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Abstract
The dynamic global vegetationmodel (DGVM) SEVERhas been regionally adapted using a remote
sensing data-derived land covermap in order to improve the reconstruction conformity of the
distribution of vegetation functional types over Russia. The SEVERmodel wasmodified to address
noticeable divergences betweenmodelling results and the land covermap. Themodelmodification
included a light competitionmethod elaboration and the introduction of a tundra class into the
model. The rigorous optimisation of keymodel parameters was performed using a two-step
procedure. First, an approximate global optimumwas found using the efficient global optimisation
(EGO) algorithm, and afterwards a local search in the vicinity of the approximate optimumwas
performed using the quasi-Newton algorithmBFGS. The regionally adaptedmodel shows a significant
improvement of the vegetation distribution reconstruction over Russia with bettermatchingwith the
satellite-derived land covermap, whichwas confirmed by both a visual comparison and a formal
conformity criterion.

1. Introduction

Dynamic global vegetation models (DGVMs) are
widely used as components of Earth system models,
being important simulators of carbon and water
exchange between land and the atmosphere, and
providing a vegetation spatial distribution for further
estimation of surface albedo and roughness (Cox
et al 2000, Cramer et al 2001, Krinner et al 2005).
Modelling of future climate-driven vegetation
dynamics in the frame of the Arctic Climate Impact
Assessment concluded that the northward boreal
forest zone shift could reach up to 1000 km in the next
100 years with amplification of global warming
because newly forested areas will become darker
(albedo feedback) andwill absorbmore solar radiation
(ACIA 2005). It was demonstrated using a global
climate model that northward extension of boreal
forest may have given a seasonal rise of 4 °C to 1 °C to
global warming due to albedo feedback during the
Holocene (Foley et al 1994). Thus, the ability of
DGVMs to give a good representation of the vegetation

distribution at high latitude at large scale is key for
better representation of the atmosphere–biosphere
feedbacks in the Earth system.

Especially important for Earth system models is a
reliable representation of the vegetation distribution
in geographical regions with known impacts upon
biosphere–atmosphere feedbacks associated not only
with albedo variations induced by vegetation zones
shifts, but also with possible alterations in large carbon
pools, like Northern Eurasia. Northern Eurasia, which
to a larger extent coincides with Russia, is a rather
sparsely populated area with vast forests serving as a
natural stabiliser of the global climate (Groisman and
Bartalev 2007). Russia is home to one-fifth of the
world’s forested area and contains half of the world’s
coniferous growing stock (Shvidenko and Nils-
son 1994). This globally valuable forested area in Rus-
sia is, however, under significant threat from on-going
and future climate change. So, a rapid change in the
mean climate at high latitudes may induce shifts of the
zones of climatic suitability of boreal, coniferous, and
deciduous forests in Russia, and some tree species may
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face the risk of large scale extinction, reducing the sta-
bilization ability of Russian ecosystems. Changes in
climate variability may significantly influence the
vegetation distribution via permafrost degradation
and wildfire intensification in Russia, even if climatic
means remain unchanged.While the forecast of future
climate-driven vegetation distribution alterations can
be performed only using global large scale vegetation
dynamic models, there is a strong need to modify and
adapt suchmodels for Russia to provide reliable spatial
dynamic patterns of ecosystems. The concept of a
DGVM requires that a model should be able to repre-
sent the recent vegetation distribution starting from
the bare soil with the assumption of panspermia
(initial availability of seeds for all plants everywhere on
the globe). Thus, a DGVM ideally should be able to
reproduce the recent vegetation distribution in Russia
as close as possible.

