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Abstract

Among the greatest challenges facing the conservation of plants and animal species in

protected areas are threats from a rapidly changing climate. An altered climate creates both

challenges and opportunities for improving the management of protected areas in networks.

Increasingly, quantitative tools like species distribution modeling are used to assess the per-

formance of protected areas and predict potential responses to changing climates for groups

of species, within a predictive framework. At larger geographic domains and scales, protected

area network units have spatial geoclimatic properties that can be described in the gap analy-

sis typically used to measure or aggregate the geographic distributions of species (stacked

species distribution models, or S-SDM). We extend the use of species distribution modeling

techniques in order to model the climate envelope (or “footprint”) of individual protected areas

within a network of protected areas distributed across the 48 conterminous United States and

managed by the US National Park System. In our approach we treat each protected area as

the geographic range of a hypothetical endemic species, then use MaxEnt and 5 uncorrelated

BioClim variables to model the geographic distribution of the climatic envelope associated

with each protected area unit (modeling the geographic area of park units as the range of a

species). We describe the individual and aggregated climate envelopes predicted by a large

network of 163 protected areas and briefly illustrate how macroecological measures of geodi-

versity can be derived from our analysis of the landscape ecological context of protected

areas. To estimate trajectories of change in the temporal distribution of climatic features within

a protected area network, we projected the climate envelopes of protected areas in current

conditions onto a dataset of predicted future climatic conditions. Our results suggest that the

climate envelopes of some parks may be locally unique or have narrow geographic distribu-

tions, and are thus prone to future shifts away from the climatic conditions in these parks in

current climates. In other cases, some parks are broadly similar to large geographic regions

surrounding the park or have climatic envelopes that may persist into near-term climate

change. Larger parks predict larger climatic envelopes, in current conditions, but on average

the predicted area of climate envelopes are smaller in our single future conditions scenario.

Individual units in a protected area network may vary in the potential for climate adaptation,

and adaptive management strategies for the network should account for the landscape
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contexts of the geodiversity or climate diversity within individual units. Conservation strate-

gies, including maintaining connectivity, assessing the feasibility of assisted migration and

other landscape restoration or enhancements can be optimized using analysis methods to

assess the spatial properties of protected area networks in biogeographic and macroecologi-

cal contexts.

Introduction

The anticipation of ecological impacts, as a consequence of climate change, has hastened many

conceptual and analytical developments in ecology and biogeography. For example, the rapid

development and dissemination of climate data has facilitated widespread efforts to predict

past, current and future patterns of biodiversity [1–2]. The potential for the extinction of plant

and animal taxa, under climate change, has provided strong motivation for conservation plan-

ning [3–9]. As climates shift away from current conditions, the distribution of many species

are certain to change in response [10–12] and are likely to continue changing [8].

No matter how or what ecological mechanisms, climate features or other contingent limit-

ing factors are ultimately found to influence populations of plant and animal species, manage-

ment decisions forced by climate change can be informed by predictions of the fate of climate

features on the landscape independently of the peculiarities of particular species or taxonomic

groups [13–14]. For example, tourism patterns associated with climate features in snow skiing

regions may be altered by changing climate patterns [15,4], with cascading effects on economic

drivers of local or regional human communities and governments. Geographic features, includ-

ing climate or ecological features, are non-randomly distributed across the landscape [16–17]

which is one reason why they can be such efficient correlates of ecological regions and species

distributions [18]. As a paradigm for landscape ecology, the distance-decay of similarity of geo-

climatic and ecological features is a fundamental principle for framing our understanding of the

ecological patterns that emerge from spatially autocorrelated distributions of individuals [19].

Tobler’s Law [16] succinctly captures this idea: “everything is related to everything else, but near

things are more related than distant things”.

