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Abstract

Information on the distribution and habitat preferences of ecologically and commercially impor-

tant species is essential for their management and protection. This is especially important as

climate change, pollution, and overfishing change the structure and functioning of pelagic eco-

systems. In this study, we used Bayesian hierarchical spatial-temporal models to map the

Essential Fish Habitats of the Yellowfin tuna (Thunnus albacares) in the waters around Isla del

Coco National Park, Pacific Costa Rica, based on independent underwater observations from

1993 to 2013. We assessed if observed changes in the distribution and abundance of this spe-

cies are related with habitat characteristics, fishing intensity or more extreme climatic events,

including the El Niño Southern Oscillation, and changes on the average sea surface tempera-

ture. Yellowfin tuna showed a decreasing abundance trend in the sampled period, whereas

higher abundances were found in shallow and warmer waters, with high concentration of chlo-

rophyll-a, and in surrounding seamounts. In addition, El Niño Southern Oscillation events did

not seem to affect Yellowfin tuna distribution and abundance. Understanding the habitat pref-

erences of this species, using approaches as the one developed here, may help design inte-

grated programs for more efficient management of vulnerable species.

Introduction

Pelagic ecosystems are undergoing extreme changes in their structure and functioning due to

climate change, pollution and overfishing [1]. Fisheries, for example, now access and exploit

remote areas, such as deep ocean habitats, as closer and more traditional fishing grounds get

depleted [2].

Marine top predators, including marine mammals, sharks, large tuna and billfish, are

declining worldwide at a rapid rate, which can largely be attributed to fisheries [3]. The loss of
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Citation: Gonzáles-Andrés C, F. M. Lopes P, Cortés

J, Sánchez-Lizaso JL, Pennino MG (2016)

Abundance and Distribution Patterns of Thunnus

albacares in Isla del Coco National Park through

Predictive Habitat Suitability Models. PLoS ONE 11

(12): e0168212. doi:10.1371/journal.

pone.0168212

Editor: David Hyrenbach, Hawaii Pacific University,

UNITED STATES

Received: March 25, 2016

Accepted: November 17, 2016

Published: December 14, 2016
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these taxa is expected to have important effects in pelagic ecosystems, influencing many other

organisms throughout the food chain and their associated habitats [4]. While different man-

agement tools, such as Marine Protected Areas (MPAs), have been increasingly used to protect

benthic species and habitats in coastal waters (e.g.: coral reefs) [5], the protection of pelagic

ecosystems and top-predators has been widely overlooked, expect for a few examples [6]. This

is mostly due to the intrinsic dynamics of these habitats and the high mobility of these species.

MPAs specifically designed to protect the pelagic environment would be harder to enforce and

systematically monitor, due to the remoteness of the majority of the pelagic ecosystems.

Despite such difficulties, there are a few examples of MPAs that were established, intentionally

or not, with the goal of protecting pelagic species.

Isla del Coco National Park, Costa Rica, is one of these examples. It is an uninhabited island,

located 550 km southwest of the Pacific coast of Costa Rica, reached only after a 36h boat ride

from the mainland. Isla del Coco was declared a national park in 1978 but the marine portion

was only included in 1984. The park was declared a UNESCO World Heritage site in 1997, and

the marine protected area was extended in 1991 and again in 2001. The park is also a Ramsar

site since 1998. In 2011, a special management area was created around Isla del Coco National

Park, the Seamounts Marine Management Area with a marine protected area of 9,640 km2 [7].

The island is a biodiversity hot-spot [8], due to a combination of features including climate,

exposure to diverse ocean currents, and geology. The waters surrounding the island have a per-

manent and shallow thermocline, characterized by a high abundance of zooplankton and

pelagic fish. Such features explain why Isla del Coco has the highest fish biomass in the tropics

(7.8 tonnes/hectare), of which 85% are represented by apex predators [9].

