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Abstract
Sea surface temperature anomaly climate indices in the tropical Pacific and IndianOceans are
statistically significant predictors of seasonal rainfall in the Indo-Pacific region. On this basis, this
study evaluates the predictability of nine such indices, at interannual timescales, from the decadal
hindcast experiments of four general circulationmodels. AMonte Carlo scheme is applied to define
the periods of enhanced predictability for the indices. The effect of a recommended drift correction
technique and themodels’ capabilities in simulating two specific ElNiño and LaNiña events are also
examined. The results indicate that the improvement fromdrift correction is noticeable primarily in
the full-field initializedmodels.Models show skillful predictability at timescales up tomaximuma
year formost indices, with indices in the tropical Pacific and theWestern IndianOcean having longer
predictability horizons than other indices. Themultimodel ensemblemean shows the highest
predictability for the IndianOceanWest Pole Index at 25months.Models simulate the observed peaks
during the ElNiño and LaNiña events in theNiño 3.4 indexwith limited success beyond timescales of
a year, as expected from the predictability horizons. However, our study of a small number of events
andmodels shows full-field initializedmodels outperforming anomaly initialized ones in simulating
these events at annual timescales.

1. Introduction

Reliable prediction of rainfall at multi-year to decadal
timescales would be of great benefit to water managers
and decision-makers, as it affects agricultural produc-
tion, electricity generation, environmental manage-
ment, fisheries and regional and national economic
prosperity. For example, effective prediction of rainfall
and streamflow serves as a basis for devising catchment
management policies that help reduce the impacts of
droughts, floods, and other hydroclimatic extremes.

Long-term predictability of rainfall is critically
dependent on our ability to forecast the slowly-evol-
ving ocean state, as sea surface temperature (SST) has a
strong influence on terrestrial rainfall. For instance,
many studies have linked Australian rainfall to sea

surface temperature anomalies (SSTAs) in the Pacific
and Indian Oceans (Nicholls 1989, Drosdowsky and
Chambers 2001, Risbey et al 2009, Kirono et al 2010,
Pui et al 2012). Of particular importance are: the El
Niño Southern Oscillation (ENSO) (McBride and
Nicholls 1983, Drosdowsky 1993a, 1993b, Power
et al 2006, Wang and Hendon, 2007); the Indian
Ocean Dipole, a dipole in SSTA between the central
Indian Ocean and Indonesia (Ashok 2003, Verdon
and Franks 2005, Ummenhofer et al 2009a); the El
Niño Modoki (EMI), characterized by warm SSTA in
central Pacific (C) flanked by colder SSTAs in the East
(E) and West (W) (Ashok et al 2007, 2009, Cai and
Cowan 2009, Taschetto et al 2009), average SSTA in
the South Tasman Sea (Drosdowsky 1993a) and the
Indonesian seas (Nicholls 1984). These climate modes
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can be quantified in terms of SSTA indices, and their
connections to regional rainfall have long served as a
basis for climate forecasts.

Schepen et al (2012) found these climate indices to
be useful predictors of Australian rainfall totals for the
period 1950–2009. Ramsay et al (2008) reported large
correlations between the number of seasonal tropical
cyclones over Australia and the Niño 3.4 and Niño 4
regions while Pui et al (2011) discussed the relation-
ship between annual maximum flood in Eastern Aus-
tralia and the Interdecadal Pacific Oscillation. Various
studies such as Chiew et al (1998) have shown drought
and dry conditions in Australia to be linked to some of
the abovementioned climate indices. As an instance of
operational use, the Australian Bureau ofMeteorology
provides probabilistic rainfall forecasts using a statis-
tical prediction system based on SSTA indices over the
Pacific and Indian Ocean (Schepen et al 2014). Skilled
prediction of such vital SSTA indices at timescales
longer than seasonal would have significant social,
economic and environmental implications principally
from its role in predicting rainfall.

