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Assessing the observed impact of anthropogenic
climate change
Gerrit Hansen1* and Dáithí Stone2

Impacts of recent regional changes in climate on natural and human systems are documented across the globe, yet studies
explicitly linking these observations to anthropogenic forcing of the climate are scarce. Here we provide a systematic
assessment of the role of anthropogenic climate change for the range of impacts of regional climate trends reported in the
IPCC’s Fifth Assessment Report. We find that almost two-thirds of the impacts related to atmospheric and ocean temperature
can be confidently attributed to anthropogenic forcing. In contrast, evidence connecting changes in precipitation and their
respective impacts to human influence is still weak. Moreover, anthropogenic climate change has been a major influence for
approximately three-quarters of the impacts observed on continental scales. Hence the e�ects of anthropogenic emissions
can now be discerned not only globally, but also at more regional and local scales for a variety of natural and human systems.

A lthough evidence is accumulating that anthropogenic
emissions are behind recent observed climate trends and
also that recent climate trends have impacted natural,

human and managed systems, the full causal chain has been
examined for only a few isolated observed impacts (for example,
refs 1–3) or at a generic aggregate level4,5. The Intergovernmental
Panel on Climate Change’s Fifth Assessment Report (IPCC AR5)
investigates the detection and attribution of observed impacts to
recent changes in climate (hereinafter ‘impact attribution’) in the
contribution of Working Group II (WGII; ref. 6) and the detection
and attribution of observed changes in global and regional climate
to anthropogenic forcing (‘climate attribution’ hereinafter) in the
contribution ofWorking Group I (WGI; ref. 7), but does not provide
an assessment of the relevance of one for the other.

Our analysis fills this gap by assessing the role of anthropogenic
forcing in the climate trends that are reported to cause the impacts
specified in the IPCC WGII AR5 (ref. 6) individually, based on a
novelmethod8. To assess the confidence in the role of anthropogenic
forcing in observed changes in climate for specific regions, seasons,
periods and climate variables, we apply an algorithm which
evaluates the adequacy of observational and climate model data
products and investigates the degree to which anthropogenic
emissions are a necessary condition for climate model simulations
to reproduce observed climate trends (Fig. 1, see also Methods).

Results are expressed in confidence levels corresponding to the
IPCC confidence metric9, with the addition of a ‘no confidence’
level for cases where the historic climate variations have not been
monitored10, no anthropogenic signal is found in the modelled
responses, or the observational data products do not reproduce
the direction of change stated in the IPCC AR5. In line with the
IPCC WGII AR5 assessment, confidence is expressed for either
a major role or at least a minor role of anthropogenic forcing
in the observed climate trend. Finally, the impact attribution and
climate attribution assessments are combined by a simpleminimum
approach to provide a multi-step assessment10 of confidence in the
role of anthropogenic climate change in observed climate-related
effects (‘combined attribution’ hereinafter).

Here we provide a systematic assessment for a large range of
impacts. Given the varying levels of aggregation of the impacts listed
in the AR5, and that our data sources are optimized for global rather
than regional application, our approach will not reach the level of
accuracy that is possible with a detailed analysis for some individual
assessments. Nevertheless, the algorithm considers adequacy and
quality of observational data products in addition to examining
the agreement among multiple observational estimates and climate
models, a source of uncertainty that is usually not included in
existing studies.

The original list of impacts consists of all regional assessments
from Tables 18.5–18.9 as well as global statements taken from
Table 18.11 in the chapter on ‘Detection and attribution of
observed impacts’6 in IPCCWGII AR5 (hereinafter AR5). Selection
restrictions eliminate 19 assessments, for instance whose regional
extent is unclear. The analysis is limited to impacts driven by
long-term temperature changes over land and in the ocean,
including ocean temperature as a proxy for sea ice, and changes in
precipitation. Splitting multiple-driver assessments into individual
assessments, the resulting list of impacts comprises 118 assessments
from all regions and across natural and human systems (see
Supplementary Tables 1 and 2 for details). Seasonal and spatial
characteristics of the relevant climate trends are defined based
on the tables, supporting text, and referenced materials in the
AR5 (ref. 6).