Although Isla del Coco has been protected and monitored for over 20 years [10], illegal fish-

ing of large pelagic species still occurs within the park’s limits [11]. Legal and illegal fisheries of

these species are difficult to monitor all over Costa Rica’s Exclusive Economic Zone. A signifi-

cant source of uncertainty follows from the fact that large foreign fishing fleets operate in the

region [12], with foreign markets driving the demand [13]. Official data show that from 1990 to

2000s fishing fleets in Costa Rica have rapidly grown, with an increase in landings from around

18,000 to 34,500 t�year-1 [14]. The ratio of coastal (fishes and crustaceans) to pelagic (tunas and

billfishes) landings changed from 3:2 to 1:4 [12]. Catches of large pelagic species have increased

during the last decade, and currently they are about 50% of the reported landings.

Fishing fleets of Costa Rica catch five species of tuna, with the Yellowfin tuna (Thunnus
albacares) making up the majority of the catch (84.97%) [15]. This large pelagic species [16,

17] is globally distributed over the tropical and subtropical oceans [18], and its distribution in

the Eastern Tropical Pacific ranges from southern California USA, to Peru [19]. Yellowfin

tuna have extremely large population sizes compared to other tunas and its migration occurs

between the Atlantic and Indo- Pacific Oceans [19]. In addition, it is listed as "Near threat-

ened" and "trend decreasing" by the IUCN Red List [20].

In this study, we explored the distribution and abundance of the Yellowfin tuna within the

Isla del Coco MPA from 1993 to 2013, using visual census data. Specifically, we assessed if

changes in the distribution and abundance of this species in the MPA are related with habitat

characteristics, fishing intensity and climate, including El Niño-Southern Oscillation (ENSO)

events and longer-term changes in the average sea surface temperature [21].

Material and Methods

Yellowfin tuna data

The Undersea Hunter Group [22] is a private diving company that operates in Isla del Coco

and has one of the longest underwater visual censuses (UVC) for Yellowfin tuna, among others
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species, in the Eastern Tropical Pacific. Dives were performed between January 1993 and

December 2013 at 17 different sites around Isla del Coco, resulting in 27,261 immersions (Fig

1 and Table 1).

Each dive, always led by an experienced Divemaster during day light, averaged ~60 min

and ranged in depth between 10–40 m. A total of 25 Divemaster led the dives along the time

series. Although the dive protocol was not entirely standardized as in a scientific underwater

visual census, the protocol was consistent throughout the period [21]. The maximum number

of fish seen throughout the dive was recorded only when there were fewer than 100 individu-

als, whereas estimates were used otherwise (e.g., for schools of 1000 or more tunas).

Possible biases of false absences, which occur when an observer fails to record a present spe-

cies, and recounting of individuals may have occurred during dives, however, such error would

have been consistent throughout the survey period. In addition, as already demonstrated by

White et al. (2015) [10], data collected by Divemasters can be a reliable way to discern trends in

relative abundance, especially for large pelagic species that are easily identified [23].

Data were aggregated by year after excluding seasonality patterns with the Autocorrelation

(ACF) and Partial Autocorrelation Function (PACF) in the R software [24].

Fig 1. Map of the study area and the dive locations.

doi:10.1371/journal.pone.0168212.g001
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In order to assess possible trends in catches, landing data of Yellowfin tuna were extracted

for the time series 1993–2010. These data were available for all of Costa Rica’s Exclusive Eco-

nomic Zone (EEZ) from the Sea Around Us website [25]. Landings are “reconstructed data”

that combine official reports of the Food and Agriculture Organization of the United Nations

(FAO) [14] and reconstructed estimates of Illegal, unreported and unregulated (IUU) fisheries

data [26,27].

Environmental data

Six environmental variables were considered as potential predictors of Yellowfin tuna abun-

dance, including three climatic variables–Sea Surface Temperature (SST), sea surface salinity

(SSS) and Chlorophyll-a concentration (Chl-a)–and three bathymetric features–depth, slope

and distance to coast.