Species distribution models (SDMs) utilize Tobler’s Law by estimating species-environment

relationships from observed occurrences, and then projecting those relationships onto sets of

future conditions [1, 20–23]. These methods not only predict individual species occurrences

but may even predict macroecological patterns across large areas or geographic regions in

future scenarios [24]. How PAN units capture changes in these patterns is to some extent a

function of how individual units occupy spatial gradients of environmental similarity, ulti-

mately capturing different ecoregions or ecosystems. No matter what causal relationships link

species occurrences to the predictor variables used for SDM, protected areas in a network are

fixed samples from whatever patterns of background environmental variation happen to exist.

As fixed locations, the environmental conditions within protected area boundaries have partic-

ular geographic distributions, and the variation of these factors across the landscape or pro-

tected area network (PAN) can be informative as a planning and management tool [14, 25–

26].

In gap analysis, SDMs may be used to summarize predicted changes in the distribution of

species in PANs or other areas, under different climate change scenarios [27]. Gap analyses of

protected area “performance” can use occurrence data and interpolated estimates of species

ranges [28], or stack individual species distribution model predictions (S-SDM) to estimate
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species richness and protected area coverage [29–30]. Any predictive method introduces partic-

ular types of errors (scale and prediction errors) into an analysis, but S-SDMs can potentially

multiply these errors at several different steps. This is particularly problematic for S-SDMs,

since assumptions about the causes of observed species-climate relationships, or equiprobable

dispersal and transport across an entire study region [17], or indirect area effects [31] and other

assumptions on the sources of systematic prediction bias are likely to be unmet [32].

Other methods have been developed to more directly evaluate predicted climate change tra-

jectories for PANs, without the confounding filter of idiosyncratic species distributions (e.g. [33–

34]. These approaches have conceptualized individual protected area units as geographic samples

from the background distribution of climate states within a region or network of protected areas,

but what have not been included with these tools are ways to describe the background context,

or spatial patterns of similarity, of geographic areas. The “range-like” properties of protected

area boundaries can be exploited to develop climate footprint envelopes of protected areas or

measures of the geographic areas occupied by climate states like those occurring within a pro-

tected area unit. Such an “envelope” would predict the full extent and geographic distribution of

the climate states that occur within a predicted area.

In this paper we outline a method to measure this performance of a protected area network

consisting of 163 non-coastal national parks in the 48 contiguous states, by analyzing the cov-

erage and persistence of climate features in this PAN under a model of current conditions and

in an example future scenario. Our method complements pre-existing analyses built from

S-SDM, and eliminates problems facing the interpretations of those models. We suggest that

the climate envelope method is a special case of general SDM or envelope methods, equivalent

to a Q-mode raster analysis of the site-environment relationships. The geographic areas we

predicted from SDM models built from protected area boundaries are areas like species distri-

butions, where each species is endemic to a single protected area in the network. Thus our

method is equivalent to an analysis of a protected area network as if each unit is the range of a

hypothetical endemic species.

Materials and methods

Data

We obtained GIS [35] shapefiles of the boundaries of national parks from the Office the Assis-

tant Secretary for Research and Technology Bureau of Transportation Statistics (Fig 1). These

data are available online at http://www.rita.dot.gov/bts/sites/rita.dot.gov.bts/files/publications/

national_transportation_atlas_database/2012/zip/parks.zip, last accessed February 2016. We

used a shapefile for the ecoregions of the United States [36], obtained from the National Atlas

(Fig 1) to summarize changes in the distributions of climate envelopes in the future scenario.

We used five variables from BIOCLIM global temperature and precipitation data for the cur-

rent [37] and International Center for Tropical Agriculture HADCM3 2050 a2a emissions sce-

narios [38], downscaled to 1 km2 resolution (accessed Aug. 2011). We selected five minimally

inter-correlated predictors from the BIOCLIM variables (Annual mean temperature, tempera-

ture seasonality, maximum temperature of the warmest month, precipitation of the wettest

month and the precipitation of the driest month). All environmental layers and shapefiles

were clipped to the extent of the 48 conterminous United States.

