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Abstract

Avian diversity is under increasing pressures. It is thus critical to understand the ecological variables that contribute to large
scale spatial distribution of avian species diversity. Traditionally, studies have relied primarily on two-dimensional habitat
structure to model broad scale species richness. Vegetation vertical structure is increasingly used at local scales. However,
the spatial arrangement of vegetation height has never been taken into consideration. Our goal was to examine the
efficacies of three-dimensional forest structure, particularly the spatial heterogeneity of vegetation height in improving
avian richness models across forested ecoregions in the U.S. We developed novel habitat metrics to characterize the spatial
arrangement of vegetation height using the National Biomass and Carbon Dataset for the year 2000 (NBCD). The height-
structured metrics were compared with other habitat metrics for statistical association with richness of three forest breeding
bird guilds across Breeding Bird Survey (BBS) routes: a broadly grouped woodland guild, and two forest breeding guilds
with preferences for forest edge and for interior forest. Parametric and non-parametric models were built to examine the
improvement of predictability. Height-structured metrics had the strongest associations with species richness, yielding
improved predictive ability for the woodland guild richness models (r2 = ,0.53 for the parametric models, 0.63 the non-
parametric models) and the forest edge guild models (r2 = ,0.34 for the parametric models, 0.47 the non-parametric
models). All but one of the linear models incorporating height-structured metrics showed significantly higher adjusted-r2

values than their counterparts without additional metrics. The interior forest guild richness showed a consistent low
association with height-structured metrics. Our results suggest that height heterogeneity, beyond canopy height alone,
supplements habitat characterization and richness models of forest bird species. The metrics and models derived in this
study demonstrate practical examples of utilizing three-dimensional vegetation data for improved characterization of
spatial patterns in species richness.
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Introduction

Avian diversity has been under increasing pressure from

anthropogenic disturbances such as habitat loss and fragmentation

[1]. Successful conservation planning relies upon understanding

how the distribution of avian richness responds to existing and

potential changes in environmental conditions which influence

their distributions. Discovering the drivers of large-scale spatial

variation of species richness has been a central debate in ecology

[2–5], and many hypotheses have been proposed to address this

issue [6–11]. One major hypothesis suggests that habitat

heterogeneity is a key factor because it leads to greater spatial

variability of habitat physical conditions, and therefore permits

greater niche specialization resulting in more species richness [12–

15]. Particularly in North America, habitat heterogeneity theory

predicted the richness of some faunas significantly better than the

species-energy theory [7,14,15]. This latter theory also has

widespread support, and hypothesizes that productive energy

through food webs or species physiological constraints to ambient

energy determines species richness [4,6,8,16].

Traditionally large scale habitat heterogeneity has been

quantified mostly as topographical variability [7,14,17] or two

dimensional habitat characteristics derived from remote sensing

products [18,19]. Vertical habitat structure may also lead to niche

generalization, and as such be an important element of habitat

heterogeneity affecting biodiversity [20]. However, it has rarely

been used to explain species richness at broad scales. The

incorporation of vertical heterogeneity is especially important for

avian richness models where vertical habitat structure at local
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scales has long been recognized as a critical factor influencing bird

life history [21–23] and abundance [24,25].

Until recently, there have been relatively few studies utilizing

three-dimensional habitat information due to difficulties of

acquiring measurements of vertical vegetation structure beyond

the plot scale over extended geographical areas [20]. This has

changed significantly since the emergence of active remote sensing

systems such as Light Detection and Ranging (lidar) and Radio

Detection and Ranging (radar) which provide capability to map

the vertical dimension of vegetation at local to regional scales

[20,26]. There is an increasing number of studies using lidar and

radar derived three-dimensional vegetation structure to model

biodiversity, many of which have revealed significant association

between vegetation vertical structure, habitat quality, species

richness and abundance [27–32]. However, none of the existing

habitat metrics sufficiently characterize the spatial arrangement of

vegetation height (i.e. the heterogeneity of height), nor its potential

for predicting avian richness distributions over large geographical

extents.