In order to assess the possibility of multi-year cli-
mate forecasts, a new set of experiments was set up by
the World Climate Research Program part of Phase
Five of the Coupled Model Intercomparison Project
(CMIP5). These provide simulations of near-term cli-
mate (10–30 year hindcasts/predictions) (Meehl
et al 2009). The experiments are initialized based on
observed oceanic and, in some cases, atmospheric
states, and account for changes in external forcings,
including anthropogenic aerosols, stratospheric aero-
sols, greenhouse gases, and solar activity. Predict-
ability on seasonal to decadal timescales is dependent
on the reliable forecasting of low frequency variability
associated with the state of the ocean (Hawkins and
Sutton 2009). Multiple hindcast and forecast runs of
the same model with slightly perturbed initial condi-
tions, called ‘ensembles,’ are carried out (table 1) in
order to isolate the predictable part of the climate
response from unpredictable short-term climate
variability that is unrelated to the models initial state
or external forcing.

Climate models are imperfect representations of
the real worldwith equilibrium states that are different
to the observed. As with weather and seasonal fore-
casting, decadal prediction requires that the model is
initialized using information based on the observed
state of the ocean and atmosphere. As the model is
initially perturbed from its equilibrium state, it will
tend to revert back to its own equilibrium state over a
period of time (Mehrotra et al 2014). This results in
spurious trends in the model, referred to as ‘climate
drift’. The importance of drift is time dependent and
will also depend on the variable being assessed (Sen
Gupta et al 2012). For weather forecasting (typically
ranging from 1 to 15 days), the difference between
model and observed climatologies can be ignored. But
at longer lead times (monthly, seasonal and decadal

timescales), these systematic model errors cannot be
ignored, and some form of drift correction must be
applied (Magnusson et al 2012). The scale of climate
drift can also be affected by the way the model is initi-
alized. Two common approaches are used in CMIP5.
In ‘full-field initialization’ the model’s initial state is
forced to be as close to the observed state as possible. If
the observed state andmodel equilibrium are very dif-
ferent, the resulting drift is very pronounced. To
reduce this problem, models are sometimes initialized
by adding the observed anomaly (relative to the
observed climatology) to the model climatology
(known as ‘anomaly initialization’) (Smith et al 2007).
In this case the initialized model will still retain the
pre-existing model climatological biases. However
while still present, the drift can be substantially
reduced. As such, correcting for drift is an essential
prerequisite for proper implementation of a climate
model forecast.

Predictability of Indian and Pacific Ocean SSTs
from CMIP5 decadal experiments is a relatively new
area of research and lacks extensive literature. Lienert
and Doblas-Reyes (2013) reported poor Pacific SST
predictability on interannual timescales based on the
UKMet Office Decadal Prediction System (DePreSys)
decadal hindcasts. They reported the correlation skill
of ENSO and ENSO-Modoki to be limited to two and
one year, respectively. A higher skill for the Indian
Ocean SSTs’ decadal predictability was obtained by
Guemas et al (2013), though they attributed this to the
influence of external radiative forcing (i.e. anthro-
pogenic greenhouse gas warming and volcanic erup-
tions) rather than to the ability of the initialized
models to reproduce the observed low-frequency
variability. Mehta et al (2013) reported statistically sig-
nificant decadal prediction skill of global and basin-
averaged SSTA for the period 1961–2010 using corre-
lation analyses of CMIP5 decadal experiments using
historical optical depths and observations. The feasi-
bility of long term rainfall predictions from SST was
examined by Khan et al (2015) andMeehl et al (2010).
Based on decadal predictions of Pacific SSTs, Meehl
et al (2010) found significant skill in predicting the dis-
tribution of precipitation over North America and
Australia while Khan et al (2015) reported improve-
ments in seasonal rainfall forecasts over Australia
using a bettermulti-model based SSTAprediction.

For practical applications of the decadal experi-
ments, like in long-term rainfall forecasting, it is
important for potential users to understand the limits
of this system, and in particular the lead time until
which the models’ predictions have useful skill. The
objective of this paper is to analyze and evaluate the
usefulness of CMIP5 decadal simulations in predicting
interannual variations in important climate indices.
Specifically, we assess the lead time up to which the
CMIP5 models are able to predict, with some accep-
table skill, the evolution of important Indo-Pacific
SSTA indices commonly used as predictors of regional
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Table 1.Models used in this study (Ano Ini—anomaly initialized; Full Ini—full-field initialized; Ens. Size—number of ensembles).