Park climate envelope models

We used MaxEnt [39–40] to fit models of the climate envelope occupied by these national

parks. MaxEnt is a machine learning algorithm that uses presence data and “pseudo-

absences” drawn from the background to fit parameters to the model in such a way that

Climate envelopes of protected area landscapes
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the final model has the maximum possible entropy among sample points, in environmen-

tal space. This approach requires spatial coordinates for occurrences, so we used the GIS

to find all the raster centroids within a buffer distance of 2
p

2 kilometers from park

boundaries (the diagonal distance from the centroid to the corner). To eliminate discrep-

ancies between models and local climates, related to lake and ocean effects not captured by

global models, we eliminated park cells within 5 km of ocean coastlines. We then elimi-

nated all parks with fewer than 20 raster cells to reduce effects of small sample sizes on

model performance [41]. This left 163 national parks which fit our criteria for modeling

(names and locations detailed in S1 Table). We used MaxEnt to build models of the climate

envelopes of each national parks, using the default options (save one; we increased the

number of background points to 100,000) and for each park we used the maximum sensi-

tivity + specificity (MSS) threshold to transform the cumulative output into a binary pres-

ence-absence prediction. We summed these predictions to provide a stacked map of the

accumulation of park climate envelopes across the study area and ecoregions and to sum-

marize the individual behaviors of PAN units in the network.

Fig 1. Ecoregions of the US (Bailey 1995) and selected U.S. National Park Service units in the lower 48 states. Numbers correspond to

ecoregion codes in S1 Table. Park boundaries slightly exaggerated for illustration.

https://doi.org/10.1371/journal.pone.0173443.g001
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Future projections

To obtain predictions of the fates of these climate envelopes in the future model/emissions sce-

nario, we projected the envelope of each current conditions model onto the future climate sce-

nario, applied the MSS threshold to derive a presence-absence prediction for each envelope,

then measured the change in the total area occupied by the envelope of each park, upon the

landscape and within the boundary of the associated protected area. Since these parks occur

across a large subcontinental region, and across a number of ecologically relevant natural divi-

sions summarized as ecoregions, climate change might interact with the distribution of pro-

tected areas and ecoregions such that some ecoregions are more heavily (or lightly) represented

within land holdings of this protected area network. We used Geospatial Modelling Environ-

ment [42] to summarize the number of climate envelopes predicted within polygons of each

ecoregion.

Statistical tests

We log transformed the square root of the area of parks and climate envelopes to approximate

normality, then used linear and logistic regression to explore regression relationships among

the properties of the PAN units, climate envelopes and ecoregion boundaries. The extent to

which climate envelopes of PAN units occur across the landscape is analogous to classical mea-

sures of richness of species. Analogs to classical species-area relationships can be expressed, for

climate envelopes, as the ratio of the predicted climate envelope of a PAN unit and the area of

the PAN unit boundary. The extent to which climate envelopes occur across some predeter-

mined area, such as a protected area unit or ecoregion, is analogous to measures of occupancy
in a species distribution models. Sustained occupancy, in a future scenario, we describe as the

persistence of a climate envelope (e.g. when a map pixel within a protected area unit is pre-

dicted in both scenarios). To consistently calculate occupancy across a PAN described with

intricate vector geometries, we used ArcGIS to rasterize the park boundaries to pixels the same

scale as the model outputs and then used Geospatial Modelling Environment [42] to summa-

rize the number of predicted pixels in each park. We plotted this occupancy-area relationship

for the current and future as a heuristic for assessing the cumulative distribution of PAN unit

climates, within protected area boundaries, in the current and future scenarios. We ranked

ecoregions on the basis of the proportional representation of PAN unit climate envelopes,

assuming that ecoregions with a high proportional area represented within at least one pro-

tected area climate envelope to be better buffered to the effects of climate change than ecore-

gions with very little area predicted by protected area units.

Results

Performance: Properties of park climate envelopes

We modeled the climate envelopes of 163 national parks, ranging from 20 to 20,614 km2, with

a median unit area of 233 km2 (S2 Table). On average, each km2 of a park predicted 27.2 km2

pixels of area on the map (median) but this ratio ranged from 3–801 among all the 163 parks.