Bathymetric features were derived from the MARSPEC database [28]. MARSPEC is a

world ocean dataset with a spatial resolution of 0.01 x 0.01 degrees developed for marine spa-

tial ecology [29].

Depth and distance to coast are some of the main factors controlling species distribution

and have been identified as predictors to determine spatial patterns of many species and in

particular Yellowfin tuna [30, 31]. Slope is an index of seabed morphology and has been used

as predictor of species distribution and of suitable habitats [32–35]. Low values of slope corre-

spond to a flat ocean bottom (or areas of sediment deposition) while higher values indicate

potential rocky ledges [33].

SST and Chl-a variables were extracted from different sensors as nightly monthly means

and aggregated in yearly maps using the Spatial Analysis tool of ArcGIS 10 (Table 2).

As no exhaustive and validated time series of SSS was available, the climatology of monthly

SSS was downloaded from the World Ocean Database 2013 (WOA13) (Table 2).

Salinity and SST are strongly related to marine system productivity as they can affect nutri-

ent availability, metabolic rates and water stratification [36]. Yearly maps of the SST can

Table 1. Summary of the number of dives for location and year around the island from the 1993 to 2013.

1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

North I. Manuelita 103 90 124 138 75 167 345 344 256 523 410 298 531 519 608 543 549 624 901 723 630

Chatham B. 0 1 2 0 0 4 1 3 2 8 12 22 25 45 50 56 56 63 10 18 131

Lobster R. 17 17 18 20 15 54 56 36 31 72 69 24 53 62 59 46 84 58 117 136 137

Silverado 0 0 0 0 0 3 66 55 55 7 74 59 97 88 102 119 85 61 26 13 5

120 108 144 158 90 228 468 438 344 610 565 403 706 714 819 764 774 806 1054 890 903 11106

West I. Pajora 1 1 9 23 5 11 25 38 24 51 43 34 73 56 48 47 67 56 80 82 81

Viking Rock 20 17 9 13 8 19 43 38 30 89 63 62 58 64 99 50 45 40 91 77 71

Wafer B. 0 0 0 0 0 0 1 2 0 5 5 2 3 14 13 7 8 5 12 12 7

Dirty Rock 110 90 102 117 62 128 177 175 166 291 238 159 243 264 268 240 298 315 363 369 315

Maria P. 0 0 0 12 10 37 57 78 36 80 49 40 89 98 132 89 136 134 241 222 192

131 108 120 165 85 195 303 331 256 516 398 297 466 496 560 433 554 550 787 762 666 8179

East Manta C. 12 4 1 5 0 10 7 3 3 15 10 2 8 2 4 6 5 2 8 1 1

Iglesias B. 0 0 0 0 1 3 0 2 1 1 4 1 0 0 1 4 1 0 0 8 0

Submerged R. 20 19 13 23 16 30 50 54 35 66 55 37 52 65 53 70 71 62 76 82 85

Alcyone 19 27 23 34 39 133 128 132 150 243 236 137 230 210 239 230 273 285 349 366 291

51 50 37 62 56 176 185 191 189 325 305 177 290 277 297 310 350 349 433 457 377 4944

South Dos Amigos B 3 2 1 2 5 22 3 1 6 35 3 0 0 0 6 8 0 1 0 2 0

B. Dos Amigos 20 18 11 20 10 34 30 49 37 53 51 34 77 78 56 70 75 58 92 81 61

S. Dos Amigos 6 3 2 13 13 49 40 65 64 120 90 45 91 91 59 76 70 57 96 92 53

Lone Stone 25 17 20 24 21 61 57 64 39 91 41 22 56 29 17 25 45 12 27 22 7

54 40 34 59 49 166 130 179 146 299 185 101 224 198 138 179 190 128 215 197 121 3032

Total 356 306 335 444 280 765 1086 1139 935 1750 1453 978 1686 1685 1814 1686 1868 1833 2489 2306 2067

doi:10.1371/journal.pone.0168212.t001
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indicate temperature variations due to ENSO events, which happened in this area in 1997–

1998, 2006–2007 and 2012 [37, 38].

