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Foliar temperature acclimation reduces simulated
carbon sensitivity to climate
Nicholas G. Smith1*, Sergey L. Malyshev2, Elena Shevliakova2, Jens Kattge3,4 and Je�rey S. Dukes1,5

Plant photosynthesis and respiration are the largest carbon
fluxes between the terrestrial biosphere and the atmo-
sphere1, and their parameterizations represent large sources
of uncertainty in projections of land carbon uptake in Earth
system models2,3 (ESMs). The incorporation of temperature
acclimationof photosynthesis and foliar respiration, commonly
observed processes, into ESMs has been proposed as a
way to reduce this uncertainty2. Here we show that, across
15 flux tower sites spanning multiple biomes at various
locations worldwide (10◦ S–67◦ N), acclimation parameteri-
zations4,5 improve a model’s ability to reproduce observed
net ecosystem exchange of CO2. This improvement is most
notable in tropical biomes, where photosynthetic acclimation
increased model performance by 36%. The consequences of
acclimation for simulated terrestrial carbon uptake depend
on the process, region and time period evaluated. Globally,
including acclimation has a net e�ect of increasing carbon
assimilation and storage, an e�ect that diminishes with time,
but persists well into the future. Our results suggest that land
models omitting foliar temperature acclimation are likely to
overestimate the temperature sensitivity of terrestrial carbon
exchange, thus biasing projections of future carbon storage
and estimates of policy indicators such as the transient climate
response to cumulative carbon emissions1.

The terrestrial components of Earth system models (ESMs)
simulate a variety of physiological and ecological processes to
project carbon storage and terrestrial feedbacks to climate. These
processes strongly affect simulated land–atmosphere interactions6,
with consequences for historical and future climate projections
that rival or exceed many atmospheric processes2,7. Although the
temperature sensitivity of the terrestrial carbon cycle has been
considered a fundamental characteristic of Earth’s carbon cycle,
rigorously analysed in many studies and assessments (for example,
ref. 1), some relevant, observed and well-characterized processes
are still omitted from many ESMs (ref. 6), including those used
in the Coupled Model Intercomparison Project, phase 5 (CMIP5;
ref. 8). Examples of such processes are temperature acclimation of
photosynthesis and leaf respiration, the gradual adjustment of the
instantaneous temperature response of these two key processes of
the terrestrial carbon cycle as a result of longer-term changes in
growth temperature9–11.

Previous studies have found that the uncertainty in ESMs’
projection of future carbon uptake is strongly related to the
parametric uncertainty in the temperature response formulations
for leaf photosynthesis and respiration2,3. For example, results

of one set of simulations suggested that the primary parameter
driving uncertainty in terrestrial carbon–climate feedbacks was the
optimum temperature for photosynthesis (Topt), which was not
allowed to change (that is, acclimate) in the study2. Consequently,
it has been proposed that temperature acclimation might improve
model functioning2 and, by decreasing the temperature sensitivity of
acclimated processes, increase simulated carbon uptake on land12,13.
These results, in part, have led to the inclusion of temperature
acclimation of photosynthesis and/or leaf respiration in some
global-scale land models14.

Here, we explore the influence of state-of-the-art, empirically
derived acclimation parameterizations of both photosynthesis and
foliar respiration4,5 on model performance across multiple biomes
and examine how these parameterizations will affect simulated leaf
carbon exchange processes and simulated terrestrial carbon storage,
from pre-industrial periods to 2100. We reasoned that, because
temperature acclimation of photosynthesis and foliar respiration is
widely observed (as reviewed in refs 11,14,15; see also citations in
the SupplementaryMethods), acclimation parameterizations would
enhance a model’s ability to reproduce observed carbon exchange
rates. Additionally, we expected that acclimation would increase the
net carbon assimilation of leaves by decreasing the sensitivity of leaf
carbon exchange to temperature, resulting in high rates of carbon
uptake across a wider range of temperatures, ultimately leading to
increases in terrestrial carbon storage.

Most terrestrial ecosystem models and CMIP5-class ESMs
simulate photosynthesis as the minimum of two rate-limiting
steps involved in the Calvin cycle: Rubisco carboxylation (Vc)
and ribulose-1,5,-bisphosphate regeneration (J ), processes that are
scaled by their maximum rates (Vcmax and Jmax, respectively)16. Vcmax
and Jmax are commonly defined by a basal rate (that is, the rate at a
standardized temperature) that is modified by a peaked Arrhenius-
type temperature function14. No mechanistic algorithm has been
developed for leaf carbon release (that is, respiration)17. Instead,
dark respiration (Rd) is commonly simulated as a function of a
basal rate that is typically linked to the photosynthetic rate, and an
exponential temperature function14.