In the narrative of our analogy, the potential “range” of a species occurring in every pixel

within a park varied with the actual park area by three orders of magnitude. When park cli-

mate envelopes were stacked, under current conditions, some map locations accumulate the

predicted richness of as many as seven different overlapping climate envelopes (Fig 2). When

projected onto 2050 conditions, the general pattern of climate envelope distributions is similar,

but predicts lower maximum “richness” or park climate envelopes (no future map cell con-

tained more than six climate envelopes; Fig 3). Larger parks have larger predicted climate

Climate envelopes of protected area landscapes
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envelopes in current conditions (Fig 4A; 95% CI of slope estimate of regression of square root-

transformed climate envelope area on square root-transformed park area = 1.99–2.71, F1, 161 =

166.7, p< 0.0001, r2 = 0.51), but neither park area (square root transformed, F1, 139 = 1.737,

p = 0.19) nor size of the current climate envelope of a park (F1, 139 = 3.50, p = 0.06, r2 = 0.018)

reliably predicted the area of the future climate envelope. Neither larger parks nor larger cur-

rent condition climate envelopes predict larger future condition climate envelopes.

Park climate envelopes in ecoregions

Potential changes in the distribution of climatically similar areas are of interest to managers of

protected area networks that protect diverse habitats or areas, or units with particular onsite

conservation or management targets. In our study, we used an ecoregion classification as a

proxy for the diversity of geoclimatic and ecological features occurring on the landscape. Ecore-

gions are not equally populated by the units of this PAN (Fig 1; S2 Table). Parks occupying two

or three ecoregions predicted larger climate envelopes than parks occurring within a single ecor-

egion, (Table 1, Fig 4B; t-test on log transformed envelope area, t = -5.15, df = 77.71, p =<0.005)

but the climate envelopes of these parks occupying multiple ecoregions are not less likely to go

extinct in the future scenario (data in Fig 4A; likelihood ratio test, χ2 = 1.98, p = 0.37). Large

areas of 3 ecoregions are predicted by the climate envelope of at least one park; 2 of these

Fig 2. Park climate envelope richness (current conditions). National park boundaries are represented by thin black lines.

https://doi.org/10.1371/journal.pone.0173443.g002
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ecoregions are in the southeastern US and potentially share some plant and animal species

(Table 1; Everglades and Central Appalachian Broadleaf Forest-Coniferous Forest-Meadow

ecoregions).

Performance: Park occupancy and envelope persistence

These models predict the landscape context of protected areas in a network, or some geo-

graphic distribution of areas climatically similar to protected areas. This background or con-

text may change with climate change. As one measure of PAN performance, we calculated the

‘occupancy’, or the predicted cumulative sum of all 163 climate envelope “occurrences” in

each of the 163 rasterized park boundaries. This measures the occupancy of a PAN unit by all

units in the network. In future conditions, larger parks do not systematically predict larger cli-

mate envelopes, but larger parks do accumulate more predicted climate envelope occurrences

(“occupancy”) from the network than in current conditions (Fig 5). Although the total number

of pixels accumulated by parks (with persisting climate envelopes) increases in the future sce-

nario, 77 of these park climate envelopes go extinct within the boundaries of the units in the net-
work, in that same scenario. However, only 22 park climate envelopes go extinct from the

entire study area (S2 Table). Climate states currently occurring within parks may not occur

within those parks in the future, even as they are more broadly distributed across the map,

Fig 3. Park climate envelope richness (future conditions). National park boundaries are represented by thin black lines.

https://doi.org/10.1371/journal.pone.0173443.g003
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implying that park climates will be less unique (relative to local landscapes) in the future sce-

nario. This predicted future homogenization and higher PAN unit occupancy occurs across

the network even as total predicted climate footprint richness in any single park decreases

(Fig 3).

Discussion

What good is a climate envelope anyway?