Chl-a concentration was included in the analysis as an index of primary production of an

ecosystem [39, 40]. Several studies have showed that primary production is an important factor

that drives the Yellowfin tuna abundance and distribution [18, 41].

All environmental variables were aggregated with a spatial resolution of 0.01 x 0.01 degrees.

These variables were explored for collinearity, outliers, and missing data before their use in the

models [42]. The variable distance to coast was highly correlated to depth (Pearson´s correla-

tion, r> 0.75, p-value = 0.01) (Fig 2) and Chl-a (Pearson´s correlation, r> 0.8, p-value = 0.02),

and thus, these variables were used alternatively in the models. Finally, to facilitate visualization

and interpretation, the explanatory variables were standardized (difference from the mean

divided by the corresponding standard deviation).

Finally, the Multivariate ENSO Index (MEI) was extracted from the NOAA website for the

entire time series (2003–2013) (http://www.esrl.noaa.gov/). The Pearson and Spearman’s cor-

relations were computed between the MEI index and the Yellowfin tuna abundance in order

to explore its effect on the species distribution. This index could not be included in the model

because it does not have a spatial structure.

Statistical models and model validation

We used hierarchical Bayesian hierarchical hurdle model to investigate how Yellowfin tuna

spatial-temporal distribution and abundance respond to the explanatory variables. These types

of models are implemented to deal with high numbers of zero in dives, in two stages: (i)

modeling presence/absence in order to obtain the envelope of the predicted probability of

presence of the species studied and (ii) modeling the number of individuals (i.e., count data) of

the studied species only in areas where species were predicted to be present [43]. The first

stage was modeled using a binomial distribution and the second with a Poisson distribution.

For both stages, the candidate explanatory variables included all environmental variables,

the unstructured random effect of the year, a spatially structured random effect, an observer

random effect and all possible interaction terms. The observer random effect is included in the

model to account for a possible non-independence in the observations that could explain the

remaining potential source of variation in the number of Yellowfin tuna sighted, due to the

observers themselves (e.g.: personal experience) or due to unobserved survey characteristics

Table 2. Predictor variables used fro modeling the abundance of the Yellowfin tuna in the Isla del

Coco. SST = Sea Surface Temperature, SSS = Sea Surface Salinity, Chl-a = Chlorophyll-a.

Variable Temporal

resolution

Sensor Platform

SST (˚C) 1993–2006 AVHRR Pathfinder http://www.neo.sci.gsfc.gov

SST (˚C) 2007–2013 MODIS-Aqua http://www.neo.sci.gsfc.gov

SSS 1993–2013 Standard Level Data: CTD

(Surface)

World Ocean Database 2009

Chl-a (mg.m

-3)

1993–1996 NEMO climatology model http://www.nemo-ocean.eu/

Chl-a (mg.m

-3)

1997–2013 SeaWiFS & MODIS-Aqua http://oceancolor.gsfc.nasa.

gov

Bathymetry

(m)

- SRTM30_Plus Bathymetry http://www.marspec.org

Distance (km) - GSHHS Coastline http://www.marspec.org

Slope (%) - Bathymetry http://www.marspec.org

doi:10.1371/journal.pone.0168212.t002
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(e.g.: water visibility). Finally, in order to account for the sampling effort variability among

dive locations and year an offset was included in the second stage of the model.

A vague zero-mean Gaussian prior distribution with a variance of 100 was used for all of

the parameters involved in the fixed effects, while for the spatial effect a zero-mean prior

Gaussian distribution with a Matérn covariance structure was assumed (see Muñoz et al. 2013

[44] for more detailed information about spatial effects).