Related advances have been made in the development of

statistical fusion models that provide a means to effectively

combine remotely sensed data from radar, lidar, optical remote

sensing systems and forest inventory data, yielding wall-to-wall

high resolution vegetation structure maps at the continental scale

[33–37]. The production of these maps not only enables the

creation of habitat metrics that capture rich vegetation height

heterogeneity, but also the comparison of the predictive abilities in

various forms of these metrics. Our study is designed to embrace

these opportunities by examining the relationship between forest

bird richness, height-structured habitat metrics and avian richness

models involving various degrees of forest height heterogeneity.

The overall goal of our study is to examine the potential of

three-dimensional habitat structure in improving avian richness

models at broad geographical scales. In doing so we hope to

expand our understanding of the relationship between habitat

structure and the spatial distribution of avian species richness, and

to lay the foundation for constructing habitat metrics that better

utilize increasingly available three-dimensional habitat data.

Specifically we address the following questions:

1. How do the height-structured metrics compare with traditional

habitat metrics in their ability to associate and predict forest

bird richness in the forested ecoregion of the U.S.? Does

incorporating the height-structured metrics improve the

explanatory ability of avian richness models that use traditional

habitat metrics?

2. How do the predictive abilities of richness models vary among

forest bird guilds with contrasting preferences to habitat edges?

First, we introduce the conceptual similarities and differences

between traditional habitat metrics and two types of height-

structured metrics. Next, we describe the data and the methods we

used to create the habitat metrics in this study. We then use

correlation analysis and multivariate regression models to examine

the relationships between different combinations of metrics and

the species richness of three forest breeding bird guilds. Lastly, we

examine the models’ explanatory abilities and the importance of

individual metrics in predicting the richness of the three guilds.

Background

Traditional habitat metrics are based primarily on two-

dimensional habitat structure, such as land cover types, patch size

and shape statistics. Developing such metrics generally depends on

two steps: a) classifying scene space into binary habitat and non-

habitat land cover types; b) delineating habitat patches based on

the rule of contiguity (Figure 1) [38]. There have been numerous

studies using habitat patch metrics and derivative habitat edge and

contrast metrics to associate with ecological attributes such as

species richness, reproductive success and individual fitness of

birds [39–41]. However vegetation height information generally

plays little role in the process of delineating habitat patches and

characterizing their properties.

Some studies have applied three-dimensional habitat informa-

tion in habitat quality and species diversity models [28,30,31,42–

44]. Usually, these applications rely on simple summary statistics

such as mean, maximum, minimum and standard deviation to

characterize three-dimensional vegetation structure. Summary

statistics are straightforward and easy to obtain, but they cannot

fully capture the heterogeneity of vegetation vertical structure. To

give an example, one can have two forested landscapes with the

same mean, maximum, minimum and standard deviation of tree

height but with greatly different spatial arrangements of trees (e.g.

tall trees can cluster in a few locations or can randomly distribute

over the landscape which would have very different ecological

implications for bird communities).

To account for more height heterogeneity, we created two

groups of height-structured habitat metrics, the first of which

integrates vegetation height information into the habitat patch

framework while the second one characterizes canopy height

distribution directly using second-order texture algorithms.

At the canopy level, vertical differences in vegetation create

boundaries that segment contiguous habitats into smaller patches,

each with similar height values (Figure 1). We first classified height

pixels into a few height classes to characterize vertical edges and

patches. Next, we grouped adjacent pixels from the same height

class into patches. We treated the boundaries dividing those

vertical patches as vertical edges (Figure 1). We also weighted the

vertical edges by their depth (the height difference between two

sides of a vertical edge) to capture the contrast of the height values

of neighboring patches. By doing so, we could adapt a wide range

of conventional habitat patch and edge metrics to account for

complex spatial variability of canopy height.

Besides utilizing habitat patch and edge metrics to capture

vegetation height heterogeneity, the second approach we intro-

duce here involves calculation of the second-order (co-occurrence)

texture statistics [45] directly from the gridded vegetation height

maps. Second-order texture measures indicate the probabilities of

each combination of pixel values co-occurring in a specific

direction and distance [45]. These metrics can quantify spatial

heterogeneity in terms of the spatial distribution and dependencies

of height values [46] through grey level co-occurrence matrix.