Model Group Initmethod Ens. Size Historical run period

MIROC5 Atmospheric andOceanResearch Institute (AORI), National Institute for Environmental Studies (NIES) and JapanAgency forMarine-

Earth Science andTechnology (JAMSTEC) Japan

Ano Ini 6 1850/01–2005/12

CanCM4 (i1 and i2) CanadianCentre for ClimateModeling andAnalysis, Canada Full Ini 10 1961/01–2005/12

HadCM3 (i2 and i3) MetOfficeHadley Centre, UnitedKingdom i2—Ano Ini i3—Full Ini 10 1859/12–2005/12

CCSM4 (i2) National Centre for Atmospheric Research (NCAR), United States Full Ini 10 1850/01–2005/12
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rainfall. The effect of a simple drift correction is also
investigated. The study also examines how the initi-
alized simulations are able to forecast features of the
large El Niño events of 1982/83 and 1997/98 and La
Niña events of 1973/74 and 1988/89. Finally, we exam-
ine the skill in predicting certain indices in the context
of predicting regional Australian rainfall. Quantifying
the errors in the prediction of SSTA indices at inter-
annual to decadal timescales is an important first step
in understanding the feasibility of long-term rainfall
prediction and thus the practical socio-economic
worth of these decadal experiments.

2.Methodology

2.1.Models and data
CMIP5 decadal simulations are available through the
Earth System Grid—Center for Enabling Technolo-
gies (accessible online through http://pcmdi9.llnl.gov/
esgf-web-fe/). Decadal hindcasts (only 10 year runs) of
monthly SST values are obtained for four general
circulation models (GCMs), namely MIROC5,
HadCM3, CanCM4 and CCSM4, with MIROC5,
HadCM3 (i2 and i3) and CanCM4 (i1) initialized
every year and CanCM4 (i2) and CCSM4 (i2) initi-
alized at five-year intervals from 1960 to 2000 (forty
one and nine initialization years respectively). The
decadal experiments of a particular year run for a
decade starting from January of the next year for all
models except HadCM3, i.e. the experiment decadal-
1970 consists of runs from 1971/01 to 1980/12. The
SST climatology, needed to compute the anomalies, is
calculated from the ‘historical’ simulations of each of
the models, which use observed forcings from the
mid-19th century to 2005 (Taylor et al 2012). The
models were selected primarily based on the

availability of decadal simulations, number of ensem-
ble members per simulation, and the models’ skill in
representing ENSO (Bellenger et al 2013). We also
consider the method of initialization when possible,
namely full-field initialization (F) or anomaly initiali-
zation (A), so that the performance of these techniques
can be compared. MIROC5 and HadCM3 (i2) are
anomaly initialized while HadCM3 (i3), CanCM4 (i1
and i2) and CCSM4 (i2) are full-field initialized.
Relevant features of themodels considered are listed in
table 1.

Model SST-derived indices are compared against
indices calculated using gridded observations from the
Hadley Centre Global Sea Ice and Sea Surface Tem-
perature (HadISST) dataset (Rayner 2003) for the per-
iod from1960 to 2010.

2.2. Climate indices
Nine monthly climate SSTA indices are examined:
Niño 3, Niño 4, Niño 3.4, EMI, DMI (Dipole Mode
Index), EPI (Indian Ocean East Pole Index), WPI
(Indian Ocean West Pole Index), II (Indonesian
Index), and TSI (Tasman Sea Index; see table S1 and
figure 1 for definitions). These indices are chosen
because of the significant relationship they have shown
with seasonal or monthly rainfall in Australia (Sche-
pen et al 2012), althoughmany of these indices are also
important for other regions around the world. The
climate indices are calculated for the observations and
for each ensemble member of the models considered
for all the initialization years. Climate indices values
for the multi model ensemble (MME) are calculated
by averaging only the models with start dates every
year, namely MIROC5, HadCM3i2, HadCM3i3 and
CanCM4i1.