For each particular parameter, a posterior distribution was obtained. Unlike the mean and

confidence interval produced by classical analyses, this type of distribution enables explicit

probability statements about the parameter. Thus, the region bounded by the 0.025 and 0.975

quantiles of the posterior distribution has an intuitive interpretation: for a specific model, the

unknown parameter is 95% likely to fall within this range of values.

Once the inference has been carried out, we predicted the species abundance in the rest of

the area of interest for the entire year using Bayesian kriging, which allows for the incorpo-

ration of parameter uncertainty into the prediction process by treating the parameters as ran-

dom variables (see Muñoz et al. 2013 [44] for more detailed information about this approach).

Fig 2. Cross-correlation matrix of the environmental variables included in the model.

doi:10.1371/journal.pone.0168212.g002
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Variable selection was performed beginning with all possible interaction terms, but only

the best combination of variables was chosen. Such choice was based on two criteria: Deviance

Information Criterion (DIC) [45] and on the cross validated logarithmic score (LCPO) mea-

sure [46]. Specifically, DIC was used as a measure for goodness-of-fit, while LCPO as a mea-

sure of the predictive quality of the models. DIC and LCPO are inversely related to the

compromise between fit, parsimony and predictive quality.

All the analyses were performed using the Integrated Nested Laplace Approximation

(INLA) methodology [47] and INLA package [48], in R software [24].

We used two separated approaches to assess the predictive accuracy of the selected model.

Firstly, the predicted and observed values using the full dataset were compared. Secondly, a

10-fold cross validation using a random half of the dataset was performed to build the model

and the remaining data to test the prediction [49].

Two statistics were calculated for both approaches: Pearson’s correlation coefficient r and

the average error (AVEerror). Pearson’s correlation coefficient, r, measures the linear depen-

dence between predicted and observed values. It can vary from -1 to 1, with 1 representing a

perfect positive correlation between the two datasets. The AVEerror represents the mean error

between observed and predicted values. The closer this statistic is to zero, the better the predic-

tion [50].

Results

Bayesian models

Yellowfin tuna abundance was mainly explained by bathymetry, Chl-a, SST, slope, the interac-

tion between SST and Chl-a, and the random spatial and temporal effects (Table 3), according

to the model with the best fit (based on the lower DIC and LCPO). Distance from the coast

and salinity were not relevant variables, as all models with these effects showed higher DIC

and LCPO than those without them.

Yellowfin tuna showed to be more abundant in shallower waters (posterior mean = -1.10;

95% CI = [-2.34, -0.11]), according to the model. Also, higher abundance of Yellowfin tuna

should be expected in warmer waters (posterior mean = 0.84; 95% CI = [0.08, 1.14]), with

higher primary productivity (i.e., higher concentrations of Chl-a) (posterior mean = 1.42; 95%

CI = [0.33, 2.54]) and more complex bottoms (e.g. rocky ledges). The interaction between SST

and Chl-a concentration showed a positive relationship (posterior mean = 1.94; 95% CI =

[0.13, 2.56]): Yellowfin tuna abundance increased in warmer waters with higher concentration

of Chl-a.

Table 3. Numerical summary of the posterior distribution of the fixed effects for the best model of the

Yellowfin tuna.

Predictor Mean SD Q0.025 Q0.5 Q0.975

Intercept 1.28 0.45 0.23 1.12 2.13

Bathymetry -1.10 0.33 - 2.34 -0.98 -0.11

Slope 0.87 0.13 0.11 0.81 1.45

SST 0.84 0.27 0.08 0.77 1.14

Chl-a 1.42 0.22 0.33 1.40 2.54

Chl-a x SST 1.94 0.15 0.13 0.89 2.56

This summary contains mean, the standard deviation (SD), the median (Q0.5) and a 95% credible interval

(Q0.025—Q0.975), which is a central interval containing 95% of the probability under the posterior distribution.

