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Abstract

Steinernema feltiae is a moderately freezing tolerant nematode, that can withstand intracel-
lular ice formation. We investigated recrystallization inhibition, thermal hysteresis and ice
nucleation activities in the infective juveniles of S. feltiae. Both the splat cooling assay and
optical recrystallometry indicate the presence of ice active substances that inhibit recrystalli-
zation in the nematode extract. The substance is relatively heat stable and largely retains
the recrystallization inhibition activity after heating. No thermal hysteresis activity was
detected but the extract had a typical hexagonal crystal shape when grown from a single
seed crystal and weak ice nucleation activity. An ice active substance is present in a low
concentration, which may be involved in the freezing survival of this species by inhibiting ice
recrystallization.

Introduction

Cold tolerant ectotherms have evolved a number of strategies to survive low temperatures [1,
2]. Short-term freezing survival, surviving the freezing event itself, is enhanced by a slow rate of
freezing protecting animals from physical damage by slowing the rate of ice crystal growth [3].
Longer-term freezing survival of organisms however, also depends upon the production of a
substance that inhibits recrystallization, and/or the production of low molecular weight com-
pounds, e.g. trehalose [4, 5]. Many cold tolerant organisms produce proteins in response to
reduced temperature that help them survive freezing. Those that interact with ice could be col-
lectively named ice active proteins [6]. Some ice active proteins have the ability to bind to the
ice surface thereby affecting the formation and stability of ice. They interact in different ways
with ice, assisting the organism to survive sub-zero temperatures. They either inhibit the
growth of ice (antifreeze proteins: [7, 8] or trigger ice formation (ice nucleating proteins: [9].
Antifreeze proteins are more common in freeze avoiding organisms, while ice nucleating pro-
teins are often associated with freeze-tolerant organisms [10]. Antifreeze proteins inhibit the
growth of ice by producing a thermal hysteresis. Thermal hysteresis is a non-colligative
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property resulting in freezing point depression, in the presence of an ice crystal, without chang-
ing the melting point. The difference in freezing and melting points is the amount of thermal
hysteresis [11]. Ice nucleating proteins conversely, ensure ice formation at relatively high sub-
zero temperature protecting the freeze-tolerant organism from the rapid ice formation that
occurs at lower freezing temperatures. Ice nucleating agents serve as nuclei for ice crystal for-
mation and can be either external to (exogenous ice nucleation) or present within the body
(endogenous ice nucleation) of the organism [12].

Some authors consider that there is a third category of ice active protein called a ‘recrystalli-
zation-inhibiting protein’, found in some freeze-tolerant animals [6]. Recrystallization is the
growth of larger ice crystals at the expense of smaller ones, resulting in fewer but larger crystals.
This could be damaging if it occurs in a frozen organism due to the growth of ice crystals dam-
aging membranes or to the migration of still-liquid salty domains [13, 14]. Some animals,
including nematodes, use recrystallization inhibiting proteins to inhibit recrystallization. These
proteins have little or no thermal hysteresis activity but have a role in controlling the shape,
formation and stability of ice crystals by inhibiting recrystallization in freeze-tolerant organ-
isms [6]; whereas antifreeze proteins have both thermal hysteresis and recrystallization inhibi-
tion activity.

Steinernema feltiae is a freeze-tolerant nematode and either thermal hysteresis or recrystalli-
zation inhibition activity or both could be associated with its freezing survival. When frozen
relatively rapidly S. feltiae shows modest abilities to survive freezing with a lower lethal temper-
ature of -5°C [15]. Steinernema carpocapsae is the only entomopathogenic nematode so far
demonstrated to have recrystallization inhibition activity [16]. No other entomopathogenic
nematode has been examined for recrystallization inhibition, ice nucleation or thermal hystere-
sis. Therefore, this paper reports the first detailed study of recrystallization inhibition, ice
nucleation and thermal hysteresis from a freeze-tolerant entomopathogenic nematode, S.
feltiae.