Temperature acclimation parameterizations have been
developed for Vcmax, Jmax and Rd. At present, the most frequently
used, robust, widely cited, and thus state-of-the-art, acclimation
parameterizations are those defined by Kattge and Knorr4 for
Vcmax and Jmax and Atkin et al.5 for Rd. The Kattge and Knorr4
formulation for photosynthetic acclimation was derived using
empirical data from 36 different species and allows for the optimum
temperature of the instantaneous temperature response of Jmax
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Figure 1 | Model improvement by acclimation. a–f, Percentage change in Taylor scores (Ts) for net ecosystem exchange (NEE) in simulations with
photosynthetic (a,b), respiratory (c,d), and both photosynthetic and respiratory acclimation (e,f) compared with simulations without any temperature
acclimation. The left panels show results from each flux tower site and asterisks in the panel title indicate significant results across all sites (see
Supplementary Table 1 for forest type abbreviations) (NS, not significant). The right three panels show results averaged across forest types with asterisks
above bars indicating significant results within forest types. Significant results were determined using Bayesian t-tests (see Methods). Error bars are the
standard error of the mean.

and Vcmax as well as the ratio of Jmax to Vcmax at 25 ◦C (J/V ) to
shift with the mean air temperature over the previous 30 days
(see Methods). The Atkin et al.5 parameterization for temperature
acclimation of foliar respiration was derived using empirical data
from 19 species and includes a correction factor that allows the
basal rate of respiration to shift with the mean air temperature
over the previous 10 days (see Methods). Although based on
limited data sets, these parameterizations are state-of-the-art
and implemented in global-scale land models (for example,
ref. 3). Nevertheless, the influence of these parameterizations
on simulated carbon has been evaluated in only a few cases (for
example, refs 5,6; see additional references in the Supplementary
Methods) and their influence on model performance has not yet
been examined.

To explore the influence of foliar temperature acclimation
parameterizations on model performance, we used Land Model
version 3 (LM3; ref. 18), a process-based land model that is
the terrestrial component of the National Oceanic and Atmo-
spheric Administration/Geophysical Fluid Dynamics Laboratory

(NOAA/GFDL) ESMs, driven by high-frequency (three-hourly)
observed climate forcing19 to simulate historical net ecosystem
exchange (NEE) rates in 15 different grid cells encompassing
15 observational eddy-covariance flux tower sites. The sites
represent three types of forest (five sites in each type): broadleaf
deciduous (BD), needleleaf evergreen (NE), and broadleaf evergreen
(BE; Supplementary Table 1 and Supplementary Fig. 1). Note that
BD and BE sites were located exclusively in temperate and tropical
climates, respectively, whereas NE sites were located in temperate
and boreal climates. We compared the simulated fluxes to observa-
tions at each site using Taylor scores, which track both the absolute
values as well as the variation in these values between modelled
and observed responses20. We compared Taylor scores from simula-
tions without acclimation to simulations with either photosynthetic
acclimation, respiratory acclimation, or both, using Bayesian paired
t-tests21 (see Methods).

We found that, when analysed across all forest types or within
each forest type separately, acclimation improved or had no
significant effect onmodel performance.When both photosynthetic
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Figure 2 | Global influence of acclimation on photosynthesis and foliar respiration. a,b, Annual, globally averaged e�ect of acclimation (Ex; see Methods)
for Vcmax (squares), Jmax (circles) and Rd (triangles) as a function of mean global land surface air temperature (a; SAT) and time (b) from 1861 to 2100.
Data were generated using output from three di�erent ESM simulations forced by the RCP 8.5 scenario. Trendlines in a show parabolic (Vcmax and Jmax)
and linear (Rd) model fit to the data. Smoothed lines in b were created using a loess function with an alpha value of 0.75. The horizontal dashed grey line
represents Ex= 1. The vertical lines in a show the mean global land surface air temperature for the three models over two time periods.

and respiratory temperature acclimation were included, model
simulations of observed NEE significantly improved Taylor scores
by 12.8% (see Supplementary Table 2 for full Bayesian paired t-test
results). Improvements from photosynthetic acclimation strongly
outweighed those from respiratory acclimation, where Taylor scores
did not change bymore than 2% at any site (Fig. 1). The influence of
acclimation differed among forest types. Photosynthetic acclimation
significantly improved model performance at the tropical (that is,
BE) sites, but had variable, nonsignificant effects at the BD and NE
sites (Fig. 1 and Supplementary Table 2). Respiratory acclimation
had a more consistent, but nonsignificant, positive effect at
needleleaf comparedwith broadleaf sites. As respiratory acclimation
had little effect on Taylor scores, results from simulations with both
types of acclimation mirrored the results from simulations that
included only photosynthetic acclimation.