Texture measures are conventionally extracted from individual

band of remotely sensed imagery and aerial photographs to assist

object or land cover type discriminations [46,47]. Normally a

small moving window is used to calculate the grey level co-

occurrence matrix in specified neighborhoods. Texture measures

extracted from optical remote sensing imageries have been used to

infer broadly defined habitat heterogeneity that includes various

environmental factors (e.g. land cover type, vegetation type, soil

condition as well as vertical structure). This type of habitat

structural information has been linked to avian species richness in

many studies [48–50]. Here we derived the second-order texture

metrics from gridded canopy height maps to directly characterize

habitat height structure and to associate them with variation in

avian richness.

Impact of Vegetation Height Heterogeneity on Bird Species Richness
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Data Sets and Methods

Avian Data
The study area includes 21 predominately forested ecological

regions (provinces) [51] across the conterminous U.S. (Table S1)

(Figure 2). We used avian records from the Breeding Bird Survey

(BBS) to model species richness over the entire study range. BBS is

an annual road side survey organized by U.S. Geological Survey

(USGS) [40,52]. Initiated in 1966, BBS has over 4000 survey

routes located on secondary roads across the continental U.S. and

Canada. Each survey route is 39.4 km long. Every year, during the

avian breeding season, surveys are conducted by competent

volunteers using the protocol of three-minute point count at 50

stops at 0.8 km intervals. All birds seen or heard within 0.37 km

radius are recorded [53]. We removed the records whose survey

procedures or associated data are not acceptable by BBS standard.

We also removed the records surveyed by first year observers to

minimize observer bias [54]. We selected 134 broadly grouped

woodland breeding birds species (here after ‘‘woodland guild’’)

based on the USGS species groupings [55]. We also selected 26

and 49 bird species as the forest breeding guilds with preference

for interior forest habitat and forest edge habitat respectively (here

after ‘‘interior forest guild’’ and ‘‘forest edge guild’’) based on the

classification of Boulinier et al.1998 [56]. A complete list of birds

involved in this study and their guild assignment are given in

Table S2. Because most of the interior forest and forest edge bird

species are distributed in the Eastern U.S., we limited our analysis

on these two guilds to the 10 forested ecoregions in the east

(Figure 2).

Adjustments were made to take into account the detection

probability bias [57]. We used the ‘‘fossil’’ package [58] in the R

statistical program [59] to calculate the adjusted species richness

using a first-order jackknife estimator [60,61]. This estimator is

based on multiple recapture studies in closed populations, which

allows detection probability to vary among species. It is also the

basic estimator underlying the species richness adjustments used

by a USGS-developed BBS pre-processing program called

COMDYN [62]. We averaged the available first-order jackknife

richness within the five year period between 1998 and 2002 to

temporally approximate the acquisition time of the radar data

which played a key role in developing the vegetation height maps

as discussed in the following section. The resulting mean avian

richness is the richness we refer to in the rest of the study.

Forest height data and habitat metrics
The National Biomass and Carbon Database of the year 2000

(NBCD) [33] provides an estimate of vegetation height distribution

and variation at fine resolution for the conterminous U.S. The

dataset is based on combined information from U.S. Department

of Agriculture’s Forest Service Forest Inventory and Analysis data,

high-resolution Interferometric Synthetic Aperture Radar data

acquired from 2000 Shuttle Radar Topography Mission and

optical remote sensing data from the Landsat ETM+ sensor.

Products from the USGS’ National Land Cover Dataset 2001 and

the Landscape Fire and Resource Management Planning Tools

Project were also used during the process as input to build the

empirical model for tree height estimation. The basal area

weighted tree height (hereafter, ‘‘tree height’’) maps produced by

the model gives spatially explicit vegetation vertical structure maps

over the conterminous U.S. of 30 m-resolution.