Earth observations (EOs) from satellites have
already been recognized as themost suitable technique
for collection of spatially explicit information on land
cover over large territories. The land cover of Russia
has been mapped on repeated occasions using remote
sensing data within a number of global mapping
efforts. The IGBP DISCover (Loveland et al 2000),
UMD Land Cover (Hansen et al 2000), MOD12Q1
(Friedl et al 2002), GLC 2000 (Bartholomé and Bel-
ward 2005) and GlobCover 2009 (Bontemps
et al 2011) are among the most well-known examples
of the global land cover maps developed based on
satellite remote sensing data. Besides the global land
cover products, Northern Eurasian land cover has
been the focus of some dedicated regional mapping
exercises over the last decade. These regional land
cover mapping projects have addressed scientific and
political demands to improve land cover information
for Northern Eurasia. The SPOT-VEGETATION data
were used to produce a regional land cover map for
Northern Eurasia at a 1 km spatial resolution (Bartalev
et al 2003), which differentiates 27 classes. A hier-
archical approach was developed tomap the Northern
Eurasian land cover using multi-temporal 500 m sur-
face reflectance and 1 km land surface temperature
data from the MODIS instrument (Sulla-Menashe
et al 2011).

One dedicated mapping effort in particular has
been aimed at the development of the TerraNorte Rus-
sian land cover (RLC) map as an advanced regional
land cover product, with both spatial resolution and
thematic accuracy improvements (Bartalev et al 2011).
The TerraNorte land cover map improvements were
achieved as a combined effect of a mapping method
based on the locally-adaptive global mapping algo-
rithm (LAGMA) (Bartalev et al 2014) being applied to
the 231.6 m spatial resolution surface reflectance data
acquired by the MODIS instrument Terra. The land
cover map legend consists of 22 thematic classes,
including 18 various vegetation types, and has been
designed to take into account vegetation life forms,

leaf types and phenological dynamics in accordance
with the land cover classification system (LCCS) cri-
teria (DiGregorio 2005).

In some studies, remote sensing data-derived land
cover maps were used for visual analysis of models’
estimated vegetation distribution quality (Sitch
et al 2003, Tchebakova et al 2009). However, attempts
to improve vegetation models using these maps are
rare. Parameterisation using formal similarity criteria
between models and remote sensing land cover can
potentially increase the accuracy of the predicted vege-
tation distribution.

In this article, the DGVM SEVER (Venevsky and
Maksyutov 2007) (Russian: север, meaning ‘North’)
was adapted to the territory of Russia using state-of-
the-art remote sensing data derived from the land
cover map TerraNorte RLC. The DGVM SEVER has
developed daily soil temperature and wildfiremodules
which are important for future climate-driven fore-
casts of the vegetation distribution and carbon pools in
Russia. Adaptation of the SEVER model was done in
two steps—first, model routines were modified to
address some notable disagreements between the
model output and the land cover map. In the second
step, formal optimisation of themodel parameters was
performed with the objective of maximisation of the
spatial correlations between the vegetation distribu-
tions from the model and from the TerraNorte RLC
land cover map. We present here a novel approach for
obtaining a correct current distribution of boreal and
temperate vegetation zones in high latitude Eurasia
within an Earth systemmodelling framework.

2. The SEVERmodel performance analysis

The SEVER model (Venevsky and Maksyutov 2007)
used in our study, is a state-of-the-art process-oriented
global vegetation model that imitates processes in 10
plant functional types (PFTs) (which represent plants
from tropical to boreal areas) in grid cells at a coarse
resolution of 0.5 degrees. Being developed based on
the Lund–Potsdam–Jena (LPJ) model (Sitch
et al 2003), SEVER uses, in particular, daily meteor-
ological data and different wildfire imitation routines.
This DGVM imitates the behaviour of an average
individual of each plant type in each grid cell through-
out the simulation years. Each of these grid cells is
processed independently without influence from
other cells. The model starts from the ‘bare soil’ state,
placing aminimumquantity of each vegetation type in
each grid cell and giving them time to grow and
achieve equilibrium (of plant parameters and vegeta-
tion distribution), after this main simulation is per-
formed. This DGVM imitates the major processes in
vegetation systems: photosynthesis, water balance,
reproduction, respiration, light competition, plant
mortality and so on. The general scheme of the
interactions between the model’s processes, described
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by separate routines, follows that of the LPJ DGVM
(see figure 1 in Sitch et al 2003).

The SEVER model uses daily climatic data from
the NCEP/NCAR reanalysis dataset (Kalnay
et al 1996) over a period from 1957 to 2006 inter-
polated to themodel grid resolution (0.5 degrees). The
sources of CO2 concentration and soil type informa-
tion were the same as those for the LPJ model (Sitch
et al 2003).