Figure 1.Map of the SSTA climate indices considered in this study.
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2.3.Drift correction
We apply a drift correction to the indices calculated
from the decadal experiments, as recommended for
CMIP5 decadal predictions by Climate Variability and
Predictability (CLIVAR) (WCRP 2011). This assumes
that the drift in themonthly average prediction is just a
function of the forecast lead time and is not affected by
the model state or the external radiative forcing. For
each model and index, bias for the 120 month period
(obtained by comparing the model and the observed
index values month wise), averaged across all ensem-
bles and initializations, is assumed to represent the
mean model drift. So the mean drift is different for
eachmodel and index and is subtracted from the index
values obtained for individual decadal experiment of
the model to give the drift corrected forecast. The
uncorrected model forecasts are hereby referred to as
raw forecasts.

2.4. Estimation of predictability horizon
The indices for each ensemble member and for the
ensemble mean for each initialization time are com-
pared with the concurrent observed indices in order to
calculate the 120 month (decadal) time series of
squared errors (for both the raw and drift-corrected
forecast). An estimate of the lead time over which the

indices are predictable is obtained by comparing the
model errors with distributions of randomly generated
errors. A Monte Carlo (MC) scheme is applied to
generate twelve random error distributions, one for
each calendar month. This is done since SST variance
can vary seasonally and, as such, the distribution of
errors changes by season. For each index and model,
the squared errors for all the decades and ensemble
members are averaged to produce the typical monthly
evolution ofmodel errors over a period of 120 months.
Model errors for each lead time are compared against
the appropriate random error distribution. The index is
considered predictable at a certain lead time, if the
error is smaller than 95% of the random error
distribution, i.e., the predictable lead time is the
month before the error is greater than 95% of the
random error distribution (figure 2(b)). For instance,
HadCM3 (i2) has 10 ensemble members, and we
consider forty one decades (yearly intervals starting
from 1960 to 2000, as mentioned earlier). The model
squared errors are averaged across all decades (41) and
ensembles (10), resulting in a single 120 month error
time series for each of the indices. The MC scheme
used here calculates the average of 410 (41 × 10) 120
month random error time series and repeats it 10 000
times to generate a probability distribution that is used

Figure 2. (a)Predictability horizon (months of useful predictability) based onMonte Carlo analysis for the nine SSTA climate indices,
for drift correctedmodel forecasts. Results from rawmodel runs are shown inwhite circles (A—anomaly initialized; F—full-field
initialized);MME (annual) stands formultimodel ensemblemean calculated by considering only themodels with annual
initializations. (b)Multi-ensemblemean squared errors forNiño 3 based on drift correctedHadCM3i2 forecasts; persistence errors
are shown in black; 95 percentile squared errors from theMC simulation shown in gray. (c) Sample time series of correlation between
drift-correctedmodelWPI and observedWPI.Onlymodels with annual initializations are shown.Gray line denotes the significance
at 95% level with 39 degrees of freedomon the basis of one-side Student’s t-test.
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as the climatology of the errors. The model squared
errors and the error climatology are then compared
(using a 5% significance level) to obtain the period of
useful prediction, the predictability horizon. Errors
associated with a persistence forecast are also calcu-
lated. Persistence is defined as the error that results if
the index forecast is set to the initial value (i.e. set at the
time of forecast initialization) throughout the forecast
period. If the model forecast skill cannot exceed the
persistence skill, then it has nomerit.

3. Analysis and results

3.1. Predictability horizon and drift correction
The predictability horizons (lead time in months) for
the indices from the drift corrected and the rawmodel
outputs are shown in figure 2(a). Drift correction leads
to clear improvements for the full-field initialized
models but improvements are not so evident in case of
anomaly-initialized models, except for EMI. The
indices in the tropical Pacific and the Western Indian
Ocean have higher predictability horizons than other
indices. For the ENSO related indices and WPI,
MIROC5 shows the highest predictability horizon but
shows no significant predictability, even at short lead
times, for theDMI, EPI, II andTSI indices. The highest
predictability horizons are noted for EMI, with an
average of 13 months (range 9–23 months), andWPI,
with an average of 12 months (range 10–16 months).
EMI is discussed in further detail in section 4.2. The
MME shows the highest predictability for WPI at 25
months. The Indian Ocean DMI has the poorest
predictability horizon with a maximum of only three
months.