Even if we knew nothing at all about the species that occur in a PAN, or the processes by

which these occurrences are maintained, our models of the climate footprint of these units

retain empirical relations among protected area units and the background explanatory vari-

ables. One way to understand those relations is by examining the similarity of a place of inter-

est to the areas adjacent to that place. Tobler’s Law, “Everything is related to everything else,

but near things are more related than distant things” [16], suggests that we should expect

PANs with many small, heterogeneous or spatially clustered units to differentially capture the

landscape-scale environmental variation than PANs where parks are very large or environ-

mentally homogenous. The methods we illustrate here can be leveraged to assist protected area

managers actively implementing climate mitigation and adaptation, or other conservation

strategies, across different areas in protected area networks.

Previous workers have approached the problem of how PAN units capture climate diversity,

or how those climates are predicted to change, by asking how patterns of temperature and pre-

cipitation values may change across PAN units occupying environmental gradients. Among

[29, 33, 34], all three approaches used climate data to model landscape scale changes in tempera-

ture/ precipitation and examined patterns of change within PAN units, leaving aside any pre-

dicted effects on the predicted distribution of species within those PANs. In contrast, here we

have used the relationship of those variables within each PAN units to build predictive models

Fig 4. a. Predicted climate envelope area as a function of park area (current conditions, log scale), distinguishing protected area climates which go fully

extinct from study area in the future scenario. b. Parks occurring in only one ecoregion predict smaller climate envelopes than parks in multiple ecoregions

(t = -5.15, df = 77.71, p = <0.005).

https://doi.org/10.1371/journal.pone.0173443.g004
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Table 1. Climate envelopes dynamics within ecoregions of the US (Bailey 1995).