To evaluate the original model quality, the simu-
lated vegetation distribution was compared to the
MODIS data-derived TerraNorte land cover map of
Russia at 230 m spatial resolution (Bartalev et al 2011).
Based on the land cover map, the appropriate vegeta-
tion types’ area fractions were estimated for the model
grid cells. Land cover classes were converted in accor-
dance to the SEVER model to four functional plant
types, namely C3 herbaceous and the forest types
deciduous broadleaved, deciduous needle-leaved and
evergreen needle-leaved. As the tundra ecosystem was
not present among the SEVER model plant types, this
land cover class was assigned to herbaceous vegeta-
tion. The land cover types not present in the model,
such as peatlands, water, crops, recent burns, urban
areas, riparian vegetation, and permanent ice and
snow, were ignored in the model quality estimation.
Because the model does not account for the existence
of ignored types, the area fractions of other types were
increased proportionally so that they fill the whole cell
and their sum is equal to 1.

First, the original SEVERDGVMperformancewas
verified through cross-comparison of the vegetation
fractions estimated based on the model and derived
from the land cover map (figures 1 and 2). While the
visual cross-comparison shows that themodelling and
land cover mapping results are largely in agreement

(the PFTs are mostly located close to their natural
habitat), somemajor disagreements were also found.

In terms of dominant types (figure 1), the model
estimates show major disagreements in northern,
south-western and mountainous areas of Russia.
According to the land cover map, 26% of Russian high
northern latitudes (above 60°N) is covered by tundra
(figure 1(a)), but the vegetation fraction estimated
based on the model shows only 4% of this area being
dominated by herbaceous types (figure 1(b)). Such dis-
crepancies can be explained by the absence of a tun-
dra-associated plant type in the model. In the south-
western part of the country, the land cover map shows
that 48% of the area is covered by steppes and grass-
lands, while the model estimates that 90% of this area
is covered by forests (figures 1(a), (b)). This difference
can be explained by extensive agricultural activities,
which are not the included in SEVER. Due to altitu-
dinal zonation, vegetation in mountainous areas may
show greater variety, with forests in the foothill and
alpine grasslands or permanent ice cover closer to
peaks, For Russian mountainous areas, the land cover
map clearly shows the absence of vegetation or dom-
ination of herbaceous at higher elevation (figure 1(a)),
but the model’s estimates show no difference between
those areas and adjacent flatlands (figure 1(b)). This
discrepancy is especially noticeable in big mountai-
nous areas like the Ural Mountains, the Middle Siber-
ian Plateau and the SayanMountains.

Most of the areas dominated by forests in Russia
show agreement regarding dominant types between
the model and the TerraNorte land cover map. How-
ever, the ratios between different types of forests in
some parts of the country significantly differ (figure 2).
In the eastern part of Russia, the TerraNorte land
cover map shows absolute dominance of larch (100%

Figure 1.Map of dominant plant functional types (PFTs) in grid cells at different steps of adaptation: 1(a)—dominant types based on
the land covermap; 1(b)—initial state of SEVER-DGVM; 1(c)—after initial visual adjustment ofmodel’s parameters; 1(d)—
implementation of additional temperature correction; 1(e)—implementation of tundra; 1(f)—SEVER-DGVMafter adaptation.
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of woody types), but themodel estimates forests in this
region with a composition of 50% larch and 50% ever-
green needle-leaved and broad-leaved vegetation
(figures 2(I-a), (I-c)). Also, northwestern forests of
Russia consist of 80% evergreen needle-leaved and
20% broad-leaved types, and this ratio gradually shifts
to 80% broadleaved and 20% needle-leaved in the
southern part (figures 2(II-c), (III-c)). At the same
time, the vegetation fractions estimated based on the
model show a ratio closer to 55% needle-leaved and
45% broad-leaved in the north and a ratio of 45% to
55% in the south (figures 2(II-a), (III-a)). Incorrect
ratios between forest types may indicate issues with
imitation of competition between needle-leaved and
broad-leaved in themodel.