We also estimated prediction lead times using a
correlation analysis between the monthly observed
and ensemblemean indices at each lag time (results for
onlyWPI shown in figure 2(c)), which shows a similar
trend as earlier with Pacific indices and theWPI show-
ing higher skills than other indices while DMI shows
the least, suggesting that our results are robust to the
metric used. The predictability horizons shown in
figure 2(a) are also broadly consistent with persistence
forecast (where the forecast at all lead times is simply
the initial value of that metric; see section 2.4). For a
prediction to be useful, the associated error from the
model should be smaller than both the 95% random
error and the persistence forecast error. As an exam-
ple, in figure 2(b), it can be seen that the HadCM3i2
Niño 3 prediction errors are lower than the persistence
error for almost forty five months and lower than the
MC climatology error for eightmonths supporting the
predictability horizon obtained for this index.

Based on our analysis of the predictability horizons,
the comparison of squared errors with persistence
errors and correlations from this subset of models, no
clear conclusion can be made regarding which type of
initialization performs better. Indeed, previous studies

(Magnusson et al 2012, Hazeleger et al 2013, Smith
et al 2013) have not been able to identify a preferred
initialization method for improving forecast quality at
interannual to decadal timescales.

3.2. ElNiño and LaNiña prediction
The drift corrected Niño 3 and Niño 3.4 values
obtained from the models are compared with those
observed, for two decades containing large El Niño
events of 1982/83 and 1997/98 and two decades
containing the large La Niña events of 1973/74 and
1988/89. For the El Niño events, observed indices are
compared with the indices obtained from model
experiments initialized in 1981 and 1982 (for the
1982/83 El Niño) and 1996 and 1997 (for the 1997/98
El Niño), to see the effect of lead time on El Niño
prediction. For the La Niña events, observed indices
are compared with the indices obtained from model
experiments initialized in 1972 and 1973 (for the
1973/74 La Niña) and 1987 and 1988 (for the 1988/89
La Niña), to see the effect of lead time on El Niño
prediction. Only models with annual initializations
are used for the analyses.

Results from the two models (HadCM3i2 and
CanCM4i1) initialized one and two years before the
1997 and 1982 El Niño events are shown in
figures 3(a), (b), (e) and (f). Results from the other two
models are given in the supplementary material
(figure S1). HadCM3i2 and CanCM4i1 show con-
siderable skill in capturing both the El Niño events
9–12months in advance, in figures 3(a) and (b). At the
peak of the 1997 (1982) ElNiño, 9 (7) out of 10 ensem-
ble members of HadCM3i2 (A) and 10 (8) out of 10
ensemble members of CanCM4i1 (F), have positive
Niño 3.4 anomalies. Comparing with a binomial dis-
tribution for 10 ensembles, these correspond to 99
(90) percentile for HadCM3i2 (A) and 100 (95) per-
centile for CanCM4i1 (F) during the peak of 1997
(1982) El Niño. There is some indication that some
models may provide useful information on the phase
of ENSO at longer lags although the fraction of ensem-
ble members agreeing might not be significant. For
example, El Niño 1997 (1982) has 6 (7) out of 10
ensemble members of HadCM3i2 (A) and 4 (7) out of
10 ensemblemembers of CanCM4i1 (F) showing posi-
tive Niño 3.4 anomalies as shown in figures 3(e) and
(f), which corresponds to 62 (83) percentile for
HadCM3i2 (A) and 38 (83) percentiles.

Similar analyses are repeated for the La Niña
events of 1988/89 (initializations 1987 and 1988) and
1973/74 (initializations 1972 and 1973; HadCM3i3
and CanCM4i1 in figures 3(c), (d), (g) and (h));
MIROC5 and HadCM3i2 in figure S2). When initi-
alized 9–12months before the events, as in figures 3(c)
and (d), 9(10) out of 10 ensemble members of
HadCM3i3 (F) and 10 (10) out of 10 ensemble mem-
bers of CanCM4i1 (F), have negativeNiño 3.4 anoma-
lies, at the peak of the 1988 (1973) La Niña. These
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correspond to a significance level of more than 99 per-
centile for all the cases. For longer lead times, as shown
in figures 3(g) and (h), 7 (4) out of 10 ensemble mem-
bers of HadCM3i3(F) and 6 (6) out of 10 ensemble
members of CanCM4i1(F) show negative Niño 3.4
anomalies. As in the case of El Niño prediction at such
lead times, the fraction of ensemble members predict-
ing the phase of the event correctly is still insignificant.