Materials and Methods
Preparing nematode supernatant

Steinernema feltiae was reared in bee wax moth larvae, Galleria mellonella at 22°C. Freshly har-
vested third-stage infective juveniles of S. feltiae were passed through two layers of tissue paper
to obtain active nematodes. Nematodes were washed in artificial tap water [17] and centrifuged
to get a concentrated pellet. The weight of a 10 ul subsample was determined to calculate the
total dry weight of the nematode sample. The water was then removed and the sample trans-
ferred to 1 ml buffer (25 mM Tris HC, pH 8) in a glass homogenizer and homogenized for 15
min on ice until the nematodes disrupted completely. Protease inhibitor was not used as in pre-
vious experiments protease inhibitor itself showed some RI activity, producing misleading
results. The homogenate was then centrifuged at 10,000g for 10 min and the supernatant
taken. If the supernatant was still turbid it was passed through a 0.22 pum syringe filter. The
supernatant was used immediately for recrystallization inhibition assays, thermal hysteresis
and ice nucleation activities, or stored at —70°C for future use.

Splat freezing assays

Recrystallization inhibition was assessed using the splat freezing technique [18] and as
described by Ramlov [19]. Briefly, a 10 pl drop of sample was dropped from a height of about
2.5 m onto the polished surface of an aluminum block pre-cooled to —78°C by dry ice. A por-
tion of the resulting thin disc of ice was transferred between two small glass coverslips to a
microscope cold stage held at —20°C, mounted on a Zeiss Axiophot Photomicroscope. The
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temperature of the cold stage was then raised to the annealing temperature (—8°C) and the ice
crystals were photographed between crossed Polaroids at the start and after 30 min of the
annealing period using a Canon Powershot A640 digital camera. Ice crystal size during anneal-
ing was determined by measuring the diameters of the 10 largest crystals in the images using
Axio Vision v. 4.6 software (Zeiss) run on an Insite PC. Samples demonstrating RI activity
were diluted 1:1 and 1:3 with buffer and subjected to the splat freezing assay. Nematode extract
was also exposed to temperatures in the range 60-80°C for one hr to test if the RI activity was
due to a protein which degrades with heating.

Optical recrystallometry

The optical recrystallometer (Otago Osmometers: www.otago-osmometers.com) measures
changes in optical transmittance of a frozen sample at a preset annealing temperature. Samples
having RI activity do not change their level of optical transmittance with time whereas in sam-
ples with no RI transmittance increases with time as the ice crystals grow and scatter less light
[20]. Optical recrystallometry, compared with splat freezing, is faster and a large number of
samples can be processed at one time. Approximately 200 ul of each sample (nematode
extracts, its dilutions and buffer) was transferred to a glass tube and frozen in an ethanol/dry
ice slush at —78°C for one min. The tubes were then placed in a metal rack partly immersed in
a refrigerated circulator held at —20°C (Fig 1 left) and then slowly warmed to various annealing
temperatures (—6, -7, —8°C). The optical recrystallometer was calibrated with an empty tube
and a tube containing a wooden skewer, to block the light path, producing readings of 100 and
0 transmittance respectively. Dry air was supplied to prevent condensation and the specimen
holder of the optical recrystallometer was kept at the same annealing temperature. As soon as
the annealing temperature was reached, the tubes were removed in turn, wiped with tissue and
placed in the optical recrystallometer (Fig 1 right) to record the light transmittance. The read-
ings were then taken after 1, 3 and 24 hrs of annealing at the test temperature. Each sample was
replicated three times.

Nanolitre osmometry

Steinernema feltiae extract was assayed for thermal hysteresis activity using a nanolitre osmom-
eter (Otago Osmometers: www.otago-osmometers.com). Drops of each sample (nematode

Fig 1. (Left) Metal rack holding the sample tubes, partly immersed in the ethanol bath of a refrigerated circulator.
(Right) Sample chamber of the optical recrystallometer apparatus used for measuring Rl activity.