All divergences between the model and the land
covermap can be summarized as follows:

(1) Insufficient area of tundra in the Russian north.

(2) Lack of steppes and grasslands in the southwestern
part of Russia.

(3)Underestimation of the needle-leaved deciduous
forest (larch) in the eastern part of Russia.

(4) Incorrect ratio between the broad-leaved decid-
uous forest and the needle-leaved evergreen forest
in thewestern part of the country.

(5) Incorrect vegetation types inmountainous areas.

In addition to the visual analysis, a formal quality
assessment was performed using the criteria of the
spatial correlations between the plant type fractions
estimated by both the original SEVER model and the

land covermap. The spatial correlation X Ycorr ,( ( ) )w
was estimated for all plant types being weighted by the
model’s grid cell area as follows:
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where x y,i i are fractions of a vegetation type in a grid
cell i according to the SEVER model for the final year
of modelling and the land cover map, iw is the grid cell
area, Xw is the average weighted value, and

X Ycov ,( )w and X Ycorr ,( )w are the weighted covar-
iation and correlation between variables. The model
quality criterion was introduced as the sum of the
squared correlations:

Q X Xcorr , , 4
i

i i
map model 2( ) ( )å=

where i indicated iteration over all plant types:
herbaceous, deciduous broad-leaved, deciduous nee-
dle-leaved and evergreen needle-leaved forests. The
correlation quality criterion values for the original
SEVERmodel are presented in table 1.

3. The SEVERmodel regional adaptation
procedure

Visual qualitative adjustment of the climatic para-
meters DGVM for Russia improved the model perfor-
mance according to both visual analysis (figures 1(a)–

Figure 2.Vegetation fractions of fourmain plant functional types in grid cells for original and optimizedmodel compared to the land
covermap.
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(c)) and to the formal quality criterion (table 1).
Adaptation of the SEVER model to Russia-specific
conditions was performed in two steps, including (1)
model routine modification and (2) formal optim-
isation procedures. Modification of the model rou-
tines was performed to address problems in the
description of Russian ecosystems, as mentioned in
the previous section of the paper. Overall, two new
components were implemented in the SEVER model
and the input climate data was corrected to reflect
altitude dependence. First, the air temperature change
rate with elevation was modified in the input data in
order to improve the vegetation distribution model-
ling in mountainous areas. The SEVER model uses
NCEP/NCAR Reanalysis meteorological data
(1.875°×1.875° lon/lat resolution) interpolated by
triangulation to the model’s grid cell resolution
(0.5°×0.5° lon/lat). It is known that the air temper-
ature decreases with increasing elevation, but this
dependency was not taken into account in the
interpolation process. To compensate for this short-
coming of the input climate data, the GLOBE digital
elevation model (Hastings et al 1999) was used to
calculate the range between the maximum and mini-
mum elevations within each grid cell. The air temper-
ature in a cell was decreased by a constant value for
each 100meters of altitude difference. The air temper-
ature decrease rate initially was set at 6 °C km−1 and
was corrected during the formal optimisation proce-
dure performed later.

At first, improvement of light competition was
implemented in the model. The effect of competition
for light between woody plant types in the original
SEVER model was implemented as the proportional
mortality of all plant types when the area sum of the
projective vegetation cover exceeds the grid area. In
our study, the plant height was set to influence the
competition for light so that the proportion of surviv-
ing plants was determined by the weight coefficient,
depending on the height of an average individual

A 5i

h h

h

i( )
( )w =

-

where A is a heuristically set constant parameter, hi is
the height of an average individual of the i-th plant
type, and h is the average height of all plant types.

Formula (5) leads to a decrease in the mortality rates
from shading for taller trees and an increase in
mortality for smaller trees. Coefficient A was initially
set to a value of 10 and was the subject of the formal
optimisation procedure (see section 4).