In most cases, the AR5 states the direction of the climate trend
causing the response in the respective impact system (for example,
‘warming’, ‘decline in sea ice’). Climate responses to anthropogenic
forcing donot necessarily result inmonotonic trends in the observed
record (for example, ref. 11); however, to correspond to the impact
statement, the observational and model data need to reproduce the
direction of the stated trend. Our analysis explicitly considers the
potential role of modes of long-term autonomous variability of the
climate system, such as the Pacific Decadal Oscillation, in statistical
analysis of the trends, through the consideration of multiple climate
model simulations. Impacts are intended to be generically relevant
to the past few decades; here we use the 1971–2010 period for all

© 2016 Macmillan Publishers Limited. All rights reserved

1Potsdam Institute for Climate Impact Research, PO Box 60 12 03, D-14412 Potsdam, Germany. 2Lawrence Berkeley National Laboratory, 1 Cyclotron Road,
Mail Stop 50F-1650, Berkeley, California 94720, USA. *e-mail: hansen@pik-potsdam.de

532 NATURE CLIMATE CHANGE | VOL 6 | MAY 2016 | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate2896
mailto:hansen@pik-potsdam.de
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2896 ARTICLES
IPCC WGII AR5 observed impacts list

Selection and spatial specification

Climate model
simulations

Observational
data

Regression analysis

Impact
attribution
confidence

Com
bined attribution confidence

Climate
attribution
confidence

M
apping algorithm

 cm  = f(c ⋅ Π
i )γ

Data sources

Monitoring density

Region size

Physical understanding

Direction match

Human signal match

Magnitude human

Magnitude natural

Variability match

Major role condition

dense ∈ [0; 1]γ

sign ∈ [0; 1]γ

phys ∈ [0.8; 1]γ

size ∈ [0.5; 1]γ

ant ∈ [0.6; 1]γ

signal ∈ [0; 1]γ

major ∈ [0; 1]γ

resid ∈ [0.5; 1]γ

nat ∈ [0.9; 1]γ

c = √NobsNmod

Figure 1 | Schematic showing the approach of this analysis. Impact attribution information from IPCC WGII AR5 (grey boxes) is combined with individual
climate attribution assessments for the respective region, season and climate variable to assess the observed impact of anthropogenic climate change
(combined attribution confidence). The analysis follows a new method8, explicitly accounting for individual steps contributing to confidence in climate
attribution (see also Methods; information on climate model simulations is summarized in Supplementary Table 3). The multiplier ranges for each step γi
are also listed.
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Figure 2 | Average penalties arising from the nine individual steps of the confidence algorithm for the list of impacts analysed. a, Average contribution to
the reduction of the confidence metric for precipitation, averaged across all assessments, and for temperature, with short horizontal lines indicating the
potential maximum penalty for the respective step. b, Comparison of very small and very large regions. Note that the ‘major’ step does not translate
directly into confidence, but also determines the role attribute.

assessments. A minimum of two decades is probably required for
detectable trends in global mean temperature due to anthropogenic
forcing12, whereas three to eight decades may be required at more
local spatial scales, depending on location13. Similarly, the detection
of anthropogenic influence on regional precipitation trends is
challenging14. For the large majority of examined cases, climate
attribution results were insensitive to changes in the period.

Determinants of confidence in climate attribution
The algorithm for estimating the confidence in climate attribution
starts with a value depending on the number of available data
sources, followed by nine evaluation steps, three of which can
impose a no confidence result (see Fig. 1 and Methods). All
but one of the 17 no confidence assessments result exclusively
from the requirement that observed trends in most of the global
observational data sets match the direction of change stated in the
IPCC assessment (‘sign’ step). One reason for this discrepancymight
be a mismatch of global observational data sets used here with
other, more locally specialized sources of climate trend information
underlying the initial statement. Another reason might be strong
sensitivity to the period examined for certain cases, such as
regions with strong natural climate variability. Figure 2 shows the
average penalties arising from each step (see also Supplementary

Information I and II). The ‘sign’ step stands out as the single most
dominant reason for the reduction in attribution confidence for
impacts related to precipitation, and for very small regions.

