from manure were discharged to surface
waters in 2005 at the national scale. Ti et al [60] adopted
a 25% value for livestock waste discharged to

waterbodies to quantify N export by the Changjiang,
Zhujiang and Huang at the basin scale for the 2000s.
We, however, demonstrate that this percentage ismuch
higher for 2000 and ranges between 30% and 45% for
N, and 46%and64% for P among sub-basins (figure 2).

Most existing modeling studies on river export of
N and P emphasize the importance of managing dif-
fuse agricultural sources of N (e.g., synthetic fertilizer
use) and point sewage sources of P to reduce water
pollution in China (e.g., [17, 32, 46]). This is because
these studies do not account formanure point sources.
We show the importance to manage point manure
sources for both N and P in the future. Studies on
nutrient inputs to surface waters at the national (e.g.,
[13, 61]) and provincial scales (e.g., [18]) acknowledge
the importance of reducing losses of manure. Our
study can contribute to such analyses by providing a
better spatially explicit understanding of water pollu-
tion at the sub-basin scale.

Concluding remarks and future outlook

We consider our study a warning signal because
nutrient loads in Chinese rivers are now much higher
than previously and will continue to increase. Direct
discharge of manure is likely the most important
source of unexpected serious nutrient pollution in
surface waters of China. This was not recognized in
previous studies [6–9, 15, 62]. However, more exper-
imental research is needed to reduce uncertainties (see
methods in supplementary material). Industrialization
of livestock production is common in other world
regions such as Europe and North America (e.g., most
of pork and poultry production are from industrial
farms) [11, 51]. However, animalmanuremanagement
outside in those regions ismore effective than inChina.
Examples are permits to discharge manure to water
bodies in United States [63] and regulations to recycle
manure in grassland and cropfields in Europe [51, 64].

Table 1.Area-weighted averaged total dissolved nitrogen (TDN) and phosphorus (TDP) inputs toChinese rivers in 1970 and 2000
(kg km−2 of basin year−1, and share of the animalmanure point source in%). The range in brackets is theminimumandmax-
imumvalues among the sub-basins. See the supplementarymaterial formodel description and inputs. Other diffuse sources
include biological Nfixation, atmospheric Ndeposition, weathering of P-containingminerals, andN and P leaching fromorganic
matter.

TDN TDP

Nutrient sources in rivers 1970 2000 1970 2000

Animalmanure (point) 43 (0–173) 1148 (355–4338) 9 (0–34) 240 (59–952)
Animalmanure (diffuse) 113 (0–941) 168 (1–781) 2 (0–33) 3 (0–15)
Synthetic fertilizers (diffuse) 77 (0–903) 547 (1–3529) 1 (0–19) 6 (0–30)
Other diffuse sources for agricultural areas 87 (0–345) 381 (4–1357) 1 (0–5) 4 (0–17)
Other diffuse sources for non-agricultural areas 379 (1–1891) 227 (0.2–1222) 4 (0–21) 2 (0–8)
Sewage effluents (point) 16 (0–172) 121 (0–837) 6 (0–64) 39 (0–272)

Total 715 (10–3921) 2593 (391–7737) 23 (1–156) 294 (68–1113)

The share of point animalmanure (%) 6 (0–86) 44 (17–91) 37 (0–97) 82 (52–97)
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The Chinese government started to recognize the
side-effects of livestock production, and introduced
regulations such as the Discharge Standard of Pollu-
tion for Livestock Production, and the Law of Water
Pollution Prevention [65]. So far, however, these reg-
ulations have not been effective [65]. Thus, the actual
level of water pollution by nutrients from direct dis-
charges of animal manure is today likely under-
estimated in modeling studies. The new
‘Environmental Protection Law’, ‘Zero-growth in
Synthetic Fertilizer after 2020 Policy’ and the new reg-
ulation for livestock production have been recently
announced in 2015 with strict regulations for indus-
trial animal production to reduce pollution (http://
www.gov.cn). These regulations emphasize in part-
icular recycling of animalmanure on land to substitute
synthetic fertilizers. However, the effect of these reg-
ulations on reducing water pollution will depend on
the effectiveness of their implementation.

Meeting the demand for food will remain a chal-
lenge in the coming decades. Thus, industrial animal
farms will likely continue to grow and increase in
numbers. Nutrient pollution of aquatic systems will
likely become more serious (see figure 4 as an exam-
ple), unless manure management will be strongly
improved. Besides environmental policies, providing
better technologies for manure recycling and

treatment, and for fertilizer application, educating
farmers, and providing more services (scientific and
advisory) to help farmers improve their practices are
urgently needed. Future studies of sustainable food
production (more food with less environmental
impacts) should account for recycling animal manure
as fertilizers. This will reduce direct discharges ofman-
ure to rivers. Recent experiments [66–69] on inte-
grated soil-crop system management (ISSM: higher
crop yields with lower nutrient losses to the environ-
ment [69] focused on synthetic fertilizers. Efficient use
of animal manure may be a prerequisite for ISSM to
effectively reduce nutrient losses to the environment
while increasing crop yields [69]. Such changes, how-
ever, imply a major shift in farming practices, and
until this shift is made the high nutrient loads to Chi-
nese rivers from animal production remain unprece-
dented in theworld.
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