We adapted a method to use 19 km (,half the length of a BBS

route) radius buffers placed on the centroid of each BBS route,

encompassing ,1100 km2 areas to characterize the surrounding

Figure 1. An example of the delineation of habitat patches at one BBS location. A two-dimensional vegetation map (A) and a vegetation
map segmented by height structure (B) are shown. The pixel-based segmentation method (supporting information S1) is used to segment two
dimensional habitat maps by using height thresholds.
doi:10.1371/journal.pone.0103236.g001

Figure 2. Distribution of BBS routes through the primarily
forested ecoregions in the U.S. The richness models for the
woodland guild were built using data from both eastern and western
forested ecoregions. The forest edge and interior forest bird richness
was modeled in the eastern forested ecoregions only.
doi:10.1371/journal.pone.0103236.g002
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habitat around BBS locations [31,63,64]. We created habitat

metrics on 1751 such circular landscapes where there are available

BBS species richness data. (A), (B), (C), and (D), four metric sets

incorporating a total of 26 metrics were calculated for each

landscape (Table 1). The methods to produce each set of metrics

are described in more details in the supporting information S1.

The first two metric sets, embedded with little to no vegetation

height heterogeneity, included (A) summary height statistics

(hereafter ‘‘summary statistics’’) and (B) traditional patch-based

metrics. The other two metric sets incorporated height heteroge-

neity: (C) patch metrics characterizing vertical patches and edges

(hereafter, ‘‘height-structured patch-based metrics’’), and (D)

second-order texture metrics capturing vertical heterogeneity of

height distributions (Table 1). The metric sets (A) and (B) were

created as baselines to compare with the height-structured metric

sets (C) and (D).

All the metrics created are listed in Table 1, and the detailed

formula and descriptions for each metric are presented in Table

S3. In order to differentiate the metrics with the same name from

metrics set (B) and (C), capital letter ‘‘B’’ or ‘‘C’’ were given as

prefixes to acronyms to indicate metric set membership (Table 1).

Species Richness Models
We first explored the statistical correlation between richness of

the three avian guilds and the habitat metrics to evaluate the

association between individual habitat metrics and the richness of

different guilds. The woodland species richness models were based

on data of all 21 forested ecoregions, and the interior forest and

forest edge guild models were limited to data of the 10 forested

ecoregions from Eastern U.S. as noted earlier (Figure 2).

We selected 2 metrics from each of metric set (C) and (D) that

on average had the best association with the richness of the three

guilds as the best performing height-structured metrics (BPHMs).

These four BPHMs were later combined with the traditional

habitat metrics in multivariable models for comparisons of

improvement. We limited our choice to only the four best metrics

to avoid subsequent overfitting of our multivariate models while

still maintaining enough representativeness.

We next constructed 6 multivariate linear models to explain

each guild’s richness. The first 4 models were created using the

complete list of metrics from set (A), (B), (C), and (D) respectively.

They served to compare the explanatory abilities of models that

characterize habitat condition with very different approaches. The

two other models combined metric set (A) and (B) individually with

the 4 BPHMs. We created the combined models to examine the

impacts of adding spatial arrangement of height in richness models

characterizing habitat in traditional ways.

We used a bootstrapping technique to provide the mean value

and confidence intervals for the richness models’ adjusted-r2 values

and AIC values to assess models’ explanatory ability and goodness

Table 1. List of all metrics developed in the study.

Data Metrics type (Set) Metric name (Abbreviation)

NBCD vegetation height map Summary height statistics (A) Mean height (MEAN)

Standard deviation of height (SD)

Minimum height (Min)

Maximum height (Max)

Two-dimensional vegetation cover map Traditional patch-based metrics (B) Number of patches(B.NP)

Mean patch area (B.Area.MN)

Standard deviation of patch area (B.Area.SD)

Edge density (B. ED)

Total edge (B.TE)

Mean fractal dimension index (B.FRAC.MN)

Standard deviation of fractal dimension index (B.FRAC.SD)

Vegetation cover map segmented
by height structure

Height-structured patch-based metrics (C) Number of patches(C.NP)

Mean patch area (C.Area.MN)

Standard deviation of patch area (C.Area.SD)

Total edge (C.TE)

Mean fractal dimension index (C.FRAC.MN)

Standard deviation of fractal dimension index (C.FRAC.SD)

Contrast weighted edge density (C.CWED)

Mean of edge contrast index(C.ECON.MN)

Standard deviation of edge contrast index (C.ECON.SD)

Shannon’s diversity index (C.SHDI)

NBCD vegetation height map Second-order texture metrics (D) Entropy

Contrast

Angular second moment (ASM)

Homogeneity

Dissimilarity

doi:10.1371/journal.pone.0103236.t001
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of fit, as well as the variability of these measures. The bootstrap

resampling was repeated 3000 times for each model. To examine

the significance level of model improvements the 95% confidence

interval of adjusted-r2 values and AIC values were obtained with

the bias-corrected and accelerated (BCA) bootstrap algorithm [65]

to make the interval’s median unbiased and adjusted for skewness.