Insufficient observational monitoring density poses a main limit
on confidence (see Fig. 2), an effect that is most pronounced for
impacts related to precipitation. Note that, because of the smaller
decorrelation scale, the network densitymust be considerably higher
for precipitation than for temperature8. Confidence in attributing
precipitation trends is generally ‘low’, with the majority of the
respective assessments not yielding a consistent signal across the
observational data sets, and 14 out of 16 assessments resulting in
lower than ‘medium’ confidence. Region size also emerges as a
decisive factor influencing climate attribution confidence, with very
small regions showing much lower than average confidence ratings.
In contrast, ‘very high confidence’ in climate attribution is restricted
to regions that cover at least twomillion km2 and exclusively related
to impacts of temperature.

The possibility of comparing the results for the 118 assessments
here against results from other studies and assessments7,15 is limited
because of differences in period, season and regional extent covered,
and because of our focus on long-term regionally averaged trends,
rather than more complicated signals. A comparison performed for
a variety of continental and African regions considered in the IPCC
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Figure 3 | Confidence level distribution for 118 assessments. Comparison of impact (a) and climate (b) attribution confidence distribution, for
precipitation, atmospheric near-surface and ocean surface temperature. Vertical axis indicates the number of assessments in the respective confidence
bin; shades of grey indicate the corresponding climate variable, that is, precipitation (16 values), and atmospheric (74 values) and ocean (28 values)
surface temperatures.

AR5 finds that results of the algorithm and the IPCC assessments are
broadly consistent8. Belowwe discuss two specific cases which point
to limitations and advantages of our approach. First, the observed
decline inAustral winter (wet season) precipitation in theAustralian
southwest has recently been linked to anthropogenic greenhouse
gas emissions and stratospheric ozone depletion16. Our analysis
finds ‘high confidence’ in a minor role of anthropogenic forcing in
observed annual precipitation decline for the same region. In line
with the exceptional conditions applying in that part of Australia17,
this assessment constitutes the highest confidence finding related
to precipitation in our analysis. In contrast, our analysis estimates
‘no confidence’ in the attribution of the recent changes in rainfall in
the Sahel to anthropogenic forcing of the climate system, whereas
evidence of a role of anthropogenic aerosol precursor emissions
and ocean warming related to greenhouse gas emissions has been
reported for both the extreme drying period up to the 1980s and the
recent recovery of the rains in more bespoke analysis18,19. Our no
confidence assessment results primarily from the lack of a consistent
trend over the period 1971–2010 in the data sets, which can be
partly explained by the pattern of change: a drying trend from the
1950s through the 1980s, with a partial recovery since the 1990s.
Although our no confidence result could therefore be considered an
artefact due to the ‘trend’ condition inherited fromWGII, repeating
the analysis omitting the ‘sign’ step, and also for a more recent
and an earlier longer period, equally resulted in no more than low
confidence, indicating that climate attribution confidence is limited
by additional factors.

Comparing impact and climate attribution
On average, the climate attribution assessment results are more
confident than the corresponding impact attribution assessments
(Fig. 3). The climate attribution assessment spans the full range of
confidence, whereas the impact attribution assessment is centred at
medium values. On the climate side, a systematic analysis is per-
formed without an a priori expectation of the actual anthropogenic
signal. In contrast, the initial impact database, by design, looks at
areas where impacts would be expected, excludes negatives and
reports few statements of ‘very low confidence’, so the distinction in
average confidence is actually understated by these results. Impact
attribution confidence is fairly evenly spread for the various climate
drivers, whereas climate attribution confidence is differentiated for
the climate variables with lower confidence for precipitation.

Although some evidence of a link emerges from tentative
quantitative analysis (see Supplementary Information III for more
detail), no strong direct relationship exists between the level of
confidence in climate attribution and impact attribution. As shown
in Fig. 4, climate assessments that could not be attributed to
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Figure 4 | Distribution of confidence levels for impact attribution
(horizontal axis) and climate attribution (vertical axis) for the 118
impact–climate trend pairs analysed. Size of circles indicates the number
of assessments in the respective bin.

anthropogenic forcing at all, include the full range of confidence
levels on the impact side. Similarly, many climate assessments that
show high or very high confidence in a signal of anthropogenic
forcing in turn lack substantial confidence in the attribution of
corresponding observed impacts. Thus evidence for one of the steps
in the attribution chain is necessary, but not sufficient for combined
attribution. No direct relationship exists between the minor/major
role assignments either (see Supplementary Information III); still,
for almost half of the assessments examined (57 values), a ‘major
role’ is assigned for both impact and climate attribution, and
consequently in the combined attribution assessment; for 53 of these
assessments, confidence is medium or higher for both steps.