Second, the tundra PFT was implemented in the
model. To do this, additional climatic limitations were
added for minimum temperature in the year, max-
imum wind speed in winter and average snow depth.
The rationale for these climatic parameters is the
observed dependence of krummholz (ecotone
between treeless tundra and northern forests, pri-
marily consisting of Pinus Pumila stands in Russia)
distribution on wind speed (Nagano et al 2013), snow
depth and minimum winter temperature (Okitsu and
Ito 1984)

High wind speed, low temperatures and shallow
snow depth are responsible for water stress, frost bite
and mechanical abrasion of trees by ice particles. In
each grid cell, the average value for each of these para-
meters over the last 20 years was calculated. A grid cell
was considered to be dominated by tundra (all woody
types were excluded from the cell) if the following con-
ditionwasmet:
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The X min and X max values for each parameter are
presented in table 3 for a total of six climatic limits.
These values were obtained using the compass search
optimisation algorithm (Kolda et al 2003), minimising
the number of cells incorrectly classified as tundra/
not tundra according to the dominant type of a grid
cell in the land cover map. This method located the
presence or absence of tundra successfully in 89% of
cells above 60°N.

Table 1.Correlation coefficients between the land covermap and themodel’s estimated vegetation fractions for themain PFTs at different
stages of the SEVERmodel adaptation.

Needle-leaved ever-

green forest

Needle-leaved decid-

uous forest

Broad-leaved decid-

uous forest Herbaceous

Quality

criterion

Originalmodel 0.48 0.39 0.0 0.34 0.50

Visual adjustment 0.51 0.48 0.19 0.33 0.63

Temperature

correction

0.38 0.52 0.26 0.25 0.54

Light competition 0.41 0.52 0.30 0.25 0.59

Tundra imitation 0.44 0.63 0.35 0.29 0.80

Optimisation 0.55 0.60 0.42 0.50 1.09
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4.Optimisation

Formal parameter optimisation was performed after
implementation of the abovementioned model mod-
ifications. Twelve model parameters, mostly defining
the climatic limits for different plant types, were
chosen for the optimisation. Table 3 shows the
optimised climatic limits in bold, their initial values
are shown in table 2. The set of those parameters also
includes the coefficients for light competition and
temperature correction (table 4), as previously
discussed.

Global optimisation may require an excessive
number of model runs, so execution time reduction
was necessary. Thus, in the first step a global optimum
was located for a ‘crude’ version of the model. The
crude version updates only a small part (5%) of the
entire model grid cells, which were chosen by max-
imisation of the distance between each cell and its

closest neighbours. The model performance is esti-
mated using only this small portion. In preliminary
runs of the model, it was observed that the quality cri-
terion values for the crude and original models dif-
fered by approximately 10%.However, the correlation
coefficient between the quality criterion values for dif-
ferentmodels was as high asR2=0.88. This similarity
made it possible to use the crudemodel for an explora-
tion of our parameter space.

The efficient global optimisation (EGO) (Jones
et al 1998) method was used to find the global opti-
mum for the crude model. This method balances the
search for an optimum value with exploration of the
parameters’ space by applying the Kriging approx-
imation method. The main idea of an approximation
is to replace the original function (model) with some
other simple function, which can be evaluated quickly.
The Kriging method approximates functions as a sum
of polynomial components and stochastic processes.

Table 2.Values ofmodel’s parameters at initial stage.

Tmin C°,
a TmaxC°,

b Tmort, min C°,
c Tw c, min- C°, d Xmin

snowm, e Xmax
snowm, e Xmin

tempC°, f Xmax
tempC°, f Xmin

windm s−1, g Xmax
windm s−1, g

Boreal broad-leafed

deciduous forest

— −2 23 — — — — — — —

Boreal needle-leafed

deciduous forest

— −2 23 43

Boreal needle-leafed

evergreen forest

−32.5 −2 23 — — — — — — —

Temperate broad-leafed

deciduous forest

−17 15.5 — —

a minimum coldestmonth temperature for survival.
b maximumcoldestmonth temperature for establishment.
c temperature base in the heat damagemortality function.
d larch continental index.
e limits on average snowdepth for tundra (see section 3).
f limits onminimum temperature for tundra (see section 3).
g limits onmaximumwind speed for tundra (see section 3).

Table 3.Values ofmodel’s parameters after optimisation, notations are the same as in table 2.