Lastly we explored the effect of combining the 26 metrics from

all four metric sets using a non-parametric Random Forest (RF)

model. The RF model [66] is known for being able to handle large

number of input variables without overfitting [67]. It is also well-

suited for our study because the model allows for covariance

between predictor variables, which commonly exists between

different habitat metrics. The RF model also provides a

mechanism for assessing predictor variable importance using a

measure of cross-validated mean square error (out of bag mean

square error (OOB MSE)). The higher the increase of OOB MSE

(IncMSE) is, the more important a specific metric is. More detailed

introduction of RF model is described in the supporting

information S1. We also ran 6 RF models on the same

combinations of metrics used by the linear models to compare

the differences between linear and RF models. We set the number

of trees to be 2000 for all models to allow for the mean residual

error to converge. In our study the RF models were built with

Random Forests package [68] in the R statistical program [59].

Results

Predictor metric correlation
The predictor metrics that correlate best with bird species

richness varied among guilds. For woodland species richness, (D)

the second order texture metrics generally had the greatest

predicative ability, followed by (B) the traditional patch-based

metrics, and (C) the height-structured patch metrics. For forest

edge bird richness, the metrics with the strongest correlation were

(C) the height-structured patch-based metrics followed by (D) the

second order texture metrics and (A) the summary height statistics

(Figure 3). Interior forest bird species richness in general had

consistently low correlation with any metrics. Among all the

metrics developed (Table 1, Table S3), the metric with the greatest

predictive capability for interior guild richness was mean

vegetation height. ASM had the strongest average predictive

capability over the richness models for three guilds, followed by

entropy, C.TE, homogeneity, and C.CWED (Figure 3), all of

which are height-structured metrics. We selected ASM, entropy,

C.TE and C.CWED as the four BPHMs to be combined with

models relied on the traditional metrics.

The direction of the correlation between metrics and the bird

richness was generally consistent across three guild types except for

metrics with weak correlation (Table S4). Among the variables

with highest average correlation, ASM and homogeneity both had

negative correlation with the richness of all three guilds.

Conversely, entropy, C.TE, C.CWED all showed strong positive

correlation for each guild’s richness (Figure 4, Table S4).

After incorporating vegetation height heterogeneity in patch-

based metrics, the metrics characterizing patch number and area

(AREA.MN, AREA.SD, and NP) showed a decreased correlation

with the woodland guild richness. Conversely, the strength of the

correlation between edge metrics (ED, TE) and the woodland

guild richness increased. For the forest edge species both the patch

and edge related metrics showed a prominent increase of

correlation after incorporating vegetation height heterogeneity.

The direction of the correlation for some patch-based metrics also

changed. The NP metric showed an exceptionally large change for

the woodland guild richness: from 20.45 to 0.25 after incorpo-

rating vertical patches (Table S4, Figure 3).

Predictive models
The non-parametric RF models combining all 26 metrics (all-

inclusive models) from the four metric sets were the ones with

greatest ability to predict species richness for each guild (Figure 4,

Table S5). Among those models the lowest species richness

variability was explained for the interior forest guild (r2 = 0.11), but

the forest edge guild richness was predicted moderately well

(r2 = 0.47) and the predictive model was strong for the woodland

guild (r2 = 0.63) (Figure 5). The most important variable for

predicting the woodland guild richness were two traditional patch-

based metrics (B.AREA.MN and B.AREA.SD) followed by two

second order texture metrics (entropy and ASM). The forest edge

species richness model was most dependent on two height-

structured patch metrics (C.CWED and C.NP) followed by two

summary height statistics (MAX and MEAN). The most important

predictive metrics for the interior forest guild model were MEAN

followed by B.AREA.MN and B.AREA.SD (Figure 5).

For the RF models, our results consistently showed that adding

height-structured metrics improved the model predictive ability.