To explore the implications of these acclimation parameteriza-
tions4,5 for projections of the carbon cycle at the global scale, we
calculated the effect of acclimation (Ex) for each process (that is,
Ev, Ej, and Er for Vcmax, Jmax, and Rd, respectively), defined as the
ratio of the acclimated rate to the unacclimated rate of each process.
Unacclimated rates were calculated using mean values for 1Sv, 1Sj
and J/V from Kattge and Knorr4 and without the correction factor
for Rd. We computed Ev, Ej, and Er for each land grid cell using
high-frequency (three-hourly) climate and ecological output from
1861–2100 from three historical and representative concentration
pathway (RCP) 8.5 forcing scenario22 simulations from the CMIP5
(ref. 8). We used available high-frequency output from three ESMs:
NOAA/GFDL ESM2M (refs 23,24), Institut Pierre Simon Laplace
(IPSL) CM5A-LR (ref. 25), and Met Office Hadley Center (MOHC)
HadGEM2-ES (ref. 26). The values were linearly weighted by gross
primary productivity for Vcmax and Jmax and total plant respiration
for Rd in computing global land annual averages. This allowed more
productive regions and seasons to give stronger weight to the results
(see Methods).

We found that, when averaged globally under past, current and
future climates (that is, 1861–2100), acclimated Vcmax, Jmax and
Rd were consistently higher than non-acclimated rates (Fig. 2),
implying that temperature acclimation increases simulated rates
of these processes. Increases in photosynthetic carbon assimilation
and respiratory carbon loss should have counteracting effects on
net leaf carbon assimilation. This respiratory response was not
consistent with our hypothesis. However, the global effect on Rd
decreases linearly with increasing global-mean temperature (that
is, ratio moves closer to 1; Fig. 2), implying that respiratory
acclimation could promote carbon uptake by decreasing Rd under
future, warmer conditions. This effect resulted from using a basal
rate acclimation formulation, which acts to increase process rates
below the temperature used for standardization and decrease them
above this temperature as compared with unacclimated rates5.
Interestingly, the nonlinear shapes of the Ev and Ej responses
to surface air temperature (Fig. 2) suggest that acclimation will
continue to amplify simulated photosynthetic rates under future,
warmer conditions at the global scale. Specifically, this nonlinear
shape suggests that acclimation will have the greatest positive effect
on Vcmax and Jmax at cold and warm extremes. However, the shape of
Ej also suggests that acclimationmay decrease Jmax at some relatively
high global temperatures.

We examined how these results varied geographically using
forcing from a single ESM (that is, NOAA/GFDL ESM2M) while
excluding points where vegetation was either absent or dormant
(that is, leaf area index of zero) and reducing the weight of
points at extremely low and high temperatures under which
productivity would not be supported (see Methods). We found that
acclimation formulations increased Vcmax and decreased Rd and Jmax
throughout the entire time period in low-latitude, tropical regions
and decreased Rd in more regions in the future as temperatures
warmed, as compared with the formulations without acclimation.
In contrast, acclimation increased all three simulated processes
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Figure 3 | Global maps of the influence of acclimation on each process at the ends of the nineteenth, twentieth and twenty-first centuries. a–i, The
average e�ect of acclimation (see Methods) for Vcmax (Ev; a–c), Jmax (Ej; d–f), and Rd (Er; g–i) from 1881–1900 (a,d,g), 1981–2000 (b,e,h), and
2081–2100 (c,f,i). Data were generated using output from GFDL ESM2Mb ESM simulation forced by the RCP 8.5 scenario. The global average value and
the percentage of grid cells showing positive (>1) or negative (<1) influence of acclimation are shown above each panel.