doi:10.1371/journal.pone.0156502.g001
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extract, 1000 mmolkg'1 standard, buffer and Milli-Q water) were transferred to mineral oil
(Cargille’s A, Cedar Grove, NJ, USA) in watch glasses. The sample wells of the osmometer
were filled with oil (Cargille’s B) and droplets of the samples transferred to it using a micropi-
pette system. They were rapidly frozen by cooling the osmometer to ~ —40°C. The temperature
was then raised rapidly until close to the expected melting temperature, and then slowly
(0.01°C min™") until the last ice crystal melted, which was taken as the melting point. Then the
temperature was decreased rapidly to refreeze the sample and then increased to melt the sam-
ple to a single ice crystal. Just before the ice crystal melted, the temperature was decreased until
a discernible growth of the ice crystal was observed. This was taken as the hysteresis freezing
point. Thermal hysteresis was measured as the difference between melting and hysteresis freez-
ing points. The shape of ice crystal was noted and photographed. The melting points of 1000
mmolKg ™" standard and Milli-Q water were used to correct observed nematode extract melting
points and their osmolality calculated.

Ice nucleation activity

Ice nucleation activity was determined using an ice nucleation spectrometer similar to that
described by Wharton et al [21]. A 10 ul drop of nematode extract, its dilutions with buffer:
1:1, 1:3, 1.7, or buffer was placed on parafilm and drawn up into a thin-walled capillary tube.
The ends of the tubes were sealed with Cargille’s A and cristaseal. Sample tubes were trans-
ferred to aluminum holders (24 samples in 4 holders), a thermocouple inserted in the middle
of each holder and placed in a cooling block the temperature of which was controlled by fluid
circulating from a Haake Phoenix II-C35P programmable refrigerated circulator. Thermocou-
ples were interfaced to a Macintosh computer via a Powerlab A/D interface (Analog Digital
Instruments, London). The temperature records were analyzed using a computer programme
(Chart v3.2.7, Analog Digital Instruments). The temperature was lowered from 2°C to —30°C
at 0.5°C min™' and the temperature of crystallization (T where spontaneous freezing occurs)
was read as the start of each sample exotherm.

Results
Recrystallization inhibition: splat freezing assays

Steinernema feltiae extract (25.3 mg dry weight/ml) showed moderate recrystallization inhibi-
tion (RI) activity. The mean crystal diameter after 30 min annealing at —8°C of nematode
extract (49.1+7.84 pm, mean + SD) was significantly smaller (~ 2.5 times, t = -23.4, P < 0.05)
than that of a buffer control (117.9+7.84 pm) in the splat freezing technique (Figs 2 and 3). The
effect of serial dilution on RI was significant (F = 271.5, P < 0.05), and the activity is lost
(reduced to that of the buffer control) after a 1:3 dilution. However, heating did not reduce the
RI activity of the nematode extract significantly (F = 5.4, P > 0.05) in terms of increase in crys-
tal size (Fig 4). The maximum loss of RI activity is 11.4 + 3.1%, after exposure to 80°C.

Recrystallization inhibition: optical recrystallometry

In general, the pattern observed was that nematode extracts showed little or no change in opti-
cal transmittance with time, indicating RI activity; whereas in buffer, or diluted samples optical
transmittance increased, indicating no RI activity. Since recrystallization is temperature sensi-
tive, different annealing temperatures were tested. The change in the optical transmittance of
the extract was less at —8°C than at —7°C and —6°C (Fig 5). Partial melting of samples occurred
at —6°C and -7°C, so —8°C was chosen as the standard annealing temperature. Nematode
extracts showed little change in readings between 0 and 24 hrs at —8°C compared to the buffer
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Fig 2. Crystal diameters of nematode extracts (closed circles) and buffer controls (open circles) after
annealing at —8°C for 30 min of splat frozen samples. Means +SD, N = 10.

doi:10.1371/journal.pone.0156502.g002

control. The difference between the nematode extracts and buffer samples was significant
(F=106.5, P < 0.05) but the level of transmittance in the buffer control were not significantly
different (Tukey test, P > 0.05) from the second serial dilution (1:3) of the nematode extract.