Specifically, the explained variance of the all-inclusive RF models

for woodland and forest edge guild were up to 0.27 and 0.21

higher respectively than the RF models with only traditional

habitat metrics. In addition for these two guilds, when the RF

models were combined with the four BPHMs, the improvement

for explained variance were up to 0.21 (woodland guild) and 0.13

(forest edge guild). The interior forest guild however showed only

minor improvements when combined with any height-structured

metrics. In general for woodland and forest edge guild, RF models’

predictabilities were higher than the comparable linear models by

a prominent margin. (Figure 4 and Table S5).

The linear models had a lower explanatory ability than their RF

counterparts. For a specific combination of habitat metrics, the

linear models explained the most amount of variation in the

woodland guild richness and the least in the interior forest guild

richness. The one exception was the model using summary

statistics of height (set A), which showed the highest predictability

for forest edge guild richness, followed by woodland guild richness,

and then the interior forest guild richness (Figure 4, Table S5). In

every guild, the models incorporating the four BPHMs showed

consistently higher predictability than the models without

(Figure 4).

Combining the BPHMs with the summary height statistics

resulted in significantly higher adjusted-r2 values in the woodland

and forest edge models (Figure 4). The AIC value for the

woodland richness model also improved significantly. In compar-

ison, when combined with traditional patch-based metrics, the

BPHMs significantly increased the adjusted-r2 for the forest edge

guild model, while significantly improving the AIC values for both

the forest edge and woodland guild models (Table S5).

Discussion

A large number of hypotheses have been proposed to explain

the spatial patterns of species richness over broad geographical

scales [2,4,6,69–71]. While it is unlikely that one single mechanism

can explain species richness patterns completely, a large portion of

the literature testing habitat heterogeneity hypothesis has focused

on the association between species richness and two dimensional

habitat structure, often combined with land cover type composi-

tion and distribution [63,64,72,73]. On the other hand other

studies testing species-energy hypothesis have relied on covariates

Impact of Vegetation Height Heterogeneity on Bird Species Richness

PLOS ONE | www.plosone.org 5 August 2014 | Volume 9 | Issue 8 | e103236



related to ecosystem productivity and energy such as evapotrans-

piration and photosynthetic capacity indices like the normalized

difference vegetation index (NDVI) [74–76] to explain large scale

species richness patterns. Studies to associate habitat vertical

structure with species richness are, however, often focused at local

scale [31], which limited the efficacies of habitat heterogeneity

models to explain species richness at broad scale.

Only recently was vegetation height information assessed as a

predictor of avian species richness across the conterminous U.S. in

two studies [31,77]. One of these [31] used the same NBCD data

we employed here, but they explored only summary statistics of

vegetation height and biomass combined with land cover type

composition and distribution. The other used sparsely sampled

height metrics from a satellite lidar system that is no longer

operating, and included climatic data as predictive variables [77].

Although our models employed only the distribution vegetation

structures, with no input from other land cover type or climatic

data, their explanatory ability for the woodland guild was

comparable to these recent results (r2 = 0.70 for the forest guild

model [31], and r2 = 0.60 for the open woodland model [77]). We

found that models combining only vegetation vertical and

horizontal structure can explain a significant amount of species

richness for the broadly grouped woodland guild and the forest

breeding guild with preferences for the forest edge habitat. More

importantly, our results showed that incorporating vegetation

vertical heterogeneity, and not just mean and standard deviation

of height, greatly improves the ability to explain variability in

avian richness for the two guilds. The spatial arrangement of

vegetation height plays an important role in associating the quality

of habitat condition and diversity of ecological niches for bird

species within the two groups.

Traditionally habitat edges are thought to affect species

movement, interaction, mortality and community dynamics [78].

