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Abstract
Provenance studies are an increasingly important analog for understanding how trees

adapted to particular climatic conditions might respond to climate change. Dendrochrono-

logical analysis can illuminate differences among trees from different seed sources in terms

of absolute annual growth and sensitivity to external growth factors. We analyzed annual

radial growth of 567 36-year-old pitch pine (Pinus rigidaMill.) trees from 27 seed sources to

evaluate their performance in a New Jersey Pine Barrens provenance experiment. Unex-

pectedly, missing rings were prevalent in most trees, and some years—1992, 1999, and

2006—had a particularly high frequency of missing rings across the plantation. Trees from

local seed sources (<55 km away from the plantation) had a significantly smaller percentage

of missing rings from 1980–2009 (mean: 5.0%), relative to northernmost and southernmost

sources (mean: 9.3% and 7.9%, respectively). Some years with a high frequency of missing

rings coincide with outbreaks of defoliating insects or dry growing season conditions. The

propensity for missing rings synchronized annual variations in growth across all trees and

might have complicated the detection of potential differences in interannual variability

among seed sources. Average ring width was significantly larger in seed sources from both

the southernmost and warmest origins compared to the northernmost and coldest seed

sources in most years. Local seed sources had the highest average radial growth. Adapta-

tion to local environmental conditions and disturbances might have influenced the higher

growth rate found in local seed sources. These findings underscore the need to understand

the integrative impact of multiple environmental drivers, such as disturbance agents and cli-

mate change, on tree growth, forest dynamics, and the carbon cycle.
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Introduction
Provenance trial studies assess the relative success of trees from different seed sources planted
in a common plantation. As global climate change is expected to have local impacts on forest
dynamics and productivity, provenance studies are useful for understanding species-specific
responses to climatic change. Transferring seedlings from a region in which they are adapted
to a new location simulates an abrupt change in climate. Consequently, these studies can indi-
cate how a particular species might fare under altered environmental conditions. Seed source
performance within the plantation is often evaluated with metrics such as tree height, bole vol-
ume, phenology, serotiny, or survival and fecundity (e.g. [1,2]). Seed source performance can
also be assessed through comparisons with trees from local seed sources, which are expected to
be best adapted to the climatic and environmental conditions of the test site [3]. However,
some populations can benefit from being transferred to a region with different climatic condi-
tions (e.g.[4,5]), suggesting that local seed sources might not always perform best under future
climate change scenarios. The information gleaned from provenance trial studies can guide for-
est managers when selecting seed sources for local reforestation [6,7].

Only a few provenance experiments have evaluated seed source performance using tree-ring
methods (e.g. [8–10]). Tree-ring analysis can complement common forest mensuration metrics
by providing information on radial growth patterns, trends, and response to climate over time.
These studies illustrate how tree provenance (and presumed genetic differences) could influ-
ence a tree’s growth response to climate in the plantation setting. Using this approach, McLane
et al. [9] found differences in the growth-climate sensitivity among seed provenances of Pinus
contorta (Dougl. var. latafolia Engelm.) across British Columbia and Yukon Territory, Canada
where trees originating from warm sites were more sensitive to climate in colder sites and vice
versa. These results suggest that genetics can play an important role in forest productivity
under a warming climate. Similarly, Savva et al. [10] found that some distant and southern
seed sources from southern Canada and the northern United States had higher mean growth
relative to local populations in an Ontario, Canada provenance study. In contrast, Cook et al.
[8] found relatively small to insignificant differences among seed sources of loblolly pine
(Pinus taeda L.) growing within individual plantations across the southern United States.

Here, we evaluated trees from a pitch pine (Pinus rigidaMill.) provenance study established
in 1974 in the New Jersey Pinelands National Reserve. We used tree-ring analysis to compare
annual growth of trees propagated from 27 distinct seed sources spanning an area covering
nearly 10 degrees of latitude and 16 degrees of longitude in the eastern United States (Fig 1;
[11,12]). Our objective was to determine whether absolute radial growth, or annual growth sen-
sitivity to local climate, differed among seed sources.