Despite most ensemble members predicting the
phase of ENSO correctly, majority of them under-pre-
dict the magnitude (severity) of the El Niño and La
Niña events, with the situation becoming worse at lar-
ger lead times. However, the two full-filled initialized
models (CanCM4i1 and HadCM3i3) clearly outper-
form the anomaly initialized models (MIROC5 and
HadCM3i2) in predicting these events. The MME
shows poorer skills compared to the individualmodels
in simulating these anomalies and thus are not shown.
While the numbers of models/events are too small to
reliably infer that full-field initialization produces
consistently superior results to anomaly initialization
for ENSO forecasts, our findings are in agreement with
previous studies that have suggested that full-field
initialized models are more skillful at seasonal time-
scales (Magnusson et al 2012,Meehl et al 2014).

4.Discussion

This study evaluates the predictive skill of multiple
SSTA climate indices using the decadal prediction
experiments of four CMIP5 models. All models
showed the highest predictability for ENSO related
metrics and the Western Indian Ocean SSTA. Similar
results were also obtained from comparing the model
squared errors for each of the indices with their
respective persistence errors and from the correlation
coefficients. Our results also show the initialized
models to have varying degrees of skills in predicting
El Niño and La Niña events at 1 or 2 year lead times.
Some specific points from the analysis are discussed in
greater detail below.

4.1.Drift correction
We have demonstrated that drift correction is critical
prior to using decadal simulation outputs in the case of
full-field initialization models. However, for the
anomaly-initialized models there is little to no benefit
gained from applying a drift correction (for the
metrics investigated). Drift correction techniques are
imperfect remedies for these model biases and are
often considered as an additional source of uncer-
tainty, as they might neglect significant statistical
relationships between the variables (Ho et al 2012).
More sophisticated techniques for drift correction
may be able to extract greater predictability. Some
examples of improved drift correction techniques
could include post processing approaches like apply-
ing a time-dependent trend adjustment after the

simple time-dependent bias adjustment (Kharin
et al 2012) or forming a covariate model of drift
correction using the sub-surface ocean heat content as
a metric, but as mentioned earlier these need to be
scrutinized properly before application.

4.2. SSTApredictability
Predictability onmulti-year timescales for Pacific SSTs
(and PDO) was reported by Chikamoto et al (2012)
using the MIROC climate model. Mehta et al (2013)
studied decadal predictability of SST from four Earth
System Models and reported highest skill from
MIROC5 and low and insignificant skills from
HadCM3 and CCSM4 in the tropical Pacific. Chika-
moto et al (2015) reported ENSO related prediction
skill to decrease rapidly after lead times of one year
from the MIROC5 model. Our results are consistent
with these findings that MIROC5 has the highest
predictability in the tropical Pacific. However, it shows
limited skill in terms of simulating large climate
anomalies like ElNiños and LaNiñas.

The significantly high predictability horizons
noticed for EMI from CanCM4 (i2) and CCSM4 (i2)
are attributed to issues from sampling variability
resulting from the fact that these models have runs
with start dates every 5 years and thus have only 9 set of
decades. Also, given that EMI is a function of SSTA
averaged across different parts of the Pacific Ocean,
these sampling issues might get largely amplified.
These sampling issues regarding initializations every
year and initializations every five years requires thor-
ough analysis and would be the subject of a different
study.

4.3. Implications for regional rainfall
Chiew et al (1998) and many others suggest signifi-
cant link between spring and summer rainfall over
Northeast Australia with ENSO and winter rainfall
over Northwest Australia with indices in the Indian
Ocean. To investigate the implication of index
predictability on regional rainfall prediction, we
calculate correlations between area-averaged rainfall
and the corresponding drift-corrected SSTA index
forecast at lead times of 10–12 (6–8) and 22–24
(18–20) months for the spring–summer (winter)
rainfall values. The concurrent correlation between
the observed index and rainfall is also shown for
comparison. Rainfall data is from the Australian
Bureau of Meteorology monthly gridded rainfall
dataset (Jones et al 2009).