The summary height statistics are considered indicators of habitat

diversity and forest successional stage [20,79,80]. The traditional

way of characterizing habitat through two-dimensional habitat

patch distribution and summary height statistics still play

important roles in our multivariate richness models. The large

pool of traditional patch-based metrics provides a well-known

framework to readily incorporate vertical height distribution once

habitat patches are segmented by height. Both traditional and our

height-structured metrics contribute to explanation of the variance

of avian richness, although the importance of individual metrics in

the models varies from guild to guild. Thus, our study shows that

for the woodland avian guild and forest edge guild, the species

richness is highly sensitive to the vegetation height heterogeneity,

and the addition of the spatial arrangement of vegetation height

provides significantly improved estimates of species richness for the

Figure 3. Guild richness associations with various metrics. (Top row): correlation bar plots of the most predictive metrics of species richness
by guild. White bars represent a positive correlation and grey indicate a negative correlation. (Bottom rows): correlation comparisons between
comparable patch-based metrics with and without considering the vertical patches and edges for the woodland and forest edge guild. The left
panels show traditional metrics without accounting for height-heterogeneity; the right panels are height-structured counterparts. The black dots
indicate a negative correlation and the grey ones indicate a positive correlation.
doi:10.1371/journal.pone.0103236.g003
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two guilds. The patch-based height-structured metrics and the

second order texture metrics thereby supplement and extend

common methods of characterizing habitat condition and

predicting avian species richness.

We note that the BBS data is collected along roadways where

volunteers can easily and regularly traverse, thus the areas along

the survey routes could be subject to disturbances such as motor

vehicle traffic or habitat conversion [81,82]; i.e. they may not be

representative samplings of forest spatial and vertical variability.

This characteristic of the data set could pose a challenge for

systematical sampling of interior forest bird species in the

surrounding areas and is likely one of the contributing factors

for the consistently low species richness and weak correlations with

our metrics and models in the case of the interior forest guild.

Alternatively, forest edge habitats are relatively more exposed to

stressors such as wind damages and human disturbances. They can

exhibit higher vertical structure diversity than the interior forest

areas [83]. It may be that interior birds are less adapted to habitat

structure heterogeneity, and thus exhibit limited sensibility to

habitat structure metrics. Lastly the results could also be attributed

to the different ways members of avian guilds utilize habitat. Forest

edge and majority of woodland bird species tend to use a wide

range of habitat, and their degree of co-existence can vary in a

broad spectrum over space. In comparison the interior forest guild,

composed mostly of forest specialists that avoid other habitat types

[84] with overlapping ecological niches, are more likely to face

greater interspecific competition which limits species richness

despite diverse height structure across landscapes [85]. However

while the models see low association between height heterogeneity

metrics and interior forest guild richness, there are still likely more

specific vertical structure preferences associated with individual

bird species [30,86].

While four BPHMs highlighted in our study showed a good

ability to associate with species richness and to improve broad

scale avian richness modeling, it is reasonable to assume that

height-structured metrics have potential to be improved further

given the large number of options that remained unexplored. First,

the pixel-based segmentation method used in our study (support-

ing information S1) is one of the simplest algorithms to delineate

vertical patches and edges. The method is based on a set of global

threshold values while not considering neighboring heterogeneity

[87]. The process of setting up the threshold values and weight

matrix (for contrast metrics) inevitably involves somewhat

arbitrary decisions. More complex segmentation methods such

as edge and region-based methods can be performed readily with

commercial and open-source software packages that potentially

may produce more efficacious vertical patches and be less

arbitrary [88]. Secondly, there are many untested texture

measures [45]. The relationship between texture metrics and the

avian richness varies as the size of moving window changes [48].

More work is needed to understand the impact of those

methodological options for further improving species richness

models.

Conclusions

As active remote sensing technologies like radar and lidar

mature and become more widely available, data sets character-

izing vegetation vertical structure should become increasingly

useful for biodiversity applications and management. Our study

showed that vegetation height heterogeneity is associated with

habitat diversity and species richness for some forest avian guilds.

Thus, while recognizing the advances conveyed by incorporating

height information, there is an imperative to explore in more

depth the role of such heterogeneity. Furthermore we suggest not

just height, but vertical canopy heterogeneity, e.g. foliar profiles

and layering, will provide an even richer source of information

from which to develop new metrics and models [30,83].