Materials and Methods
In May 2010, 953 pitch pine trees were cored in a provenance plantation in the Brendan T.
Byrne State Forest (formerly known as the Lebanon State Forest) in Ocean County, New Jersey,
USA. Christian M. Bethmann of the New Jersey Division of Parks and Forestry, and superin-
tendent of the Brendan T. Byrne State Forest, granted sampling permission. Trees in the plan-
tation site were growing on sandy and well-drained soil. The provenance plantation was
designed as a compact family block, with seed sources randomized in each block, and families
randomized within each seed source [11]. The pitch pine trees for this study originated from
27 seed sources spanning 34.74–44.33° N and 68.18–84.45° W (Fig 1, Table 1). Six of the largest
trees were selected for coring in each seed source plot. Using a gas-powered drill adapted for an
increment borer, each tree was cored bark-to-bark (i.e. one core through the entire stem) such
that two diametrically opposed radii were collected at the same time. Cores were taken<0.2 m
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above the root collar of each tree. Core samples were prepared using standard dendrochrono-
logical techniques [13] and scanned at 1200 dots per inch for image analysis.

Scanned cores were cross-dated and measured to 0.001 mm precision using WinDendro
software version 2009b [14]. Missing (locally absent), micro and false rings were a common
feature in the plantation trees. Due to the limitations of image analysis technology for identify-
ing these features, cross dating in problem areas was verified with a stereo microscope [15].
Common latewood variation and false rings patterns among trees were especially important
for visual cross-dating. Ring-width measurements were statistically tested for cross-dating pre-
cision using the program COFECHA [16].

Subsequent analyses were limited to 21 randomly selected trees from each seed source
because Bates Mountain (BM) had the least number of sampled trees (n = 21). In some cases,
due to occasional damage, only one series was retained per tree. As a result, the number of radii
analyzed per seed source varied from 39–42 series (Table 1), leading to a total of 567 trees and
1,109 series used for analysis.

The high frequency of missing rings prompted a collection of samples from 21 trees that
naturally regenerated adjacent to the plantation (the Volunteer population). Volunteer trees
were destructively sampled using a chainsaw and disc samples were collected at one-meter
intervals along the stem of each tree. The bottom cross-section of the Volunteer trees had an
average pith date of 1976 (min: 1975; max: 1978), thus, it is most probable that the Volunteer
trees were derived from extant, local, and mature pitch pine trees. The basal (~0.2 meter
height), middle (~5 meters height) and near-top (~8 meters height) stem discs from each

Fig 1. Map of 27 Pinus rigida seed sources from the provenance study. The diamond indicates the location of
the Brendan T. Byrne plantation site in New Jersey. Light gray represents the P. rigida range [48].

doi:10.1371/journal.pone.0154730.g001
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Volunteer tree were analyzed to quantify the frequency of missing rings as a function of tree
height. Each disc was divided into eighths and rings were classified as fully present, pinching
(partially present), or entirely missing in each eighth section. Ring-width data from the Volun-
teer basal samples were compared to each seed source because the basal height was nearly
equivalent to coring height for the plantation trees.

Differences in the percentage of missing rings and average radial growth among seed
sources were examined in relation to seed source May-September average temperature and
precipitation (derived from PRISM monthly normals from 1981–2010 [17]), latitude, and dis-
tance from the plantation site. Seed sources were grouped into the five northernmost (CD, MB,

Table 1. List of seed sources and relevant statistics.

Site State Distance from Plantation
(km)

#
Series

Series
Intercorr.a

Total Missing Rings
(%)b

1992 Missing Ring
(%)c

EPSd

Cadillac Cliffs (CD) ME 721 42 0.644 6.35 42.86 0.988

Mare Brook (MB) ME 587 42 0.643 9.21 71.42 0.989

Charlestown (CH) NH 413 42 0.679 9.68 95.23 0.989

Concord Plains (CP) NH 449 41 0.676 10.79 95.24 0.986

Orange (OR) MA 352 40 0.688 10.48 100 0.987

Wellfleet Bay (WB) MA 445 41 0.718 5.71 61.90 0.990

Carolina State Forest
(CS)

