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Resilience of Amazon forests emerges from plant
trait diversity
Boris Sakschewski1,2*, Werner von Bloh1,2, Alice Boit1,2, Lourens Poorter3, Marielos Peña-Claros3,
Jens Heinke1,2, Jasmin Joshi4 and Kirsten Thonicke1,2

Climate change threatens ecosystems worldwide, yet their
potential future resilience remains largely unquantified1. In
recent years many studies have shown that biodiversity,
and in particular functional diversity, can enhance ecosystem
resilience by providing a higher response diversity2–5. So far
these insights have been mostly neglected in large-scale
projections of ecosystem responses to climate change6. Here
we show that plant trait diversity, as a key component of
functional diversity, can have a strikingly positive e�ect on the
Amazon forests’ biomass under future climate change. Using
a terrestrial biogeochemical model that simulates diverse
forest communities on the basis of individual tree growth7,
we show that plant trait diversity may enable the Amazon
forests to adjust to new climate conditions via a process
of ecological sorting, protecting the Amazon’s carbon sink
function. Therefore, plant trait diversity, and biodiversity
in general, should be considered in large-scale ecosystem
projections and be included as an integral part of climate
change research and policy.

Ecological resilience has been defined as the ability of an
ecosystem to absorb environmental impacts and still provide the
goods and services of the initial state2,8. Thereby, the species
composition of the ecosystem may adjust to new conditions,
enabling species that had a lesser functional role to become
functionally dominant and vice versa9. The functional role of a
species is determined by its functional traits10, and the existence of
different roles implies a diversity of those traits in the community.
This functional diversity, as one aspect of biodiversity, is thought
to increase the response diversity of an ecosystem and, hence,
ecosystem resilience3. According to this idea, tropical forests should
be highly resilient ecosystems since they harbour a high plant trait
diversity11–14 and could therefore be highly resilient, potentially
ensuring the continued provisioning of their globally important
ecosystem services15 in the face of environmental pressures.

Current findings support this hypothesis5,16, based on
experimental or observational studies of forest plots covering
years to decades. To approach this hypothesis at regional and
centennial timescales, we used a new dynamic global vegetation
model (DGVM) that accounts for individual tree-based competition
and plant trait diversity, called LPJmL-FIT (Lund-Potsdam-Jena
managed Lands with Flexible Individual Traits7). LPJmL-FIT uses
plant trait diversity to better represent tropical forests’ biodiversity,
enabling biodiversity–ecosystem functioning relationships to
be investigated. In contrast to standard LPJmL and most other
DGVMs which simulate forests based on few average tree growth
strategies at the biome level in a simplistic competition scheme6,
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Figure 1 | Simulated rainforest biomass under climate change and
di�erent plant trait diversity. Annual biomass over 800 simulation years
for 400 ha of Ecuadorian rainforest (longitude: 77.75◦W; latitude: 1.25◦ S,
Supplementary Fig. 10) from three di�erent versions of the vegetation
model LPJmL under a severe climate change scenario (RCP 8.5 HadGEM2).
1T: annual temperature di�erence to the mean temperature of pre-impact
time (1971–2000) in K. For di�erent model versions see Methods.

LPJmL-FIT simulates individual competing trees which form a
diverse community of growth strategies7 as observed in the field.
More specifically, the model diversifies four key leaf traits and one
stem trait according to their globally observed ranges and trade-offs
(Methods and Supplementary Methods 1 and 2). The trade-offs are
in line with general ecological concepts of leaf and stem economics
found to explain a large part of the global variability of crucial plant
traits and how they affect tree growth and survival—and hence,
forest productivity and biomass17–20 (Methods and Supplementary
Method 3). Our modelling approach opens a multi-dimensional
trait space fromwhich parameter value combinations are chosen for
tree saplings at establishment. Initially, all parameter combinations
from this trait space are equally likely at each study site. During
tree growth and succession, competition dynamics under given
environmental conditions determine which trait values and which
combinations of these are successful and dominate the local tree
community. Therefore, a change of environmental conditions can
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Figure 2 | Climate-change-induced plant trait shifts lead to biomass recovery. Biomass-weighted plant trait distributions of the high-diversity model (see
Fig. 1 and Methods). a,c, Annual biomass contribution of individual trees assigned to classes of specific leaf area (SLA) and wood density (WD),
respectively. The black line shows the mean of the respective trait distribution. b,d, Mean biomass contribution of SLA classes (b) and WD classes (d)
for pre-, mid- and post-impact time (Methods). Black circles on the x-axes indicate the fixed trait values used in the low-diversity and standard
model (Methods).

lead to changes in competition dynamics, ultimately changing the
community composition of the simulated forest.