Figure 4. Predictive ability of multivariable models. A, B, C, and D are the four habitat metric sets, and 4BPHMs are the four best predictive
height-structured metrics. Each of the top panels shows four linear models with whiskers giving 95% confidence interval of adjusted-r2 values. The
length of the bar represents the mean adjusted-r2 for these models. The lower panels show the explained variance of the comparable random forest
(RF) models. Uniquely the top bars at lower pannels are the results from the models employed all metrics from the four metric sets.
doi:10.1371/journal.pone.0103236.g004
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Incorporating such information will require data on not only

canopy height but canopy vertical structure, the latter of which is

unavailable at continental scales. Nonetheless, the metrics and

models used in our analyses provide a means to incorporate and

utilize three-dimensional habitat information, with the goal of

better understanding the controls on avian species richness and

habitat use.
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71. Guégan JF, Lek S, Oberdorff T (1998) Energy availability and habitat

heterogeneity predict global riverine fish diversity. Nature 391: 382–384.

doi:10.1038/34899.
72. Donovan TM, Flather CH (2002) Relationships among North American

Songbird Trends, Habitat Fragmentation, and Landscape Occupancy. Ecol
Appl 12: 364–374. doi:10.2307/3060948.

73. Griffiths GH, Lee J (2000) Landscape pattern and species richness; regional scale

analysis from remote sensing. Int J Remote Sens 21: 2685–2704. doi:10.1080/
01431160050110232.

74. Phillips LB, Hansen AJ, Flather CH (2008) Evaluating the species energy
relationship with the newest measures of ecosystem energy: NDVI versus

MODIS primary production. Remote Sens Environ 112: 4381–4392.
doi:10.1016/j.rse.2008.08.002.

75. Hurlbert AH, Haskell JP (2003) The Effect of Energy and Seasonality on Avian

Species Richness and Community Composition. Am Nat 161: 83–97.
doi:10.1086/345459.

76. Seto KC, Fleishman E, Fay JP, Betrus CJ (2004) Linking spatial patterns of bird
and butterfly species richness with Landsat TM derived NDVI. Int J Remote

Sens 25: 4309–4324. doi:10.1080/0143116042000192358.

77. Goetz SJ, Sun M, Zolkos S, Hansen A, Dubayah R (2014) The relative
importance of climate and vegetation properties on patterns of North American

breeding bird species richness. Environ Res Lett 9: 034013. doi:10.1088/1748-
9326/9/3/034013.

78. Fagan WE, Cantrell RS, Cosner C (1999) How habitat edges change species
interactions. Am Nat 153: 165–182. doi:10.1086/303162.

79. Morgan K, Freedman B (1985) Breeding Bird Communities in a Hardwood

Forest Succession in Nova Scotia Canada. Can Field Nat 100: 506–519.
80. North MP, Franklin JF, Carey AB, Forsman ED, Hamer T (1999) Forest Stand

Structure of the Northern Spotted Owl’s Foraging Habitat. For Sci 45: 520–527.
81. Griffith EH, Sauer JR, Royle JA (2010) Traffic Effects on Bird Counts on North

American Breeding Bird Survey Routes. The Auk 127: 387–393. doi:10.1525/

auk.2009.09056.
82. Keller CME, Scallan JT (1999) Potential Roadside Biases Due to Habitat

Changes along Breeding Bird Survey Routes. The Condor 101: 50–57.
doi:10.2307/1370445.

83. Whitehurst AS, Swatantran A, Blair JB, Hofton MA, Dubayah R (2013)
Characterization of Canopy Layering in Forested Ecosystems Using Full

Waveform Lidar. Remote Sens 5: 2014–2036. doi:10.3390/rs5042014.

84. Hagan JM, Vander Haegen WM, McKinley PS (1996) The Early Development
of Forest Fragmentation Effects on Birds. Conserv Biol 10: 188–202.

doi:10.1046/j.1523-1739.1996.10010188.x.
85. Cody ML (1974) Competition and the Structure of Bird Communities.

Princeton University Press.

86. Goetz SJ, Steinberg D, Betts MG, Holmes RT, Doran PJ, et al. (2010) Lidar
remote sensing variables predict breeding habitat of a Neotropical migrant bird.

Ecology 91: 1569–1576.
87. Schiewe J (2002) Segmentation of high-resolution remotely sensed data –

concepts, applications and problems. Symposium on Geospatial theory,
Processing and Applications.

88. Baatz M, Benz U, Dehghani S, Heynen M, Höltje A, et al. (2003) eCognition
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