RI 300 42 0.710 8.10 61.90 0.988

Stokes State Forest (SS) NY 142 42 0.705 9.05 95.24 0.989

Long Pond Road (LP) NY 184 41 0.726 6.03 76.19 0.990

Lebanon Lakes (LE) NJ 9 41 0.757 6.03 71.43 0.989

Helmetta (HE) NJ 53 41 0.703 4.44 76.19 0.991

Lakehurst (LA) NJ 27 42 0.733 5.08 66.67 0.987

Big Pine Flat Ridge (BP) PA 247 40 0.680 6.14 78.95 0.985

VOLUNTEER — - 42 0.742 4.13 47.62 0.990

Batsto (BA) NJ 30 40 0.749 3.63 72.73 0.988

Cantwell Cliffs (CN) OH 684 41 0.635 8.73 90.48 0.988

Great Egg Harbor River
(GE)

NJ 48 39 0.718 5.87 85.71 0.991

Cumberland (CB) NJ 71 41 0.741 7.14 95.24 0.990

Trainfire Road (TR) MD 209 42 0.642 8.89 76.19 0.991

Bald Knob Run (BK) OH 754 40 0.668 6.35 76.19 0.989

Kyle Cemetery (KC) WV 571 41 0.695 6.19 71.43 0.990

Grooms Ridge (GR) VA 429 42 0.639 8.89 95.24 0.992

Pine Mountain (PM) KY 744 41 0.640 6.83 80.95 0.985

Mount Olivet (MO) VA 628 41 0.676 11.75 94.74 0.985

Big Bend (BB) KY 916 41 0.691 7.04 83.33 0.989

Linville Mountain (LM) NC 788 40 0.626 8.41 71.43 0.988

Bates Mountain (BM) TN 928 41 0.626 5.40 61.90 0.985

Crumbly Mountain (CM) GA 991 42 0.615 7.30 66.67 0.991

a: Average series intercorrelation based on Spearman’s rank correlations.

b: Percentage of missing rings in all trees calculated over the 1980–2009 period. If a ring was present along one radius (series) of a tree, but absent in the

other, it was counted as present overall.

c: Percentage of trees missing the 1992 growth ring. If the 1992 ring was present along one radius (series) of a tree, but absent in the other, it was

counted as present overall.

d: The Expressed Population Signal (EPS) calculated over the 1980–2009 period.

doi:10.1371/journal.pone.0154730.t001
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CH, CP, OR), southernmost (CM, MO, BB, LM, BM), coldest (CD, MB, CH, CP, OR), warmest
(BA, CB, BM, TR, BB), local (LE, HE, LA, BA, GE; all<55 km away) and most distant (CM,
BM, BB, LM, BK) seed sources. Some groups are similar in their seed source composition (e.g.
most distant and southernmost) or identical (northernmost and coldest), therefore, these
groups were not directly compared. A Kruskal-Wallis H test and Wilcoxon rank-sum tests
were used to test whether there were statistically significant differences in the percentage of
missing rings between trees from different seed source groups. When using the Kruskal-Wallis
H test for comparing more than two groups, pairwise comparisons were conducted using Wil-
coxon rank-sum tests with a Bonferroni p-value correction. Because sample replication began
to decline prior to 1980 (i.e. not all cores captured the earliest growth rings), the percentage of
missing rings was calculated relative to the 1980–2009 period. A year was considered missing
only if the growth ring was absent on both radii from each tree. Next, we used bootstrap resam-
pling, with 1000 replicates, to estimate 95% confidence intervals for annual ring-width mea-
surements averaged across all trees from a given seed source group for the 1980–2009 period.
To compare a pair of seed source groups, we determined annual mean ring-width values to be
significantly different if there was�5% overlap between the two sets of 1000 randomly ordered
bootstrap replicate values.

To compare interannual growth variability and climate response among seed sources, each
series of raw measurements from a provenance was standardized to remove potential non-cli-
matic growth trends, such as those related to the allometric growth trend, using the program
ARSTAN [18]. Prior to standardization, radial measurements were power transformed to min-
imize heteroscedastic variance often found in ring-width measurements [19]. After transfor-
mation, a cubic smoothing spline with a 50% frequency response cut-off equal to 2/3 the series
length was fit to the power-transformed series. The residuals from the spline fit were used to
produce a biweight robust mean chronology for each seed source. Only the mean chronologies
from 1980–2009 were used in further analyses to avoid reduced tree replication and potential
transplant shock.