in cooler, extra-tropical regions (Fig. 3), thus amplifying both
carbon assimilation through photosynthesis and loss through foliar
respiration. The decrease in Jmax with acclimation in tropical regions
reflects the sensitivity of processes involved in light capture and
electron transport to high temperature27 and follows from the
nonlinear curve observed in the global analysis (Fig. 2). This
effect is the result of a decrease in the J/V ratio as growth
temperatures increase4 (see Methods), which causes a decrease in
the acclimated compared with unacclimated rate of Jmax. Notably,
this decrease is lessened under future, warmer conditions as shifts
in the optimum temperature for Jmax increase the acclimated above
the unacclimated rates (for example, Fig. 3e,f). In summary, the net
effect of acclimation on simulated carbon uptake will depend in
part on the process, time period and region evaluated. Additionally,
the net result is likely to differ between models (see additional
discussion in Supplementary Methods).

To illustrate the effect of foliar temperature acclimation
on future global carbon dynamics, we applied photosynthetic
and respiratory acclimation parameterizations to the terrestrial
component LM3 of the NOAA/GFDL ESM2M and compared
simulated vegetation carbon during 1861–2099 to the original
LM3 simulations with the same climate forcing (see Methods).
We found that foliar temperature acclimation increased simulated
global vegetation carbon from 1860 to 2100 compared with the
simulation without acclimation (Fig. 4). As our process-scaling
analysis indicated (see above), the magnitude of simulated
acclimation response varies spatially and temporally. For
example, the acclimation effect was strongest in the coldest
regions (Supplementary Fig. 2) owing to beneficial effects of
photosynthetic acclimation (see Supplementary Figs 3 and 4) and
despite a reduction due to respiration acclimation (Supplementary
Fig. 5), which had little effect on future simulations in general.
Also, acclimation decreased vegetation carbon in warm regions
(Supplementary Fig. 2). The difference between global vegetation

carbon in acclimated and non-acclimated simulation decreased
over time as global temperatures warmed (Fig. 4, see also
Supplementary Methods). The attenuation of the acclimation
effect was probably the result of a decrease in the J/V ratio under
increasing growth temperatures reducing acclimated Jmax rates
compared with unacclimated rates (Figs 2 and 3). This is an
understudied phenomenon, particularly in tropical plants, that
deserves further evaluation.

Many empirical studies have documented leaf-level temperature
acclimation11,14,15 (see additional references in the Supplementary
Methods), but relatively fewhave collected the type of data necessary
to constrain and parameterize acclimation functions14. Althoughwe
used the most robust acclimation functions available4,5, they were
derived using only a small number of (primarily temperate) species.
Plant species and/or plant functional types might differ in their
acclimation capacity, as evolutionary pressures to adjust to changes
in seasonal temperaturesmay vary among regions9,10, but tests of this
hypothesis are scarce and show conflicting results11,15. Our model–
data comparison indicates that species differences are likely to exist
(Fig. 1). In addition, some plant species might be expected to adapt
to warmer temperatures in the future on multi-decadal or longer
timescales not considered in the acclimation formulations evaluated
here. Finally, as extreme warm temperatures are expected to be
more frequent in the future28, acclimation may dampen the effect
of such warm episodes on simulated plant carbon uptake. There
is still a great deal of uncertainty associated with contemporary
acclimation formulations3 and further refinement of photosynthetic
and respiratory processes is needed to better constrain carbon cycle
models at the global scale.

Our findings indicate that climate models that do not include
temperature acclimation of foliar carbon exchange are likely to
overestimate carbon sensitivity to a warming climate, which affects
simulations of future terrestrial carbon storage. Incorporating foliar
temperature acclimation processes will reduce uncertainty in future
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Figure 4 | E�ect of acclimation on global simulated vegetation carbon in
LM3. The change (%) in simulated global vegetation carbon (C) from
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projections of carbon storage sensitivity to warming—the key com-
ponent of policy indicators such as the transient climate response to
cumulative carbon emissions1.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Acclimation functions. The maximum rate of Rubisco carboxylation (Vcmax) and
maximum rate of ribulose-1,5-bisphosphate regeneration (Jmax) were calculated as a
function of temperature27:

f (Tk)=k25 exp
[
Ha (Tl−298.15)

298.15RTk

] 1+exp
( 298.151S−Hd

298.15R

)
1+exp

(
Tk1S−Hd

TkR

) (1)

where k25 is the rate of Jmax or Vcmax at 25 ◦C, Ha is the increase in the response
below the temperature optimum, Tk is the leaf temperature in Kelvin, R is the
universal gas constant (8.314 Jmol−1 K−1), Hd is the rate of decrease above the
optimum, and 1S is an entropy term related to the temperature optimum (Topt)
in that:

1S=
Hd

Topt
+R ln

[
Ha

Hd−Ha

]
(2)

where Topt describes the optimum temperature for Jmax or Vcmax (ref. 27). To
simulate photosynthetic acclimation, 1S and the ratio of Jmax to Vcmax at 25 ◦C
(J/V ) were allowed to shift linearly with the 30-day acclimated temperature (Ta30),
which was defined as the mean temperature over the previous 30 days, following
Kattge and Knorr5, such that

xi=ai+bi×Ta30 (3)

where xi is J/V or 1S and ai and bi are the intercept and slope, respectively, of the
relationship between the parameter and Ta30. Parameterization of the model used
the mean (that is, not PFT-specific) values defined in Kattge and Knorr5.
Mean 1S and J/V values from Kattge and Knorr5 were used in the
non-acclimated simulations.

Autotrophic dark respiration (Rd) was simulated as a function of temperature
following a modified temperature-dependent Q10 formulation3:

Rd=R25 exp
(
−
T−T25

10

)(
(3.22−0.046T )(3.22−0.046T )/−0.046∗10

(3.22−0.046T25)(3.22−0.046T25)/−0.046∗10

)
(4)

where T is the canopy air temperature (◦C) and R25 is the rate of respiration at
25 ◦C (T25). Temperature acclimation of Rd was simulated using a correction factor
described by Atkin et al.6:

Ra=Rd10−0.00794(Ta10−25) (5)

where Ra is the rate of autotrophic dark respiration acclimated to the average
temperature over the previous 10 days (Ta10; ref. 6). In non-acclimation
simulations, this correction factor was not included. In all simulations Vcmax,25 was
given a static PFT-specific value (see ref. 18) and R25 was simulated as 1.5% of
Vcmax,25 following ref. 29.

Observational data. Observational site data were obtained from the FLUXNET
LaThuile data set. Daily values for net ecosystem exchange (NEE) were used for
comparison to model simulations. Daily values were generated using gap-filled
half-hourly data. Gap filling was done following standardized protocols30–33. Daily
data were omitted from the final analysis if less than 75% of the half-hourly data
from that day were either not original or were gap-filled with low confidence. In
addition, data were omitted if gross primary productivity (GPP) was less than or
equal to 0. Data availability differed among sites and, as such, comparisons were
made across differing time periods (see Supplementary Table 1). Information for
each of the sites can be found in Supplementary Table 1 and the location of each
site is plotted in Supplementary Fig. 1.

Site-level LM3 simulations. For both the model–observation comparisons and
land carbon analysis simulations, simulations were performed using a modified
version of the terrestrial component of the National Oceanic and Atmospheric
Administration/Geophysical Fluid Dynamics Laboratory (NOAA/GFDL) Earth
System Models (ESMs), Land Model version 3 (LM3; ref. 18), using the
parameterizations above. Each site-level LM3 simulation was run at a single 1◦ grid
cell encompassing one of 15 flux tower sites (see Supplementary Table 1). Locations
were chosen near sites where the forest type was relatively consistent (that is, either
primarily composed of broadleaf deciduous trees (n=5), needleleaf evergreen trees
(n=5), or broadleaf evergreen trees (n=5)). As such, the plant type used in the
model was set to correspond to the forest type and was not allowed to change
throughout the duration of the simulation. Note that the soil respiration
formulation was unchanged from the original version of LM3 (ref. 18) and not
allowed to acclimate in any simulation.

For the model–observation comparisons, the model was run for 59 years
(1948–2006) following a 247-year spin up, using three-hourly meteorological

forcing data based on reanalysis and corrected with observations19. The spin up
used the first 30 years (1948–1978) of the reanalysis data continuously looped for
forcing. For the land carbon analysis simulations, the model was run for 239 years
(1861–2100) following a 159-year spin up, forced using output from a general
circulation model (GCM) simulation under the Coupled Model Intercomparison
Project, phase 5 (CMIP5) representative concentration pathway (RCP) 8.5
scenario22. The spin up used the first 30 years of the GCM output (1861–1891)
continuously looped for forcing. At each site and in both simulation types, four
simulations were run: no acclimation; Vcmax, Jmax and J/V acclimation
(photosynthetic acclimation); Rd acclimation (respiratory acclimation); and Vcmax,
Jmax, J/V and Rd acclimation (full acclimation).