Combined attribution: emissions to impacts
Confidence in combined attribution and the combined role attribute
are estimated by a simple minimum approach: the respective lower
value is assigned for both (for example, low andmedium confidence
result in low confidence, minor and major role result in minor
role). Results are illustrated in Fig. 5 through the summary map
format adopted by IPCC WGII AR5 (ref. 20). Impacts where the
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Figure 5 | Observed impacts of anthropogenic climate change for the period 1971–2010. Developed from Figure SPM.2A in IPCC WGII AR5 (ref. 20),
which shows confidence in attributing observed impacts to regional climate trends, irrespective of the cause for those climate trends. Blue symbols indicate
impacts where the observed climate trend has been attributed to anthropogenic forcing with at least medium confidence in a major or minor role. The
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associated climate attribution step yields at leastmediumconfidence
are highlighted in colour.

The cryosphere and marine systems feature the highest share
of impact cases with at least medium confidence of a major
role of anthropogenic emissions. In contrast, impacts on the
livelihoods of Arctic indigenous peoples are the only such instance
within human and managed systems. Still, combined attribution
confidence is medium for nine of twenty-three temperature-related
impacts observed in human systems, albeit the role is usually
assessed as being minor. Insufficient monitoring density and a
high share of reported impacts driven by precipitation contribute
to the low share of attributable impacts in Africa (see also
Supplementary Information I and Supplementary Figs 1 and 2).
Overall, approximately 56% of the observed impacts are attributed
to anthropogenic forcing, with at least medium confidence in either

a minor or major role. This ratio rises to approximately 65% when
only evaluating impacts related to temperature.

The AR5 highlights impacts that occur on a continental scale
(shown in boxes in Fig. 5)—that is, the impact has been observed
for the majority of the potentially affected area of the respective
world region6. Of those continental-scale impacts with a major
role of climate change in the observed changes, 76% also have
a major role assigned for climate attribution, with 67% yielding
high or very high confidence; for only two values was there
no confidence in an influence of anthropogenic forcing. These
relationships highlight the influence of region size on confidence in
climate attribution related to temperature. As can be seen in Fig. 6,
combined confidence in attribution of impacts to anthropogenic
forcing is associated with the spatial extent of the affected area.
Approximately 75%of the impacts that occur over very large areas of
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Figure 6 | Normalized distributions of region sizes over attribution
confidence levels for the combined assessment and the individual steps.
Bars indicate the share of assessments within the same region size
category that falls into the respective confidence level bin. Regions are
grouped into three categories, up to half a million square kilometre
(left bar), 0.5–7.5 million km2 (centre bar), and larger than 7.5 million km2

(right bar). Distributions are shown for impact attribution (a), climate
attribution (b) and combined attribution (c).

more than 7.5 million km2 are attributed to anthropogenic forcing
with medium or high confidence. In contrast, approximately half of
the impacts occurring in regions smaller than 0.5 million km2 have
no or very low confidence for the combined assessment.

Strengths and limitations
Previous analyses linking observed impacts to climate change have
been generic in nature, addressing whether there is an influence of
anthropogenic warming on impacts globally, without an inference
being possible to individual impacts. Our analysis is the first to
bridge these gaps for a large range of impacts, by assessing the role
of anthropogenic emissions in each impact individually, including
impacts related to trends in precipitation and sea ice. Examination of
evidence along the full causal chain between emissions and specific
impacts provides observational support for our understanding of
how a variety of systems around the world are being impacted
by anthropogenic emissions, contributing to a more nuanced
consideration of adaptation options.