A similar pattern of RI activity is shown by both the splat freezing assay and optical
recrystallometry (Fig 6). This comparison has been carried out at the same annealing temper-
ature (—8°C) but the annealing time in the splat freezing assay was 30 min and 1 hr in the
optical recrystallometer. However, there was no change in the optical transmittance within the
first hour of annealing (Fig 5), and so the conditions were almost the same in both sets of
experiments.

Nanolitre osmometry

Extracts from S. feltiae showed no thermal hysteresis but had a typical hexagonal crystal
shape when grown from a single seed crystal (Table 1, Fig 7). No thermal hysteresis activity
or hexagonal crystal growth was detected in the 1000 mmol Kg™' standard, Milli-Q water, or
the buffer.

Fig 3. Splat frozen samples of S. feltiae extract (top row) and buffer control (25 mM Tris HCI, pH 8) (bottom
row) after warming to — 8°C (Time 0 = left column) and after annealing at — 8°C for 30 min (right column).
Scale bar =100 pm.

doi:10.1371/journal.pone.0156502.g003
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Fig 4. The effect of temperature on the ice crystal size of the nematode extract after heating at various
temperatures for 1 hr. Means + SD, N = 3.

doi:10.1371/journal.pone.0156502.g004
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Fig 5. The effect of time on optical transmittance (arbitrary units) in the recrystallometer. Pure
nematode extract (open circles), buffer (triangles), a 1:1 dilution of extract with buffer (closed circles) and a
1:3 dilution (squares) at annealing temperatures: -6°C (top graph), -7°C (middle graph) and -8°C (bottom
graph). Means +SD, N = 3.

doi:10.1371/journal.pone.0156502.g005
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Fig 6. The effect of dilution of S. feltiae extracts with tris buffer on crystal diameter (bars) and optical
transmittance (arbitrary units) (line) after annealing for 30 min at — 8°C. Error bars represent tstandard
deviations, N = 10 for crystal diameter and 4 for optical transmittance.

doi:10.1371/journal.pone.0156502.g006

Ice nucleation activity

Steinernema feltiae extract exhibited a weak ice nucleating activity. Spontaneous freezing (T)
of the extract occurred at -14.7 + 1.37°C which was significantly different (P < 0.05) to that of
the buffer control (-20.8 + 1.83°C). Serial dilution had a significant effect on the activity
(F=43.8; P < 0.05) and after a 1:3 dilution it did not differ from that of the buffer control
(P> 0.05) (Fig 8).

Discussion

Infective juveniles of S. feltiae showed a moderate level of RI activity in the splat freezing assay.
This was indicated by smaller ice crystals after the annealing period in comparison to the buffer
control. Heating the extract did not produce significant loss of RI suggesting the activity was
relatively heat stable. The Rl activity of P. davidi IAP is also relatively heat stable [6] and so is
that of several of the plant AFPs [22]. The level of RI was moderate, with an increase in crystal
size during annealing and a reduction in RI after 1:3 dilution, almost to that of a buffer control.
Smith et al [16] compared the RI activity of six nematode species including an entomopatho-
genic nematode, S. carpocapsae. The annealing period and the concentration used (20 min, 18
mg/ml) were different than that in the present study (30 min, 25.3 mg/ml), so the results can-
not be directly compared. However, despite the lower concentration and shorter annealing
time, the crystal size was smaller in two of the six species (S. carpocapsae and P. davidi) than
that of the S. feltiae extract shown here. This places S. feltiae in a moderate RI category. How-
ever, a moderate level of RI may be of importance for this moderately freeze tolerant species
which survives intracellular freezing to -3°C [23]. Ramlev et al [19] suggest that for a freeze tol-
erant animal, RI may be important to survive the freezing stress. It plays a role in inhibiting the
growth of ice crystals and/or in controlling the size, shape and location of ice crystals after their

Table 1. Nanolitre osmometer measurements on Steinernema feltiae extract and controls.