We performed a principal component analysis (PCA) on the chronologies to identify
unique modes of variation within all of the seed sources, and a Rule-N test was used for calcu-
lating the number of significant components. To evaluate the response of tree growth to cli-
mate, we calculated Pearson correlations between the average chronology index of all seed
sources and total monthly precipitation and average maximum temperature from 1980–2009.
The years 1992–1994 were not included in these analyses because of strong evidence indicating
a severe insect defoliation and slow recovery within the stand. The meteorological data were
taken from two stations within 20 km of the plantation site: the nearest for monthly maximum
average temperatures was the McGuire Air Force Base, and the nearest for precipitation data
was the Indian Mills meteorological station.

Results

Tree-ring analysis and missing rings
Missing growth rings were common in all seed sources and initially complicated the cross-dat-
ing process. Years with a high frequency of missing rings included 1990, 1992–1994, 1998–
2000, and 2006–2008 (Fig 2). There were no missing rings prior to 1990 and local seed sources
(<55 km from the plantation) had a lower percentage of missing rings relative to all other seed
sources in all years. The year 1992 had the highest frequency of missing rings, with 42.86–
100% of trees missing a ring within individual seed sources (Table 1). In fact, approximately
180 trees (~360 or 19% of all series) were examined before it was determined that a growth ring
for this year was missing in most samples. When present, 1992 was particularly narrow (Fig 2).
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The year 1999 had the second highest frequency of missing rings with 69% of series missing
this ring across all seed sources. Although several individual trees had no missing rings, there
were no seed source collections without missing rings. From 1980–2009, Batsto (BA) had the
lowest percentage of missing rings across all trees (3.63%), and Mount Olivet (MO) had the
highest (11.75%). Growing adjacent to the plantation, the Volunteer trees had the second low-
est percentage of missing rings in comparison to all seed sources (4.13% from 1980–2009).

In comparing missing rings between seed sources groups (Fig 3), the five northernmost,
southernmost, and local (central) seed sources had a significantly different percentage of miss-
ing rings (Kruskal-Wallis H-test; p< 0.001). Local seed sources have a significantly lower per-
centage of missing rings relative to northernmost and southernmost seed sources (pairwise
Wilcoxon test: p< 0.001 and p = 0.007, respectively). Northern and southern seed sources did
not have a significantly different percentage of missing rings (pairwise Wilcoxon Test:
p = 0.09). However, the coldest seed sources had a higher percentage of missing rings than the
warmest seed sources (Wilcoxon Test: p< 0.001). Local seed sources had a lower percentage of
missing rings than the most distant seed sources, though this result was marginally statistically
significant (Wilcoxon Test: p = 0.049).

Stem analysis
Analysis of samples at one-meter intervals along the stems of Volunteer trees illustrate that the
propensity for missing rings changes as a function of height along the tree bole (Fig 4). An
analysis of fully present, pinching, and absent rings within each eighth area section of each disk
sample from the base, middle, and top of the Volunteer trees reveals that 1992, 1999, and 2006
had the highest amount of pinching and fully missing rings in the basal and middle sections of
the stem; many missing or pinching rings on the lower part of the stem became full rings as
stem height increased. Only 17% of the analyzed sections had a fully present 1999 ring in the
basal samples, but this increased to 95% in the top samples. Similarly, 73% of the sections had a
full 2006 ring in the basal section, which increased to 100% in the top samples.

Fig 2. Missing rings. Left: Annual percentage of total missing rings across all series (including all seed sources;
gray), local seed sources (< 55 km away from the plantation site; orange), and distant seed sources (>55 km from
the plantation; red). Right: Scanned image of pitch pine cores with lines pointing to the year 1992, which is apparent
in the far-left tree core as a micro ring, almost imperceptible in the middle core, and clearly evident in the far right
core.

doi:10.1371/journal.pone.0154730.g002
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Growth analysis
In viewing all seed sources along latitudinal and climatological gradients, there is considerable
variability in average ring width among trees of individual seed sources (S1 Fig). However, at

Fig 3. Percentage of missing rings for different seed source groups. The percentage of missing rings for
all trees from the five northernmost, southernmost, local, coldest, warmest, and most distant seed sources.
The percentage of missing rings for each tree was determined over the period 1980–2009.

doi:10.1371/journal.pone.0154730.g003
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the overall seed source scale, average ring width tends to increase with decreasing latitude and
increasing seed source temperature (S1 Fig). These trends are interrupted by high growth rates
associated with local and Volunteer seed sources (local seed source latitude range: ~39.5–
40.4°N, and temperature range: ~20.7–21.2°C). There is no clear relationship between mean
tree-ring width of each seed source and provenance precipitation. Local seed sources have
larger average ring widths, but beyond this local region, there is no apparent relationship
between distance from plantation and average radial growth (S1 Fig).