Here we investigated how plant trait diversity affects the
ecological resilience of rainforest under climate change at an
experimental site in Ecuador (Methods), for which LPJmL-FIT
successfully reproduced observed plant trait distributions7 stored
in the global plant trait database TRY21 (Supplementary Figs 1
and 2; Supplementary Note 1 and Supplementary Method 4).
We focused on biomass resilience as one of the most important
and measurable proxies for ecological resilience and defined
it as the change of biomass between two points in time. We
applied two climate change scenarios depicting intermediate and
severe greenhouse gas emissions over the twenty-first century
(representative concentration pathways22 (RCP) 4.5 and 8.5 applied
to the Global Circulation Model (GCM) HadGEM223; Methods,
Supplementary Notes 2 and 3). We focused on this range of climate
scenarios because of its high potential to produce climate-change-
induced impacts on the simulated forest. The objective was to
assess whether the higher plant trait diversity in LPJmL-FIT leads
to higher biomass resilience under climate change compared to
the traditional modelling approach. Therefore, we compared the
results of the default LPJmL-FIT model (hereafter high-diversity
model) with the results of two other LPJmL versions. One is a low-
diversity version of LPJmL-FIT (hereafter low-diversity model) and
the other is the standard version of LPJmL24 (hereafter standard
model). Both of these functionally reduced versions use the same

two distinct tropical tree types (deciduous and evergreen trees) as
plant functional types (PFT), but differ in the plant competition
scheme. Whereas the standard model simulates plant competition
between two average individuals of each PFT, the low-diversity
model uses the gap model approach of LPJmL-FIT (Supplementary
Method 1). This allows the effects of the competition schemes
and plant trait diversity on simulated biomass to be disentangled.
Distributions of leaf and stem traits over time are displayed for the
high-diversity model to provide a mechanistic explanation for the
influence of plant trait composition and height structure on the
development of forest biomass under climate change. To show that
the identified mechanisms apply to large spatial scales, we extended
the experiment to the Amazon basin.

At the experimental site in Ecuador, biomass recovered after
a climate-change-induced (RCP 8.5) decline in the high-diversity
model (Fig. 1; for results under RCP 4.5 see Supplementary
Fig. 3). From pre-impact time (1971–2000) to mid-impact time
(2071–2100), biomass decreased by 31% (from 455 to 314Mgha−1)
due to year-round higher mean air temperatures (+5.3 K), stronger
seasonality, a more severe dry season (Fig. 1 and Supplementary
Figs 4 and 5), and thus increased plant transpiration at the site
(Supplementary Fig. 6).While the climate remains in itsmid-impact
state (Methods), biomass recovered logistically and levelled off in
post-impact time (571–600 years after mid-impact time) at 5%
below pre-impact time (431Mgha−1, Fig. 1), meaning a biomass
resilience of 95% between these points in time. Under the same
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experimental settings, the low-diversity and the standard model
did not show biomass recovery (Fig. 1). The absence of biomass
resilience in these two model versions is consistent with other PFT-
based DGVMs which also simulated a potential risk for Amazon
biomass loss under a wide range of climate change scenarios of
comparable severity25. The qualitatively different behaviour of the
high-diversity model implies that plant trait diversity enabled the
future forest to recover its biomass under new climate states.