Sample

S. feltiae extract
25 mM Tris HCI
MQ Water

Means + SE, N =4

doi:10.1371/journal.pone.0156502.t001

Osmolality (mmol kg™) Thermal hysteresis (°C) Ice crystal shape
191 +£13 0.03 Hexagonal
694 0.02 + 0.01 Disc
0 0 Disc
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Fig 7. Growth of a single Ice crystal in nematode extract (top) with clear hexagonal faceting, and a disc
shaped crystal in Tris HCI (bottom) as seen on a Nanolitre osmometer. Scale bar = 100 pm.

doi:10.1371/journal.pone.0156502.g007

formation [6, 24]. The moderate RI activity of S. feltiae may play a role in the size and shape of
ice crystals, as indicated by their appearance in freeze-substituted specimens [23]. This protects
the nematode from damage and enables it to survive intracellular freezing to -3°C but not to
the same extent as P. davidi, which has strong RI activity and survives to much lower

a

_15-§\\b be e
I ok SE T

whole 1:1 13 1:7 buffer
extract

Tc (°C)

Dilution

Fig 8. Ice nucleation activity in S. feltiae in comparison with buffer control (25 mM Tris, pH 8). Error
bars are tstandard deviations, N = 24. Different small letters above the error bars represent that treatments
are significantly different (P < 0.05).

doi:10.1371/journal.pone.0156502.g008
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temperatures [14]. However, there is not a direct correspondence between RI activity and nem-
atode survival [14], suggesting that other factors are also important.

The optical transmittance of nematode extract did not change during annealing at -8°C,
whereas that of buffer controls and diluted extract increased significantly. There was good cor-
respondence between crystal size in the splat freezing assay and optical transmittance in the
recrystallometer in similar samples. This indicates that both assays are detecting recrystalliza-
tion, although the physical processes involved in the two assays are likely to be different.
Recrystallization is both temperature and time sensitive, so both assays are influenced by these
factors [18]. Wharton et al [20] measured the RI of various samples and reported similar results
after comparing the two techniques but they used short annealing times (up to 30 min). The
use of much longer annealing times (24 hr) gives more consistent results with the optical
recrystallometer and annealing within a refrigerated circulator allows large numbers of samples
to be measured. The technique may thus be useful for screening large number of samples, such
as column fractions, before confirming RI activity using the splat freezing assay.

No thermal hysteresis was detected in the nematode extract. An hexagonal crystal shape,
however, suggests the binding of a substance, most probably a protein, to the ice. In most cases
this is due to an antifreeze protein [11, 25]. The lack of thermal hysteresis activity in our nema-
tode sample indicates the absence of an antifreeze protein or its presence in low concentrations
[26]. Antifreeze proteins are usually present in freeze avoiding organisms [7], and the absence
of thermal hysteresis in a freeze tolerant organism was expected. Duman et al [27] suggest that
freezing tolerance may be associated with low, rather than high, levels of thermal hysteresis.
However, some freeze tolerant insects have been reported to possess antifreeze proteins [28]
and some freeze avoiding animals may have little RI activity [29].

Steinernema feltiae had weak ice nucleating activity, allowing the extracts of the nematode
to freeze at —14.6°C. However, this activity is unlikely to be involved in the survival of the nem-
atode, as this species can survive freezing down to —3°C at the most. Thus, nucleation of the
whole nematode seems to be exogenous as nematodes are essentially aquatic and rely on inocu-
lative freezing [9]. Once the surrounding water is frozen, nematodes freeze by ice inoculation
from the surrounding water via natural body openings, such as the secretory-excretory pore
[24]. Most freeze tolerant organisms produce ice nucleating agents to ensure freezing at high
sub-zero temperature, thus protecting the organism from freezing stress [12]. An extract of the
alpine cockroach Celatoblatta quinquemaculata, for example, freezes at —5°C having strong
nucleators [21]. Conversely, P. davidi, has no ice nucleating activity, rather produces ice nucle-
ation inhibitors [30]. The weak ice nucleating activity of S. feltiae is thus probably an incidental
property of some of its component molecules or of its intestinal contents.

In conclusion, S. feltiae has no thermal hysteresis or strong ice nucleating activity. The
recrystallization inhibition activity found may assist the freezing tolerance of the nematode but
there could be other factors involved, such as production of low molecular weight cryoprotec-
tants [5], that may assist in their freezing survival.
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