TminC° TmaxC° Tmort, minC° Tw c, min- C° Xmin
snowm Xmax

snowm Xmin
tempC° Xmax

tempC° Xmin
windms-1 Xmax

windms-1

Boreal broad-leafed

deciduous forest

−24.4 −12.8 22 —

Boreal needle-leafed

deciduous forest

−42.5 −2 23 36.6

Boreal needle-leafed

evergreen forest

−27.3 −0.5 24.5 — 0 0.1 −35.4 −12.2 1.88 5.46

Temperate broad-leafed

deciduous forest

−18.9 15.5 — —

Table 4.Values of additionalmodel’s parameters at different stages of the SEVERmodel adaptation and air temperature altitudinal
correction.

Parameter name Initial values Visual adjustment Formal optimisation

Decrease of temperature for each kmof elevation difference, C° km−1 0 6 0.011

Coefficient in light competition 1 1 9981.65

Multiplier for larch specific leaf area 1 1 0.6875
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The main advantage of the Kriging method is that it
exactly interpolates values for known values of the real
function and that due to its stochastic nature, it can
provide an estimate of the variance for this approx-
imation at any point of the parameters’ space.

An optimisation approximation function for a set
of initial points is created during the EGO and after
this, the maximum of the expected improvement (EI)
criterion for an approximation is found. The EI criter-
ion is calculated as follows:

x x
x

x

x

x

f f
f f

s

s
f f

s

EI

8

min
min

min

( )( ) ( )
( )

( )
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( )
( )j

= - F
-

+
-

⎛
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⎞
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⎝⎜
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where x is a vector in the parameters’ space, fmin is the
minimum function (quality criterion) value found
until now, xf ( )is the function value for x, sis the error
(variance) of the approximation at x, and F and j are
the normal cumulative distribution function and the
density of the normal distribution. The EI criterion
increases if the new value of the function is smaller
than the minimum value found in the previous
iterations (first term) and the approximation error
(described by variance s) at the new point is larger
(second term).

The newly found parameters were put into the
actualmodel and the updated approximation function
was designed. These iterations are repeated until the
maximum value of the EI is below a pre-defined
threshold criterion, which was set at 0.0001. Use of the
EI criteria and the Kriging approximation makes this
method relatively fast and effective for global optim-
isation purposes.

Due to the observed significant difference in the
performance criteria of the crude and the original
models, a second step of the optimisation was neces-
sary for obtaining at least a local optimum for the ori-
ginal model. This second step was based on using the
Broyden–Fletcher–Goldfarb–Shanno (BFGS) algo-
rithm with starting parameter values providing the
global optimum for the crude model. The BFGS
method is a quasi-Newton local optimisation algo-
rithm which uses a function gradient (which this
method evaluates directly) and a Hessian (which this
method approximates). The main purpose of this
algorithm is to change parameter values in the direc-
tion of function gradient decrease, additionally using
the curvature of the optimized model (Hessian) eval-
uated using previously obtained function values.

5. Results

Correction of the air temperature using the Earth’s
surface elevation resulted in a significant change of the
vegetation distribution in the model output
(figure 1(d)). Some mountainous areas can now be
clearly distinguished by the domination of herbaceous

types or the absence of vegetation. Introduction of this
correction, however, leads to a decrease in both the
model quality criterion and the correlations for
herbaceous and evergreen needle-leaved plant types
(table 1). The temperature correction coefficient was
significantly decreased (table 4) as well during optim-
isation and in effect, imitation of mountain ridges was
removed from the model. This may mean that such a
simplistic method of temperature correction cannot
imitate mountainous areas with their high variability
in elevation and complicated land cover.

The new algorithm for light competition changed
the ratio between broad-leaved and needle-leaved for-
est types in the western part of Russia and now it is
much closer to values estimated from the TerraNorte
land cover map (figures 2(II-b), (II-c), (III-b), (III-c)).
This modification also resulted in a small improve-
ment in the correlations of those two types (table 1).
After optimisation, the light competition coefficient
was set to the maximum possible value (table 4). Such
a high value assumes domination in light competition
for individuals of PFTs with even a small advantage in
height. Thus, the current routine for light competition
can be further improved according to our results.