The pre-impact forest composition in the high-diversity model
resulted from ecological sorting under the pre-impact climate. This
community can be characterized by the underlying distributions of
its key traits (Fig. 2a,c), namely specific leaf area (SLA; leaf area
per unit leaf mass) and wood density (WD; wood mass per unit
wood volume), which were previously validated against field data7
(Supplementary Figs 1 and 2 and Supplementary Note 1). SLA as
a measure of leaf thickness or leaf density is closely connected to
phenology and growth efficiency, whereas WD is linked to height
growth andmortality7. The biomass-weighted distributions of these
traits were stable until climate change intensified over the twenty-
first century (Fig. 2). Under this stress, the abundance of canopy
trees above 30m was considerably reduced in mid-impact time,
whereas medium-sized trees accumulated (Fig. 3a). The model
agrees with real observations, where large exposed canopy trees
which contribute most to forest biomass26 are more sensitive to
drought than smaller trees27 as water stress reduces tree growth
and increases mortality28. Initially, the death of large trees increased
light in the understory, providing regeneration opportunities for
younger tree individuals whose traits were better suited to the new
climate conditions (Figs 2 and 3). As a result, the tree community
of the high-diversity model then showed a clear shift in its plant
trait composition (Fig. 2). This shift improved the carbon balance
and survival rates of individual trees, in return causing biomass and
height structure recovery.

The simulated increase in mean SLA of 11% (Fig. 2a,b) lowered
the community-level leaf construction costs per leaf area and,
via trade-offs, the leaf longevities as well as the photosynthetic
capacities per leaf area7. Producing cheaper leaves enabled newly
established trees to save carbon for, for example, height growth,
while at the same time reducing costs of leaf abscission under
drought events. This outweighed the negative effects of generally
higher leaf turnover due to lower leaf longevities and photosynthetic
capacities. Therefore, higher SLAs improved the carbon balance of
the new tree generation under warmer and drier conditions, which
increased tree survival rates. The simulated increase in mean WD
of 16% (Fig. 2c,d) was a response to increased drought-induced
tree mortality (Fig. 3b), resulting in a more open forest with less
competition for light. This environment enabled trees with higher
WDs, and thus lower height growth rates, to be competitive. At the
same time, higher WDs decreased drought-induced tree mortality7,
in return enhancing tree survival rates. In combination, the shifts
in SLA and WD increasingly contributed to the logistic recovery of
total forest biomass after mid-impact time (Figs 1 and 2). Because
trees are slow-growing and long-lived, there was a time lag of several
hundred years between the trait shifts (Fig. 2) on the one hand and
the 95% recovery of biomass (Fig. 1) and the 94% recovery of height
structure (Fig. 3) on the other.

Reducing plant trait diversity to two discrete tree types (PFT1
and PFT2, Methods), in contrast, disabled a gradual shift of plant
traits, preventing better suited trait combinations from becoming
established (Supplementary Figs 7 and 8). Therefore, the PFT-
based models (low-diversity and standard model) did not show
biomass recovery. Consistently, post-impact trees in the low-
diversity model failed to reach the same heights as in pre-impact
time (Supplementary Fig. 9). Being less suited for post-impact time
climate, the two distinct tree types performed less well, leading to
lower individual heights and total forest biomass.

0 10 20 30 40 50
0

5

10

15

20

25

30

Height class (m)

Bi
om

as
s 

(M
g 

ha
−1

 h
ei

gh
t-

cl
as

s−1
)

Tr
ee

 h
ei

gh
t (

m
)

Tr
ee

 h
ei

gh
t (

m
)

Tr
ee

 h
ei

gh
t (

m
)

Po
st

M
id

Pr
e

0
10

50

20
30
40

0
10

50

20
30
40

0
10

50

20
30
40

a

b

SLA (mm2 mg−1)
6 8 10 12 14

WD (g cm−3)
0.4 0.5 0.6 0.7 0.8

Pre-impact
Mid-impact
Post-impact

Figure 3 | Forest height structure recovers with biomass. a, Mean biomass
contribution of tree height classes for pre-, mid- and post-impact time
(Methods). b, Visualization of model output (also see Supplementary
Movie 1) showing 0.5 ha of the 400 ha of Ecuadorian rainforest in a
selected year during pre-, mid-, and post-impact time, respectively (top to
bottom). Di�erent crown (stem) colours denote di�erent SLA (WD) values
of individual trees. Crown size, stem diameter and tree height are
scaled by model output. Green squares indicate tree gaps covered by
herbaceous plants.