Chl-a = Chlorophyll-a concentration, SST = Sea Surface Temperature.

doi:10.1371/journal.pone.0168212.t003
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Maps of the predicted abundance of Yellowfin tuna in sampled and non-sampled areas

were generated for intervals of 3 years (1993–1995; 1996–1998; 1999–2001; 2002–2004; 2005–

2007; 2008–2010; 2011–2013). The spatial patterns of Yellowfin tuna abundance are consistent

with the model predictions, as higher abundances were predicted in shallower waters, closer to

the coast where the productivity is higher and where the seabed shows some structuring (Fig

3). Predictive maps suggest a decreasing trend in the abundance of Yellowfin tuna between

1993 and 2013, but such trend showed no correlation with the ENSO events (Fig 3).

In addition, Pearson and Spearman’s correlations (Table 4) confirmed that there was no

influence of the ENSO events of the Yellowfin Tuna abundance. Indeed, both the SOI and

MEI indexes were not correlated with the Yellowfin tuna abundance.

The selected model presented a good fit, showed by the high values for the Pearson’s corre-

lation coefficient both for the original dataset (0.71, p-value = 0.01) and for the cross validation

done with half of the dataset (0.77, p-value = 0.01). Likewise, low values for the AVEerror were

achieved in both the original (AVEerror = 0.03) and in the cross validation (AVEerror = 0.02)

datasets.

Fig 3. Predictive maps of the abundance of the Yellowfin tuna (Thunnus albacares) aggregated in intervals

of 3 years: (a) 1993–1995; (b) 1996–1998; (c) 1999–2001; (d) 2002–2004; (e) 2005–2007; (f) 2008–2010; (g)

2011–2013.

doi:10.1371/journal.pone.0168212.g003

Table 4. Correlation between MEI and SOI indexes and the Yellowfin tuna abundance from 1993 to

2013.

Spearman’s correlation Pearson’s correlation

MEI Index r = -0.02, p-value = 0.01 r = 0.06, p-value = 0.01

SOI Index r = -0.04, p-value = 0.02 r = 0.05, p-value = 0.02

doi:10.1371/journal.pone.0168212.t004
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Landing data

The temporal trend of the landings of the Yellowfin tuna for the entire Costa Rica EEZ shows

a clear increasing in the catches of this species from 1999 onward, followed by a stabilization at

lower levels in the last years of the times series, particularly after 2007 (Table 5). On the other

hand, the visual census data for Isla del Coco suggest that the number of individual Yellowfin

tunas was higher in the first years of observation, reached a peak in 1997, and then decreased

to its lowest level in 1998, remained at this level since then (Table 5).

Discussion

Underwater survey censuses of the Yellowfin tuna (Thunnus albacares) performed along 21

years were used to improve our understanding of habitat selection by this species and its

changes in distribution and abundance over time in Isla del Coco National Park. These data

represent the only long-term sighting data for Yellowfin tuna, not only for Isla del Coco, but

for the entire Eastern Tropical Pacific. The analyses carried out (hierarchical Bayesian

approach) represent the state-of-the-art to predict species abundance, while they also account

for a spatial temporal component, an important effect commonly overlooked in most studies.

The strongest predictors of the Yellowfin tuna habitats in Isla del Coco were chlorophyll

and water temperature. These two factors are strongly related with ecosystems primary pro-

duction, by influencing the availability of food [36, 39, 40]. This result is consistent with other

studies that had already suggested that Yellowfin tuna is highly influenced by the primary pro-

duction [39,51,52]. Another important factor that affects the distribution of this species is the

seabed topography and structure. Isla del Coco sits atop the Coco Volcanic Cordillera, a sub-

marine mountain offshore the southern part of Costa Rica [53,54], which apparent attracts

aggregation of Yellowfin tuna [55–57]. Indeed, seamounts may act as midocean reference

points that occasionally harbor increased prey densities that attract this species [58, 59].

Table 5. Temporal trends of landings and sightings of Yellowfin tuna. Landings (in tonnes) refer to the

entire Costa Rica EEZ and refer to the period 1993 to 2010.