Following model–observation simulations, modelled daily rates of NEE were
then compared to daily flux tower rates at each site using Taylor scores20. Taylor
scores were defined as:

Ts=
4(1+ r)(

sm
so
+

so
sm

)2
(1+ r0)

(6)

where s is the modelled (sm) and observed (so) standard deviation and r0 is the
highest possible correlation (1 in this case; ref. 20). Following future simulations,
the total carbon on land during past (1890–1899), present (1990–1999) and
future (2090–2099) time periods was calculated for each simulation (see
Supplementary Methods).

We analysed all site-level LM3 data using a Bayesian parameter estimation
approach21. We first calculated the difference in Taylor scores for NEE and land
carbon (past, present and future) between the non-acclimation and each of the
acclimation simulations at each site. We then estimated a posterior distribution for
the differences in scores across all sites and within each of the three forest types,
using 100,000 Markov chain Monte Carlo simulations in each case (1,000 were
discarded for burn in). Improvement as a result of acclimation was assessed by
examining the percentage of the posterior distribution that was greater than zero
(termed PDI) as well as the range of the 95% highest density interval (HDI). If the
95% HDI did not overlap zero, acclimation was considered to have a ‘significant’
influence. All analyses were performed using R version 3.0.2.

Global LM3 simulations. Two global simulations were performed with the LM3
model: one with no temperature acclimation and another one with photosynthetic
and respiratory temperature acclimation similar to the site-level experiments. Both
LM3 simulations were driven with the forcing recorded from historical and RCP8.5
future experiments with a version of the GFDL ESM2Mmodel. For historical
period we used the observed atmospheric CO2 concentration and for the future
simulations we used the RCP 8.5 scenario values. Both experiments were spun-up
for 460 years before 1860 using a fraction of historical period forcing and
pre-industrial CO2 concentration of 286 ppm. To account for acclimation effect in
the LM3 simulations without retuning the rest of the model, the ratios of
unacclimated to acclimated rates of Vcmax, Jmax and Rd were calculated at each
30-min time step. As in the site-level simulations, Rd acclimation was applied only
on leaves and only during night.

Effect of acclimation. The effect of acclimation (Ex ) for each process (that is, Ev, Ej

and Er for Vcmax, Jmax and Rd, respectively) was calculated as the ratio of the rate of
the acclimated process to the rate of the unacclimated process. These ratios were
computed at the global scale from 1861 to 2100 using high-temporal-resolution
ecological and climatological Earth system model (ESM) output under historical
and RCP 8.5 forcing scenario22 simulations from the CMIP5 archive9. Following
high-frequency computation, ratios were averaged in time, or in space and time,
using one of two weighting schemes: by excluding points with zero leaf area index
(LAI) and using a weighting temperature function that decreased the effect under
low and high temperatures following:

f (T )=
kT

(1+exp(0.4(5−T )))(1+exp(0.4(T−45)))
(7)

where kT is the rate at temperature (T ) and T is the temperature in degrees Celsius;
or by using monthly mean GPP or plant respiration to linearly weight Vcmax and Jmax

or Rd, respectively. Weights were applied to both acclimated and unacclimated
rates. LAI, GPP and plant respiration values were taken from the same ESM output.
The first weighting scheme allowed us to evaluate the regional patterns of
acclimation (that is, Fig. 3) and avoid applying weight to time periods of no LAI or
extremely low or high temperatures at which acclimation would have a small effect
because of dampened physiological performance. The second scheme allowed for a
better global comparison (see Fig. 2) and applied the most weight to grid cells and
time points where acclimation would have the largest effect because of high flux
rates. Regional calculations using the first weighting scheme were computed using
ESM output from the NOAA/GFDL ESM2Mb. Global calculations using the
second weighting scheme were computed using high-frequency (three-hourly)

© 2016 Macmillan Publishers Limited. All rights reserved

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

http://dx.doi.org/10.1038/nclimate2878
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2878 LETTERS
output from three ESMs separately: NOAA/GFDL ESM2Mb, Institut Pierre Simon
Laplace (IPSL) CM5A-LR and Met Office Hadley Center (MOHC) HadGEM2-ES.
The MOHC HadGEM2-ES calculations were done only for three time periods for
which data were available: 1960–2005, 2026–2045, 2081–2099. The high-frequency
data were used to capture nonlinearities of the acclimation effect owing to the
diurnal cycle of temperature.
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