A bootstrap analysis of average ring width for individual years indicates the temporal char-
acteristics of growth differences among seed source groups from 1980–2009 (Fig 5; S1 Table).
Local seed sources had significantly wider rings relative to northernmost and southernmost
seed sources in 97% and 73% of the analyzed years, respectively. Average radial growth was
higher in the southern group compared to the northern group during 67% of the 1980–2009
period (Fig 5). The warmest seed sources had significantly wider average ring widths than the
coldest seed sources during 93% of the same period. Local seed sources did not have signifi-
cantly different average ring widths relative to the most distant seed sources in the earlier part
of the record. However, local seed sources had wider average rings in 67% of the years overall;
this was especially true following major missing ring events. Distant and southernmost seed
source growth significantly exceeded local growth only in 1985.

Interannual growth variability and climate response
A high interseries correlation within each seed source (range: 0.615–0.757) indicates that all
series crossdated well (Table 1). Additionally, high Expressed Population Signal (EPS; [20]) sta-
tistics indicate a strong common signal in individual seed source chronologies (range: 0.985–
0.992; Table 1). Annual growth was highly coherent among all seed source chronologies, rang-
ing from r = 0.81–0.99 (p< 0.05) from 1980–2009 (S2 Fig). Further, all chronologies loaded
strongly and positively onto the first and only significant principal component, which
accounted for 95% of the total variance. Considering the strong similarity in interannual

Fig 4. Volunteer stem analysis. The percentage of total eighth sections showing absent (black), pinching
(medium gray), or fully present (light gray) rings for the discs along different heights of the stem of Volunteer trees.
The basal (B), middle (M), and top (T) sections are shown. Fewer than six trees extended before 1994 for the top
disc sample, therefore we truncated the analysis at that year for the top stem sample only. All of the basal and
middle sections extended prior to 1990.

doi:10.1371/journal.pone.0154730.g004
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variability among all seed sources, we computed correlations between an average of all seed
source chronologies and monthly climate data. The overall climate sensitivity was weak and
the only significant monthly correlations were between the average tree-ring index and current

Fig 5. Seed source average growth through time. Average yearly tree-ring width and 95% bootstrap
confidence intervals of trees from the five northernmost, southernmost, local, coldest, warmest, and most
distant seed sources.

doi:10.1371/journal.pone.0154730.g005
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January maximum temperatures (r = -0.38, p< 0.05) and current July precipitation (r = 0.45,
p< 0.05) (Fig 6).

Discussion
Our results demonstrate that pitch pine seed sources growing in a common plantation site
have different radial growth rates, but similar interannual growth variability. Due to this com-
mon variability, we were not able to identify differences in climate sensitivity among seed
sources. We found copious missing (or locally absent) rings indicating that external drivers
could effectively reduce radial growth on lower tree stems of all seed sources. However, seed
sources from the local, southernmost, and warmest locations had fewer missing rings and
higher radial growth than seed sources from the northernmost and coldest regions.

Missing rings, drought, and defoliation
One of the most striking and unexpected results was the high frequency of missing rings in all
provenance populations. Missing rings occurred in more than 10 of the 20 years prior to our
sampling, but there were particularly high rates of missing rings across all seed sources during
the years 1992, 1999, and 2006 (Fig 2). The local seed sources had a lower percentage of missing
rings relative to all other seed sources (Fig 3), though these populations were still strongly
affected by the 1992 missing ring event. The ubiquity of missing rings found in this study is a
testament to the necessity of cross-dating in tree-ring studies. Although the pitch pine trees

Fig 6. Climate response. (A) Correlations between monthly maximum temperature/monthly precipitation and
average ring-width index from all seed sources combined. Pearson correlation coefficients were computed from
1980–2009 and the years 1992–1994 were not included. The dashed lines denote the 95% confidence limit
(2-tailed test). (B) Comparison between July precipitation (gray) and average ring width (orange) index from 1980–
2009, with dashed lines indicating major missing ring events.

doi:10.1371/journal.pone.0154730.g006
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were growing in an open plantation, stand-wide environmental disturbances clearly impacted
the majority of trees in this location.