Extending the experiment to the Amazon basin (area shown in
Supplementary Fig. 10), we found that biomass resilience emerged
from plant trait diversity at large scales. As for the experimental site
in Ecuador, we used the percentage ratio of post- and pre-impact
biomass in each grid cell as the proxy for biomass resilience across
the Amazon basin (Methods). We defined forest areas as resilient
when they showed a biomass resilience of at least 50% per grid
cell. By comparing the size of resilient areas between the high- and
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Figure 4 | E�ect of plant trait diversity on biomass resilience of the
Amazon basin. a,b, Amazon area showing at least 50% biomass resilience
under RCP 4.5 (a) and RCP 8.5 (b). c,d, Significant contributions (Methods)
of the high-diversity and low-diversity model to biomass resilience within
the resilient area shown in a,b, respectively. Insignificant di�erences
between the two model versions are shown in grey.

low-diversity model, we quantified the influence of trait diversity in
the Amazon simulations. Under RCP 4.5 (RCP 8.5), 410 million ha
(63 million ha) of the 487 million ha Amazon forests were resilient
in at least one model in the grid cell-wise comparison (Fig. 4a,b and
Supplementary Fig. 11). 63% (33%) of this area showed significantly
higher biomass resilience (Methods) in the high-diversity model,
whereas 32% (59%) showed no significant difference between the
two model versions (Fig. 4c,d and Supplementary Figs 11 and 12).
In contrast, only 5% (8%) of the area showed significantly higher
biomass resilience in the low-diversity model. In those rare cases,
one PFT of the low-diversity model was by chance well-suited to
post-impact climate, showing a higher performance than a diverse
forest (Supplementary Discussion 1). Overall, our findings imply
that, independent of the climate scenario and regarding the total
Amazon basin, the high-diversity model is always more resilient,
even though the positive contribution of plant trait diversity to
biomass resilience is limited by climate change intensity.

With our simulations we provide first evidence that plant trait
diversity might act as an insurance against climate change im-
pacts across large spatio-temporal scales by maintaining biomass
resilience. Although about 1% of the Amazon tree species are found
to make up 50% of its biomass today29, we show here that this func-
tional dominance could shift in the future. This shift in functional
dominance is made possible by tree types which contribute little
to forest biomass under the current climate, but which are better
suited to novel climate conditions in the future. Considering the
possible plasticity of traitswithin the lifetime of plants in future stud-
ies might result in even faster shifts of functional dominance and
biomass recovery in forests, possibly enhancing biomass resilience.
So far trait-based DGVMs such as LPJmL-FIT or aDGVM30 are the
only process-based modelling tools available for scaling up, quan-
tifying and evaluating effects of functional diversity on ecosystem
functioning at large spatio-temporal scales. Therefore, our study
complements the existing body of knowledge on the importance of

functional diversity for ecosystem resilience11–13,31.We argue that the
relation of plant trait diversity and biomass resilience should be an
integral part of ecosystem projections evaluating the future status of
(tropical) forests as a carbon source or sink. Plant trait diversity, and
therefore biodiversity, should be recognized as an effective means
to mitigate climate change in management strategies, rather than
reducing it to a co-benefit of ecosystem conservation. Given that the
scientific community, policy makers, stakeholders and the general
public rely on results of DGVMs, especially for climate change
projections, our results may stimulate a new debate on the value of
biodiversity for climate change mitigation.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
LPJmL-FIT. LPJmL-FIT7 is a recent version of the dynamic global vegetation
model LPJmL (standard LPJmL) with enhanced plant trait diversity. Standard
LPJmL is a processed-based model with 9 plant functional types (PFTs) for natural
vegetation24,32–34, 12 crop functional types and managed grass32. Each PFT
parameter specifies the influence on physiology, carbon allocation and mortality
risk. Parameter values may differ between but never within a PFT in standard
LPJmL. LPJmL-FIT has the same model approach for physiology, but diversifies
selected parameters by allowing for the observed value range of those parameters7.
Physiological and morphological trade-offs found to explain a large part of the
variability of global plant traits and connected plant performances17,19 ensure
realistic parameter combinations and are based on statistical analyses of plant trait
data from the TRY data base21. The light and water competition scheme in
LPJmL-FIT follows the gap model approach of LPJ-GUESS35 and simulates
individual trees. LPJmL-FIT assigns those trees individual parameter combinations
by diversifying the plant traits SLA (leaf area per unit leaf mass, mm2 mg−1), LL
(average lifespan of leaves, in months), the maximum carboxylation rate of the
RUBISCO enzyme per leaf area at 25 ◦C (Vcmaxarea25◦ , µmol CO2 m−2 s−1), a model
internal parameter accounting for the level of water stress at which leaf abscission
occurs (wscalmin), and wood density (WD, wood dry mass per unit of green
volume, g cm−3). For the maximum range of each trait in question please see
Supplementary Table 1. The trait regression functions in LPJmL-FIT were
described in the Supplementary Information of Sakschewski et al.7 (formulae 1–5).