By considering uncertainty in observational monitoring
quantitatively, the climate attribution algorithm goes beyond most

contemporary climate change detection and attribution studies (see
ref. 7). The use of standard global (both observational- and climate-
model-based) data sources facilitates consistency and transparency
of the analysis across regions. However, it also neglects other,
regional sources of information that may be at least as relevant,
such as national observationally based data products that could
be considered in more bespoke analysis. Both fundamental and
technical aspects of the construction and implementation of
global numerical climate models limit their ability to accurately
represent the climate system at some of the regional and local scales
investigated here21; the algorithm recognizes this limitation, for
instance in tuning down confidence for smaller regions and for
precipitation. Although the formulation of the steps of the algorithm
and their resultant confidence factors is fairly straightforward for
some steps, the formulation for other steps and the way the
numerical factors are converted to a qualitative scale are more
dependent on expert judgement. Steps for which the constraints on
their formulation are tighter tend to dominate in determining the
final confidence assessment.

This analysis draws from the list of impacts presented in
AR5. Most of the investigations informing the AR5 assessment
were quantitative, but the development of that list was based
on qualitative assessment and included a wide range of sources.
That approach allowed for the inclusion of impact categories
that were not formally assessed in earlier reports, consistent with
recommendations in the literature22. However it is subject to
issues with expert elicitation, such as limited transparency and the
difficulty of calibration. The aggregation level of the listed impacts
varies considerably between and within individual regions and
sectors; the results should therefore not be misread as a statistical
analysis of a representative sample of all impacts. Another important
assumption was that a certain level of confidence for the combined
effect of two climate variables for an impact also applies to the effect
of each climate variable individually.

Key findings and implications
This analysis provides the missing link between the observed
effects of recent climate change reported in AR5 and the role
of anthropogenic forcing of the climate system for the climate
trends related to these observations. Although it does not comprise
detailed, bespoke analyses for each observed impact, it nevertheless
provides a robust first assessment of the role of anthropogenic
climate change in a wide range of climate-related effects that have
been observed around the world. Results confirm earlier statements
that anthropogenic climate change is causing discernible impacts
on natural systems worldwide, extending the analysis to individual
natural systems and to some human and managed systems.

Our results clearly link a large majority of the continental-scale,
major-role impact attribution assessments highlighted in the AR5 to
anthropogenic forcing. However, they also demonstrate that neither
strong evidence for a specific instance of climate attribution nor
strong evidence for impact attribution by themselves necessarily
translate into strong evidence for emissions-to-impacts attribution.
Most prominently, whereas AR5 documents a substantial number of
significant impacts of long-term trends in precipitation, our analysis
indicates that current evidence is often insufficient to link these
impacts to anthropogenic climate change.

Despite the benefits of a full examination of the role of
anthropogenic emissions in observed impacts, the possibility
of performing this investigation is still limited by the high
requirements concerning long-term, sustained monitoring of the
impact system, the high demand on observationally based climate
products and on models of both the climate and the various impact
systems. These factors in turn favour more confident emissions-
to-impacts attribution assessments for some systems and regions
than for others. Consequently, as noted for impact attribution in the
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context of the global distribution of observations23, the absence of
observational evidence for an influence of anthropogenic climate
change does not imply that impacts are not occurring. Initiating
or recovering observational data for poorly monitored systems and
locations constitutes a research priority. Given that confidence in
impact attribution is the limiting factor for many cases examined
here, the greatest benefit would be gained with an emphasis on
monitoring and understanding how human, managed and natural
systems respond to climate change.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
In this contribution we assess confidence in attributing observed impacts of
regional climate trends to anthropogenic forcing of the climate systems. We analyse
regionally specific climate trends that have been reported to cause impacts as
specified in IPCCWGII AR5 (ref. 6). The analysis is based on a novel method
assessing the role of anthropogenic forcing in observed changes in climate for
specific regions, periods, seasons and climate variables8. A confidence algorithm
assigns numerical values to a confidence metric as a result of a series of evaluations,
expressed as factors on a scale from 0 to 1, that represent the adequacy of the input
data sources and the agreement between observed and expected climates. The
numerical values are then mapped onto the IPCC confidence metric9 and
compared with the corresponding confidence levels for impact attribution. Finally,
the impact and the climate attribution steps are combined in a tentative multi-step
assessment of the role of anthropogenic forcing for the impact observed. The full
analysis comprises the following stages:
• Extracting impact statements from IPCCWGII AR5 Tables 18.5–9 and 18.11;
• Application of selection criteria;
• Identification of the relevant climate variables and seasons for each impact;
• Specification of spatial characteristics for each impact;
• Extraction of corresponding spatially explicit climate data (gridded

observational data and climate model output from simulations representing
historic and hypothetical ‘natural’ climates) for the period, season, area and
climate variable specified;