Due to the unique severity of missing rings in our series, we employed a stem analysis, as
recommended by Wilmking et al. [21]. Stem analysis of the Volunteer population shows that
the frequency of missing rings is highest near the base of the tree, which corresponds to the
height at which core samples were taken. Partial or missing rings in the lower stem are often
reported as a result of stressful environmental conditions [22–24]. Wilmking et al. [21] discuss
primary physiological reasons behind missing rings in low stem sections, including reduced
rates of auxin transport, or a general lack of resources that restricts cytogenesis farther away
from the source of carbohydrates (needles). Considering the detected climate sensitivity to July
precipitation (Fig 6A), July of 1999 had a relatively low level of precipitation (2.5 cm; Fig 6B).
Therefore, it is possible that some of the missing rings may be explained by growing season
drought. In contrast, the year 1992 had the highest frequency of missing rings and average
moisture conditions (July precipitation = 15.01 cm). The year with the third highest number of
missing rings, 2006, was also a year of slightly above-average moisture conditions (July precipi-
tation = 13.1 cm). This suggests that other factors besides climate are likely contributing to
severe growth reductions in the plantation trees.

Some years with a relatively high proportion of missing rings correspond to periods of insect
defoliations in the New Jersey Pine Barrens. A defoliation signature in tree rings can be
detected in multiple ways: production of white growth rings [25], a severe reduction of growth
immediately following a defoliation event [26], or a failure of a tree to produce a complete ring
along the entire length of the stem. Alfaro and MacDonald [26] found that Western false hem-
lock looper (Nepytia freemanii) caused growth reductions in Douglas-Fir (Pseudotsuga menzie-
sii) for 1–5 years following a defoliation event. Abrupt growth reductions were also evident in
this study. After radial growth suddenly declined (or ceased), recovery was slow and synchro-
nous across many trees (e.g. 1992–1994 for all seed sources (S2 Fig)). Trees of local seed sources
generally recovered a faster growth rate after missing ring events, particularly after 1999 and
2006 (Fig 5). However, after the 1992 event, local seed sources had marginally higher growth in
1993, and did not have significantly different growth in 1994 (S1 Table). This suggests that
local seed sources might not have been as resilient after the 1992 missing ring event.

Three insect defoliators could have left a fingerprint on the forests of southern New Jersey
during the period of our study: the Eastern pine looper (Lambdina pellucidariaGrote and Robin-
son), pine needleminer (Exoteleia pinifoliella Chambers), and gypsy moth (Lymantria dispar Lin-
naeus) [27–29]. Although there is no eyewitness account of insect defoliation in the plantation,
there are numerous reports of defoliations that occurred in the region. The Eastern pine looper
damaged roughly 550,000 acres of forest in New Jersey in 1991 and 1992 alone [27]. In the New
Jersey pinelands near the study plantation, pine looper eggs hatched in late June of 1991 and the
larvae fed from early July to early November (D. Twardus, pers. comm.). A USDA Forest Service
map of pine looper damage indicates that the area around and including Brendan T. Byrne State
Forest was heavily defoliated by November of 1991 (Fig 7). Autumn frosts often kill feeding pine
loopers, however, the first autumn frost in 1991 arrived late and likely allowed feeding to extend
longer than usual. Additionally, it was observed that the late frost allowed many of the loopers to
pupate, and therefore survive and continue the cycle in the following year (D. Twardus, pers.
comm.). Our tree-ring data support evidence of Eastern pine looper defoliation as there was nar-
row growth in 1991 when the insects emerged, followed by a high percentage of missing rings in
1992, and a slow recovery of growth after 1992 (Fig 2; Fig 5).

Similar observations were made in summer 1998. The Eastern pine looper and pine needle-
miner damaged 390,000 acres of pitch pine across New Jersey [30]. High-resolution aerial sur-
vey maps from 1998, provided by the USDA Forest Service, indicate that there was damage
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caused by the pine needleminer and pine looper within and surrounding the Brendan T. Byrne
State Forest. The mature needleminer caterpillar is often present in early spring [31]. New eggs
hatch in late July, and larvae continue to mine needles until they pupate in late May to early
June of the following year [32]. The life cycle of the needleminer caterpillar would most likely
add an additional 3–4 months of potential tree damage during a simultaneous outbreak with
the Eastern pine looper. This defoliation event, in addition to drought conditions, could have
contributed to the missing rings in the late 1990s across the plantation site. Reduced growth
and missing rings in 2000 suggest that these trees recovered slowly.