Year Landing data Tuna Abundance

1993 72.458.000 1300

1994 78.090.000 16450

1995 74.310.000 1670

1996 75.428.000 1918

1997 64.308.000 6400

1998 65.210.000 640

1999 68.995.000 310

2000 103.669.000 280

2001 80.475.000 970

2002 114.745.000 550

2003 109.885.000 1300

2004 87.978.000 1020

2005 91.072.000 2610

2006 86.791.000 2500

2007 64.546.000 6380

2008 67.052.000 940

2009 65.809.000 680

2010 65.458.000 2200

doi:10.1371/journal.pone.0168212.t005
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Previous studies have observed the preference of Yellowfin tuna for shallower waters

[60,61], which was confirmed here, as all predictive maps estimated higher abundances in

depths between 20–80 m, and lower abundances between 90–100 m. Such findings are also in

line with previous tagging studies that showed that this fish spent 85% of its time in waters

close to the thermocline [61] in Isla del Coco, which happens around 50 m deep [62,63].

The predictive maps also showed that the southeast part of the island holds higher abun-

dance of Yellowfin tuna. Since slope and bathymetry vary little around Isla del Coco [64] the

preference for these areas could be due to a higher average concentration of nutrients. The

south side of the island is influenced by the North Equatorial Counter Current [65, 66] and

high values have been reported from that area [67], which could generate a higher productivity

in the southeast.

Whereas Yellowfin tuna distribution is affected by the water temperature, probably due to

its effect on productivity, it does not seem to be affected by the ENSO events. Only in the sec-

ond group of years (1996–1998) there is a higher abundance that could be due to the 1997

ENSO event, as already demonstrated by Torres-Orozco et al. (2006) [68] in the Gulf of Cali-

fornia. This could be because the study area is probably in the middle of the distribution range

of this species, where climate changes do not significantly affect its distribution. Further stud-

ies with data sampled in a larger area should be done, to better understand the effects of ENSO

on the entire distribution of Yellowfin tuna.

The temporal and spatial trends found in this study clearly indicate a decreasing pattern in

the abundance of this species and shifts in its geographical distribution. This decrease could

not be due to a possible "learning effect" of the observers. Although divers acquire more experi-

ence with time and learn to identify and count individuals better, the Bayesian analysis did not

select the observer effect as possible predictor in the final model, suggesting that eventual vari-

ability in the data due to divers is low.

Moreover, the increasing trend of landings of this species in the 2000s in all the Costa Rica

EEZ could be the direct cause of the lower sightings of this species in the Island. Isla del Coco

is recognized as an example of a successful MPA and a well-known site for worldwide divers

for large pelagic watching [5, 10, 69]. This fact could imply, as already suggested by White et al.

(2015) [10], a problem of shifting baselines, with recreational divers failing to recognize how

much of the megafauna of Isla del Coco has already been lost.

It is unclear if the current decreasing trend of the Yellowfin tuna in Isla del Coco is an indic-

ative of an ineffective management of the MPA and/or an inducted effect of the fisheries that

operate in the entire Costa Rica EEZ. Indeed, although management efforts have increased in

the past decade, illegal fishing still occurs within the island’s waters [11, 70]. However, has this

species has a wide distribution species, animals that get to Coco crossed waters fished by many

other countries. The decrease could also be due to fishing anywhere else on the route to Coco.

On the other hand, hot-spots of Yellowfin tuna in Isla del Coco could also be an indication

of a positive effect of the MPA that has preserved this species in the waters surrounding the

island [70]. A significant increase in the abundance of this species will likely be achieved only

through much larger and strategic protected areas that also consider the life cycle, as this is a

highly mobile pelagic species subjected to intense fishing mortality.

Further studies are needed to extend the spatial scale of the predicted distribution of this

high mobility species and to understand if the possible fishing effects are directly connected

with the decreasing abundance of this species. However, understanding the habitat preferences

of this species using approaches as the one developed here may help design integrated pro-

grams for more efficient management of marine resources.
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