• Five steps evaluating the adequacy of the observational and climate
model input

• Five steps evaluating the agreement between observed changes and our
expectations based on process-based modelling, conducted via a linear
regression analysis of the observed data sets against modelled climate
responses for the specified climate variable, region, season and period;

• Mapping of the numerical confidence metric arising from multiplying the
individual step outcomes onto the qualitative confidence levels; and

• Combination of the impact attribution and climate attribution steps into a
multi-step attribution analysis assessing the impact of anthropogenic
climate change.

Selection restrictions, spatial characteristics and default period. Available data
sources do not allow for easy examination of parameters such as ocean
acidification, changes in climate variability and sea-level rise. Consequently, the
analysis was restricted to assessments relating to changes in atmospheric
temperature, average precipitation, and ocean surface temperature, the latter also
serving as a proxy for sea-ice changes in some cases. Selection criteria further
included a clearly specified direction of the change in climate (for example,
‘warming’, whereas ‘changing rainfall patterns’ would be excluded) and regional
specifications that could be resolved based on statements in IPCC AR5WGII
(ref. 6) and references therein. When more than one climate driver was stated,
confidence was assumed to apply to the impact of each driver individually, and the
assessment was split into several assessments that were examined individually. The
original list of impacts taken from the IPCC AR5 (Tables 18.5-18.9 and 18.11 in
ref. 6) comprises 123 assessments, 25 of them representing impacts influenced by
more than one climate driver. Selection restrictions eliminated 19 assessments,
resulting in a list of 118 individual impacts after splitting the 13 remaining
multiple-driver assessments (Supplementary Table 1).

The areas that correspond to an impact are defined by a combination of
land–sea boundaries, administrative boundaries, and polygon shapes based on a
0.5◦ longitude–latitude grid, roughly sketching prominent geographical features
where appropriate (see maps in Supplementary Table 2).

We use 1971–2010 as a default period. To test the sensitivity of our results to
changes in the period examined, and the respective start and end dates, the climate
attribution confidence algorithm was run again using the 1981–2010 and
1971–2000 periods, and for some individual periods that were explicitly stated. The
difference between the 40-year period and the 30-year period is small for the
attribution of at least a minor role (detection assessment), but becomes larger for
the ‘attribution of a major role’ assessment. As the major role test is based on
comparison of the size of the trend against the size of the year-to-year variability,
such a result would be expected. With few exceptions, deviation from the default
period leads to changes in confidence by one level at most, while the role of
anthropogenic forcing stays unchanged. For about half of the tested cases, the
outcome of the assessment was not changed at all. Given the survey nature of this
assessment, the default period approach can therefore be considered to
be robust.

The climate attribution algorithm. The climate attribution algorithm assigns a
starting value to a metric c that depends on the number of data sources available
for the climate variable in question (Nmod: number of models with available
simulations, and Nobs: number of observational data products), with
c=γsource=

√
Nmod×Nobs. This value is then left unchanged or reduced based on a

series of evaluations, multiplying c by a factor γ ≤1 for each step, with maximum
penalties varying between 10 and 100%.

cm=c×γdensity×γsize×γphysics×γsign×γsignal×γant×γnat×γresid×γmajor

The resulting value cm is then converted into confidence levels ranging from ‘no
confidence’ to ‘very high confidence’ via a mapping algorithm. Below, we briefly
describe the individual steps, first for the assessment of data sources, then for the
comparison between observed and modelled outcomes (regression step). For the
detailed formulation and numerical expressions underlying each step, please refer
to ref. 8.