Figure 4 shows the correlations between area aver-
aged Oct–Nov–Dec (OND) rainfall over Queensland
with the concurrent observed and drift-corrected
Pacific SSTA indices, and Jun–Jul–Aug (JJA) rainfall
over North Western Australia with the concurrent
observed and drift-corrected IndianOcean SSTA indi-
ces within lead times extending to a maximum of one
and two years. Onlymodels with annual initializations
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are considered so that there are enough samples to
provide reliable correlation estimates. There are
strong negative correlations between the observed
Pacific indices and area-averaged OND rainfall over
Queensland highlighting the relationship between
ENSO andNortheast Australian spring–summer rain-
fall. All the models are able to reproduce this negative
relationship, although the correlations become non-
significant after a lead time of 10 months, which is
consistent with the predictability horizons. For the
Indian Ocean, there are strong observed positive cor-
relations between area-averaged JJA rainfall over
North Western Australia with EPI and II and negative
correlations with DMI. The models do not con-
sistently reproduce these relationships, suggesting that
the IndianOcean provides little useful predictable skill
even at lead times less than a year.

Numerous studies have reported significant link
between SSTA over the Western Indian Ocean and
East African rainfall (Ummenhofer et al 2009b,
Black 2005). Our study shows all models and the
MME having high predictability horizons for WPI.
This result along with the analysis for figure 4 show the
potentiality of rainfall prediction using the drift cor-
rected model forecasts of these SSTA indices at seaso-
nal to annual timescales. However, this also presents
the need of using improvedmethods of rainfall predic-
tion for a practical application of the SSTA indices
from theCMIP5 decadal experiments.

5. Conclusions

Forecasting rainfall at seasonal and longer timescales is
of great societal importance. However, climatemodels
have large biases in their representation of rainfall in
part related to problems in the simulation of realistic
teleconnections from climate drivers such as ENSO
and regional rainfall. Thus instead of looking at
simulated rainfall, we have examined predictions of
SSTA indices which have significant relationships with
regional rainfall. We find that while these models are
unable to predict interannual variations beyond about
a year, they have considerable skill at shorter time-
scales, similar to bespoke seasonal forecasting systems.
There is a clear divide in the predictability of Pacific
indices and WPI compared to indices in the Indian
Ocean, which show little predictability. This is also
evident in the strength of the relationships between
rainfall in two regions of Australia with the observed
and modeled Indian and Pacific Ocean indices. Based
on only two events and two models for each initializa-
tion type, full-field initialized models seem to outper-
form the anomaly initialized ones in simulating ENSO
related anomalies at annual timescales. The recom-
mended drift correction has negligible effect on
anomaly initialized models but is critical for full-field
initialized models and improved drift correction
techniques may provide further improvements.
Future works will, therefore, focus on investigating
such advanced drift correction techniques and

Figure 3. (a)Niño 3.4 values simulated byHadCM3i2 (blue) andCanCM4i1 (red) initialized in 1997 alongwith theHadISSTNiño 3.4
values (black) during 1996–2000. Individualmodel ensembles (10 each) are lightly colored in the backgroundwith the ensemble
means thickened. (b)Niño 3.4 values simulated byHadCM3i2 (blue) andCanCM4i1 (red) initialized in 1982 alongwith theHadISST
Niño 3.4 values (black) during the decade 1981–1985. Individualmodel ensembles (10 each) are lightly colored in the background
with the ensemblemeans thickened. (c)Niño 3.4 values simulated byHadCM3i3 (blue) andCanCM4i1 (red) initialized in 1988 along
with theHadISSTNiño 3.4 values (black) during 1987–1991. Individualmodel ensembles (10 each) are lightly colored in the
backgroundwith the ensemblemeans thickened. (d)Niño 3.4 values simulated byHadCM3i3 (blue) andCanCM4i1 (red) initialized
in 1973 alongwith theHadISSTNiño 3.4 values (black) during 1972–1976. Individualmodel ensembles (10 each) are lightly colored
in the backgroundwith the ensemblemeans thickened. (e) Same as (a) exceptmodel simulations initialized in 1996. (f) Same as (b)
exceptmodel simulations initialized in 1981. (g) Same as (c) exceptmodel simulations initialized in 1987. (h) Same as (d) except
model simulations initialized in 1972.
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estimating the skill of rainfall prediction at longer than
seasonal timescales from the CMIP5 decadal
experiments.
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