Simulation set-up and data analysis. Vegetation was simulated with three versions
of the DGVM LPJmL: standard LPJmL with two tropical tree PFTs24; LPJmL-FIT
with high trait diversity of tropical trees7; and LPJmL-FIT with low trait diversity of
tropical trees parameterized as the two tropical PFTs of standard LPJmL (those two
PFTs are called ‘tropical broadleaved evergreen tree’ and ‘tropical broadleaved
rain-green tree’, and their main difference in parameterization is the phenology
strategy24). Distributions of leaf and stem traits over time (Figs 2 and 3 and
Supplementary Figs 7–9) refer to the two versions of LPJmL-FIT and are
represented by the individual tree traits SLA, WD and tree height (in m), which are
divided into distinct classes and weighted by the specific biomass contribution of
each class in each year. Simulations are carried out for 400 ha of an experimental
site in the Ecuadorian rainforest (latitude 1.25◦ S, longitude 77.75◦W) where
LPJmL-FIT had been previously validated against TRY data7, and for the whole
Amazon basin. The Amazon basin36 is simulated on 1946 0.5◦ grid cells. For each of
those grid cells (roughly 2,500 km2 in size), 1 ha of forest is simulated as a
representative area, to stay within computational capabilities. All climate input data
refers to the Global Circulation Model (GCM) HadGEM223 following a medium
and high (RCP 4.5, RCP 8.5; ref. 22) climate change scenario from the 5th IPCC
Assessment Report (IPCC AR5; ref. 37; Supplementary Method 5). Under RCP 4.5
(RCP 8.5) the Amazon basin shows an increase of mean annual temperature of
3.26K (6.24K) and a decrease of mean annual precipitation of 2.95% (10.37%)
between pre- and mid-impact time (Supplementary Fig. 13). For all DGVM
experiments the atmospheric CO2 level was kept constant at values of the year 1901
(291 ppm) to quantify solely the effects of plant trait diversity on biomass
development under climate change (Supplementary Method 6). Simulations are
carried out for the time period 1900–2100, followed by 600 additional simulation
years. From the year 2100 onwards the DGVM is forced with the GCM climate data
of the time span 2071–2100 (mid-impact time) shuffled for 600 additional
simulation years.

Output weighted by biomass.We investigate the temporal development of
aboveground forest biomass because it is a widely used indicator of ecosystem

functioning38. Forest phenotype composition and forest structure over time are
represented by individual tree traits, namely SLA, WD and tree height (in m),
which are divided into distinct classes and weighted by the specific biomass
contribution of each class in each year.

Overlap of biomass-weighted trait distributions is calculated as:

overlap=
∑n

i=1

(
classpre,i+classpost,i−

∣∣classpre,i−classpost,i∣∣)∑n
i=1

(
classpre,i+classpost,i

) (1)

with
0≤overlap≤1

where n is the number of trait classes, and classpre and classpost represent the
biomass contribution of the biomass-weighted trait classes for the pre- and
post-impact time, respectively.

Resilience. Percentage biomass resilience is defined as:

resilience=
biomasspost
biomasspre

×100 (2)

where biomasspost and biomasspre are the mean biomass of post- and pre-impact
time, respectively. Data points are defined to have a significant difference in
biomass resilience (Supplementary Fig. 11, black dots) when their corresponding
standard deviation intervals [resmin, resmax] do not intersect with the angle bisection
(see Supplementary Fig. 11), with resmin and resmax defined as:

resmin=
biomasspost−σbiomasspost
biomasspre+σbiomasspre

(3)

resmax=
biomasspost+σbiomasspost
biomasspre−σbiomasspre

(4)

where biomasspre/post and σbiomasspre/post are the mean and standard deviation of
the biomass of pre- and post-impact time, respectively. For grid cells in which this
criterion is not fulfilled, the effect of plant trait diversity on resilience in the two
model versions is not unambiguously verifiable (Supplementary Fig. 11, grey dots).
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