Assessment of data sources (evidence). Data sources c. The observational and
prediction products comprise the ultimate sources of evidence; the number of such
products is thus the starting point for the confidence algorithm. The number of
gridded observational data products used in this analysis is three for air
temperature [CRU TS 3.22 (ref. 24); GISTEMP v6 (250 km land; ref. 25); UDel
v3.01 (ref. 26)], four for precipitation [CRU TS 3.22 (ref. 24); GPCC v6 (ref. 27);
NOAA PRECL (1◦ × 1◦; ref. 28); UDel v3.01 (ref. 26)] and two for sea surface
temperature [HadISST1 (ref. 29); Hurrell30]. Climate model simulations used in the
analyses are taken from the CMIP5 climate model database31 and comprise inputs
from the seven climate models used in the IPCC AR5 which have multiple
simulations for both ‘historical’ and ‘historicalNat’ scenarios (see Supplementary
Table 3 for details of the climate models and their simulations used in
the analyses).

γdensity. The adequacy of measurement density γdensity is estimated based on the
fraction of variance in the time series for a regional climate variable that is
accounted for by the given measurement density, building on the method
employed in ref. 32. We assume that the differences between neighbouring stations
can be represented by random noise that is correlated in space as an exponential
function of distance. Then, on a higher resolution grid, the fraction of the
variability of each grid cell accounted for by the available active stations within a
decorrelation radius of the grid cell can be estimated. The regional fractional
variance accounted for by the station coverage is provided by the integral of the
unaccounted variance on the high-resolution grid. The station density information
from the CRU TS 3.22 (ref. 24) product are used for land temperature and
precipitation and the measurement density information from the HadSST3.1.1.0
(refs 33,34) data set for sea surface temperature. Maximum penalty for this step
is 100%.

γsize. Owing to the properties of dynamical climate models (limited spatial
resolution, limited understanding of smaller scale characteristics) there is a priori
less confidence in climate model results for smaller regions. Similarly, the accuracy
of observational products becomes more sensitive to the interpolation method
used at scales around, or smaller than, the station separation.

To account for this, the confidence metric is reduced by an amount related to
the region’s size. The functional form is chosen in a way such that γsize∼1 at
continental scales35 and such that γsize∼0.5 at scales around the smallest dynamical
resolution of the current generation of climate models (about 42 times larger than
the grid cell size36). The maximum penalty of 50% acknowledges that the modelling
and observational products may retain some skill even if they are not fully
resolving processes and features, and that size-related inaccuracies are also likely to
emerge as penalties in other tests.

γphysics. The basic physical processes behind many aspects of the climate are both
well understood and mostly resolved in dynamical models, but this is not the case
for some variables. For instance, the microphysical processes that generate
precipitation are not simulated in climate models, but rather approximated by
slightly heuristic algorithms, topographic features important for initiating
precipitation are smoothed, and relatively minor shifts in large-scale circulation
patterns can have important influences on where precipitation falls. In recognition
of this, the confidence metric is reduced by 20% for precipitation.

γsign. In the IPCCWGII assessment6, impacts are reported to have been caused by a
specific observed climate trend. Therefore, in addition to the steps described in
ref. 8, it is necessary to confirm that this trend also exists in the observational data
sets used in the climate attribution analysis. Reasons for discrepancies include
ambiguity over time period, regional or seasonal definitions or disagreement
between local and global data sets. This step yields zero should at least half of
the observation data sets fail to reproduce the direction of change stated in
the AR5.

Comparison between data sources (agreement). The analysis method behind
much research carried out in recent years regarding the detection and
attribution of climate change to anthropogenic forcing applies a linear regression

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate2896
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2896 ARTICLES
model to compare output from climate model simulations with observed
climate changes7,37.

If Xobs represents variations in an observed regional climate variable as a
function of time, Xant represents the expected climate response to anthropogenic
external drivers based on climate model simulations and Xnat represents the
expected climate response to natural external drivers, then the regression equation
can be written as37:

Xobs=(bant×Xant)+(bnat×Xnat)+R

Here R is the residual of the regression and bant and bnat are the regression
coefficients estimated such that the variance of R is minimized. The regression
coefficients and their uncertainty due to the limited sampling of the observed
climate response against the noise of natural internally generated variability of the
climate system are estimated using the code available at
http://www.csag.uct.ac.za/~daithi/idl_lib/detect. Traditionally, a response to
anthropogenic forcing is considered to be detected if bant is positive and inconsistent
with zero at some level of statistical significance given this sampling uncertainty.