Gypsy moth defoliation in both oak and pine-dominated stands in the New Jersey Pine Bar-
rens has been documented [33]. Gypsy moth populations increased significantly in this region
during the early 2000s and extensive defoliations occurred in late spring and early summer of
2006 and 2007 [28,29]. Though gypsy moths prefer oak species as a host species, pitch pine is
considered an intermediate host [34]. Extensive gypsy moth defoliation can result in reduced
annual increment of pitch pine [35], especially where pine is mixed with many oak trees or
other preferred species [36]. Oak trees were occasionally removed from the study site to reduce
competition, which makes it less likely that the gypsy moth was an important defoliator in the
plantation. However, aerial survey maps from 2006–2009 show gypsy moth defoliation within
a 5 km radius of the plantation. While the 2008 damage assessment map suggests the planta-
tion was directly affected by these defoliators, there are no reports of gypsy moth defoliation in
early June of that year within the plantation complex (T. Ledig, pers. obs.). Of the three missing
ring events since 1990, the 2006–2008 event was the least severe. With pitch pine only being an
intermediate host of gypsy moth, no insect outbreaks in the plantation site observed or known,

Fig 7. New Jersey defoliation damage in October-November 1991. The gray represents the extent of pine
looper defoliation damage. The black dot is the location of the Brendan T. Byrne State Forest.

doi:10.1371/journal.pone.0154730.g007
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and average to above-average moisture conditions, the trigger(s) of this missing ring event in
the provenance plantation trees remains unknown.

Annual growth increment and variability
Our results suggest that local seed sources performed better in terms of radial growth, which
supports previous research from this provenance plantation. Kuser and Ledig [11] analyzed
mean bole volume of 12-year old pitch pines from 17 seed sources, originating from New Jersey
to Massachusetts. They found a negative relationship between mean volume and distance from
provenance (R2 = 0.83, p< 0.05), where trees from nearby seed sources (5.3–24.8 km away)
had the largest mean bole volume. Our results indicate a similar degree of local environmental
adaptation (Fig 5). Indeed, local seed sources are often used for reforestation efforts (i.e. the
‘null transfer’) because in many cases, they are found to have better fitness relative to more dis-
tant seed sources under current climatic conditions [37]. Additionally, asymmetric gene flow
from the core of a species range to the periphery might impede adaptation on the margins of a
species range, therefore, tree populations in the center of the range might be best adapted to
their local climate [3,37,38].

In common plantation sites, seed sources from particular regions sometimes outperform those
from other regions. Besides local seed sources, our results indicate that the southernmost and
warmest seed sources had higher average radial growth than the northernmost and coldest seed
sources in the plantation during the majority of analyzed years (Fig 5). Trees from the warmest
seed sources also had a significantly lower percentage of rings compared to the coldest seed
sources. It should be noted that one of the five warmest seed sources in our study, Batsto (BA), is
also included in the local group of seed sources, which was found to have particularly high growth
rates. Even with Batsto not included in the “warmest” seed source group, this group still had sig-
nificantly higher average ring widths than the coldest seed sources during 76% of the analyzed
years (results not shown). Other provenance studies investigating radial increment [10] and tree
height [7] have similarly shown that seed sources from warmer locations can grow better than
those from colder locations in a common plantation. In some species, this is thought to reflect the
negative relationship between growth rates and tolerance to freezing temperatures [5]; trees from
warmer provenances might have naturally higher growth rates but lower cold tolerance than trees
from cooler provenances. Such differences might allow populations frommilder climates to out-
compete northern populations in common garden settings. There was no discernible relationship
between pitch pine growth in the plantation and provenance precipitation in our study.