Suggested climatic limitations for tundra in the
model simulated a non-significant overestimate of the
tundra area, especially in the northern and north-
eastern parts of Russia (figure 1(e)). The area of tundra
after the modification is slightly larger than that in the
TerraNorte land cover map (36% of area above 60°N
for the model versus 27% according to the land cover
map). This change also resulted in increased correla-
tions for all vegetation types (table 1). This result
demonstrates that proper implementation of tundra
PFT is needed for a description of the vegetation dis-
tribution across Russia.

The optimisation process was performed in the
statistical language R (R Core Team 2012) using the
EGO method from the package DiceOptim (Roustant
et al 2012) and the BFGS method from the R standard
package stats. The language and libraries are dis-
tributed under a free software license and the scripts
used in the optimisation can be provided as per
request. The first step of the optimisation was com-
pleted after 1253 evaluations and as a result, the quality
criterion increased from 0.80 to 1.06 (by 33%). The
second step took 161 original model runs and the
quality criterion increased from 1.06 to 1.09. Con-
sidering that the crude model is 20 times faster than
the original model, the second step was even longer
than the first step, but only inclusion of this second
step in the optimisation process can guarantee that the
new parameter values are at least close to the local
optimumof themodel.

Formal two-step optimisation resulted in a sig-
nificant increase in the quality criteria (table 1), and
improvements in correlation coefficients between the
remote sensing data-derived land cover map and the
modelling results for most vegetation types. The area
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of tundra decreased to some extent and the area of
Kamchatka is filled with the broad-leafed PFT after the
optimisation, just like in the land cover map
(figure 1(f)).

6.Discussion

The vegetation distribution generated by the model
after the modification and two step formal optim-
isation is significantly closer to the TerraNorte land
cover map. Significant improvement in the simulated
spatial pattern of vegetation types in Northern Eurasia
allows a better description of ecological services in the
area under conditions of climate change, including
potential carbon sequestration, change in accessibility
of ecosystems and patterns of human-driven distur-
bances, change in biodiversity and large scale evapo-
transpiration and run-off changes. According to our
results, the closest fit of the model to the remote
sensing data-derived PFT distribution is seen in the
Asian part of Russia, where human disturbance
activities aremainly in themost southern part near the
border. Especially important is a geographically cor-
rect representation of areas of boreal needle-leaved
deciduous forests (Larix forests) and tundra in the
Asian part of Russia. Firstly, this confirms that Larix
forests and tundra are determined mainly by climatic
variables. Secondly, specific biophysical features of
spatial and temporal dynamics of carbon pools and
fluxes of these two major climate-stabilizing PFTs can
be further described by the model within their natural
geographic areas. These specific features include inter-
actions between vegetation, the active layer of perma-
frost and aerobic/anaerobic decomposition of soil
organic matter for tundra and feedbacks between
vegetation, the active layer of permafrost and wildfires
for boreal needle-leaf deciduous forests of Russia
(Venevsky 2006). This optimisation of the SEVER
DGVM can also be further improved and adapted for
Russia as available EO data-derived burned area and
soil moisture products are implemented into the
already-developed two step optimization procedure.
This will allow for significant increase in the predict-
ability of future climate-driven changes in the region
important for the entire Earth system.

Differences in vegetation distribution between the
optimized version of SEVER DGVM and the Terra-
Norte land cover map seen in the European part of
Russia also provide us with important insight. We
conclude that areas climatically suitable for boreal and
temperate broad-leaved forests are converted to agri-
cultural lands (described as grassland PFTs in SEVER
DGVM) by human activities.

Ten of the twelve parameters taken for formal
optimization of the SEVER DGVM for Russia are cli-
mate limits for the five PFTs of Russia, influencing the
physiology of plants. Such a choice diminishes the
possible influence of anthropogenically-determined

patterns in vegetation distribution for optimization of
the parameter data set. On the other hand, this choice
allows a validation of parameters which is hard to find
in botanical reviews or tomeasure in thefield.
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