The regression model is estimated separately for each region, and for each
combination of the Nmod=7 climate models with available simulations and the Nobs

observational products—that is, for a given region, 21 regression models for air
temperature over land, 14 for sea surface temperature and 28 for precipitation.
Performing these analyses separately ensures that consideration of the diversity of
results across input data sources is an important component of the overall
assessment. In the interests of both data compression and of focusing on longer
timescale variations, five-year non-running averages of these data are examined.
For each of the models with available simulations for estimating the response
signals, the sampling noise is reduced by averaging across the 3–10 simulations
available in each case (see Supplementary Table 3). The translation of these
regression analyses into penalization of the confidence metric is summarized
below. Overall, the penalties emerge from a combination of the fractions of the
Nmod×Nobs regression coefficients that fulfil or fail the test criteria of the respective
step and a term that expresses the weight of that step.

γsignal. This test addresses the question of whether the fingerprint of the
anthropogenic response expected by the climate models is found in the
observational data. In terms of the regression, the question is whether bant>0. This
step is the critical test for a climate change detection analysis. We multiply the
confidence metric by the fraction of the probability distributions for the regression
coefficient from each of the Nobs×Nmod observation–model combinations that is
greater than zero, with the maximum penalty being 100%.

γant. A match in magnitude of anthropogenic climate change can be considered an
indication that the observed signal analysed in the regression is indeed the
predicted signal, rather than, for instance, a response to an ignored driver that
happens to closely resemble the predicted response to anthropogenic drivers.
Within the regression formulation used here, the question is whether the regression
coefficients for the anthropogenic response, bant, are not inconsistent with 1. The
maximum penalty is 40%.

γnat. The above test only concerns the response to anthropogenic drivers. Although
they are less directly connected to the conclusions of the analysis, it would also help
build confidence (or to maintain it) if the observed response to natural drivers is
also not inconsistent with the predicted response. The maximum penalty is 10%.

γresid. This test concerns whether the regression is adequate. As an extremely
nonlinear system, the climate generates variability autonomously, whether it is
being influenced by external factors or not. If the assumptions behind the
regression hold and all important external drivers have been accounted for, then
the residual, R, from the regression should be indistinguishable from this
autonomous variability, as estimated from unforced simulations (see
Supplementary Table 3). If the residuals from all Nobs×Nmod combinations fail the
test, then the confidence metric is reduced by 50%. As with inconsistencies in the
regression coefficients, gross failure of the residual test is a major concern and
could reflect unaccounted drivers.

γmajor. Assessment of the role of anthropogenic forcing in observed changes in
climate requires a description of the magnitude of the contribution of human

influence relative to other factors10,38. We assess whether emissions have had a
‘major role’ in the behaviour of the observed climate, defining ‘major role’ as cases
where the anthropogenic response accounts for at least one-third of the temporal
variance. Other possible contributors to the variance would be the response to
natural drivers, autonomous variability or possible unidentified drivers.

Evaluation and combined confidence. After mapping the resulting value of cm to
the confidence matrix, the major role attribute is assigned if confidence is at least
medium, else at least a minor role is assigned. The combined confidence and role
attribute is derived from the minimum of the impact and climate attribution roles
and confidence levels, respectively. The influence of factors such as climate
variable, impact system and impacted area size for the combined confidence levels
and roles were analysed. The graphical representation in Fig. 5 depicts the
combined attribution role and confidence through the confidence bars (filled,
major; outlined, minor). Impacts associated with a climate trend that has been
attributed to anthropogenic forcing with at least medium confidence in a major or
minor role are highlighted in colour. Impacts corresponding to regional climate
trends with no, very low or low confidence in attribution to anthropogenic forcing
are shown in grey. The respective climate variable is indicated by the colour of the
confidence bars. The full list of impacts with their respective confidence levels can
be found in Supplementary Table 1.
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