PCA results and correlations among all chronologies indicated that the seed sources did not
differ considerably in terms of interannual variability in radial growth. Prevalent missing rings
might have contributed to the synchronization of radial growth patterns and common variabil-
ity among all seed sources (S2 Fig). Tree growth across the plantation was significantly corre-
lated to July precipitation of the growing season, a pattern previously reported for pitch pine
[39]. Additionally, there was a negative correlation between average index and January maxi-
mum temperatures, though this correlation was marginally significant. This latter result is sur-
prising considering a Pederson et al. [40] study that found positive correlations between winter
temperatures and pitch pine chronologies. However, the positive winter temperature response
was apparent only in sites from the northern Hudson Valley, and it was nonexistent at a site in
the mid-Hudson Valley region. Therefore, the pitch pines in central New Jersey are not
expected to have a strong positive winter signal given evidence that the strength of a winter
temperature signal declines as one moves south from a northern range margin [8,41].

It is possible that no disparities in annual growth variability or climate response exist
among the seed sources. Reports of negligible differences in seed-source sensitivities to climate
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are not unprecedented [8]. However, in the Cook et al. [8] study there was sometimes consider-
able variability between trees within each seed source, whereas we found very high series inter-
correlations and a strong common signal among seed sources. Potential stand-wide
disturbances, such as defoliation event(s), hypothetically synchronized growth across the plan-
tation during certain periods. This could have hindered identification of differences in climate
sensitivity among seed sources, if such differences exist.

Implications
An important implication of this study lies at the intersection of climate, defoliators, and
growth of different pitch pine seed sources planted in the Brendan T. Byrne State Forest. Based
on higher growth rates and an overall lower percentages of missing rings in local seed sources,
our results suggest that these seed sources might better withstand the combination of stressful
environmental conditions (biotic or abiotic) in the study area. Growing pitch pine trees from
non-local locations could further reduce carbon uptake relative to natively sourced trees as a
consequence of defoliation events and other drivers of missing rings. However, based on our
missing rings analysis and regional forest health reports, we found that all trees were strongly
affected by the 1992 missing ring event and presumed pine looper defoliation. Defoliations can
have significant impacts on regional carbon uptake; Clark et al. [33] quantified the influence of
“transient” disturbance (i.e. defoliations) on forest carbon in oak-, mixed-, and pine-dominated
stands in the New Jersey Pine Barrens and found that gypsy moth defoliations in 2006 and
2007 reduced CO2 uptake relative to 2005, a year with minimal defoliation.

The relationship between defoliating insects, low precipitation, and tree growth should be
considered in the context of a warming climate. While temperature effects on defoliators might
be negligible or species dependent [42,43], climate change is predicted to influence the phenology
and spatial characteristics of insect and host-plant interactions [43]. Variability in moisture can
also influence insect populations, and moisture deficits can predispose trees to insect attacks
[44,45]. Warming temperatures could enhance potential evapotranspiration and trigger drought-
like conditions regardless of precipitation trends [46,47]. Heat-enhanced drought might make
the interaction between climate change, insect outbreaks, and tree growth more complex.

Conclusion
The results of our study reveal some of the many factors that influence the growth of plantation
pitch pine originating from different seed sources. These seed sources show differences in the
rate of absolute radial growth, but do not vary significantly in annual variability. All trees,
regardless of seed source, were stressed during the same years such that basal radial growth
nearly ceased and slowly recovered over the course of a few years. It is hypothesized that these
years of low growth are most likely the result of severe insect defoliation, low moisture avail-
ability, or a combination of both. Importantly, the high frequency of missing rings across most
samples emphasizes the necessity of cross-dating for reliable tree-ring analysis. Local seed
sources performed better under the extreme environmental conditions of the past three
decades, as they had statistically higher growth rates during most years and fewer missing
rings. The northernmost and coldest seed sources had the lowest radial growth. Tree growth
response to stressful environmental conditions could have important implications for carbon
dynamics in a reforested system.

Supporting Information
S1 Fig. Average ring width of all trees across all seed sources. The average ring width from
1980–2009 is shown for each tree (gray line) across all seed sources arranged based on seed
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source locational or climatological characteristics. The red dot indicates the mean tree-ring
width value for all trees from a single seed source. The black lines are trees from the Volunteer
population.
(TIFF)

S2 Fig. Seed source chronologies. All seed source chronologies are arranged from north to
south going down each column from left to right.
(EPS)

S1 Table. Annual bootstrap growth comparison between seed source groups. X indicates
that the first seed source group listed has significantly higher average growth than the second
group listed (p< 0.05). The bottom row shows the overall percentage of significantly different
years from 1980–2009.
(DOCX)
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