Figure Code Ecoregion Area Current Area

Not Predicted

Future Area

Not

Predicted

Future Not

Refugia

Current

Fraction Not

Predicted

Future

Fraction Not

Predicted

Future

Fraction Not

Refugia

1 Ozark Broadleaf Forest—

Meadow Province

23764 12918 1099 23764 0.544 0.046 1.000

2 Outer Coastal Plain Mixed Forest

Province

614697 590692 239634 606098 0.961 0.390 0.986

3 Eastern Broadleaf Forest

(Continental) Province

1068602 922601 466347 1E+06 0.863 0.436 0.987

4 Eastern Broadleaf Forest

(Oceanic) Province

407999 319481 101875 397278 0.783 0.250 0.974

5 Southeastern Mixed Forest

Province

701552 567811 45979 686288 0.809 0.066 0.978

6 Colorado Plateau Semi-Desert

Province

280869 85391 129520 245764 0.304 0.461 0.875

7 Cascade Mixed Forest-

Coniferous Forest-Alpine

Meadow Province

230290 119320 175761 205789 0.518 0.763 0.894

8 American Semi-Desert and

Desert Province

320415 131091 201206 289065 0.409 0.628 0.902

9 Central Appalachian Broadleaf

Forest-Coniferous Forest-

Meadow Province

261224 104204 44871 251740 0.399 0.172 0.964

10 Great Plains-Palouse Dry Steppe

Province

1220277 1070018 774594 1E+06 0.877 0.635 0.976

11 Northern Rocky Mountain Forest-

Steppe-Coniferous Forest-Alpine

Meadow Province

171323 124808 142184 170986 0.728 0.830 0.998

12 Prairie Parkland (Temperate)

Province

879193 832930 336720 869730 0.947 0.383 0.989

13 Chihuahuan Semi-Desert

Province

302682 235954 229366 288383 0.780 0.758 0.953

14 Lower Mississippi Riverine Forest

Province

160886 149471 7424 160879 0.929 0.046 1.000

15 California Coastal Chapparral

Forest and Shrub Province

38340 23833 27820 30431 0.622 0.726 0.794

16 California Coastal Range Open

Woodland-Shrub-Coniferous

Forest-Meadow Province

91847 78416 83258 89060 0.854 0.906 0.970

17 Laurentian Mixed Forest Province 630492 552943 449094 593189 0.877 0.712 0.941

18 Sierran Steppe-Mixed Forest-

Coniferous Forest-Alpine

Meadow Province

268913 169988 233551 252412 0.632 0.869 0.939

19 Adirondack-New England Mixed

Forest-Coniferous Forest-Alpine

Meadow Province

183941 180393 149353 183662 0.981 0.812 0.998

20 Ouachita Mixed Forest—Meadow

Province

32273 30850 42 30954 0.956 0.001 0.959

21 Pacific Lowland Mixed Forest

Province

64448 56123 54423 63290 0.871 0.844 0.982

22 Everglades Province 26117 8380 14114 16941 0.321 0.540 0.649

23 Prairie Parkland (Subtropical)

Province

285436 265261 49451 275440 0.929 0.173 0.965

24 California Coastal Steppe-Mixed

Forest-Redwood Forest Province

18192 8888 11148 13070 0.489 0.613 0.718

(Continued )
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of the distribution of that specific climate feature on the landscape, as if it were the distribution

of some hypothetical species.

Using climate data and S-SDM to interpret predicted changes in species distributions or

PAN performance in future scenarios requires a mechanistic understanding of how climate

features materially influence the biology of populations or individual organisms. These infer-

ences are necessarily limited in explanatory scope and empirical domain, and there is often a

long and tenuous chain of reasoning from S-SDMs to management decisions. Even in the per-

fect case, when some SDM accurately predicts an entire species distribution across a region,

our conclusions about the potentially occupied “niche” of that species are still likely to be con-

founded by contingencies like local ecological and evolutionary processes [22, 43–44]. The fac-

tors that affect the presence or absence from some species at some location are thus probably

not direct relationships with climate state predictor variables, so inferences on the ecological

or evolutionary traits of modeled species, through the opaque prism of niche estimates, can

raise many conceptual and methodological issues [26,43,45–47].

However easy it is to criticize some model; a much greater challenge is to build a better

model. In the case of protected area ecological or conservation performance, we are suggesting

that (at some size and scale) protected area network units may be “range-like”. One way to con-

ceptualize this is as “large enough to hypothetically contain the known geographic area of some

species“. In our study PAN, which is large and varied, some species are apparently endemic to a

PAN unit. For example (among other plants and animals), two caddisfly species are each only

known from the Great Smoky Mountains National Park (the uenoid Neophylax kolodskii

Table 1. (Continued)

Figure Code Ecoregion Area Current Area

Not Predicted

Future Area

Not

Predicted

Future Not

Refugia

Current

Fraction Not

Predicted

Future

Fraction Not

Predicted

Future

Fraction Not

Refugia

25 Nevada-Utah Mountains-Semi-

Desert-Coniferous Forest-Alpine

Meadow Province

169517 117500 98327 168006 0.693 0.580 0.991

26 Intermountain Semi-Desert

Province

658893 534944 320277 635405 0.812 0.486 0.964

27 Intermountain Semi-Desert and

Desert Province

427678 320400 168578 404907 0.749 0.394 0.947

28 Southwest Plateau and Plains

Dry Steppe and Shrub Province

575411 564321 365713 572609 0.981 0.636 0.995

29 California Dry Steppe Province 73360 72645 72454 73304 0.990 0.988 0.999

30 Black Hills Coniferous Forest

Province

15413 12043 13008 15410 0.781 0.844 1.000

31 Middle Rocky Mountain Steppe-

Coniferous Forest-Alpine

Meadow Province

351075 251317 177768 343748 0.716 0.506 0.979

32 Southern Rocky Mountain

Steppe-Open Woodland-

Coniferous Forest-Alpine

Meadow Province

408619 215985 184248 347271 0.529 0.451 0.850

33 Arizona-New Mexico Mountains

Semi-Desert-Open Woodland-

Coniferous Forest-Alpine

Meadow Province

184266 114916 133788 177031 0.624 0.726 0.961

34 Great Plains Steppe Province 548558 506427 207336 543239 0.923 0.378 0.990

35 Great Plains Steppe and Shrub

Province

64838 63531 0 64838 0.980 0.000 1.000

https://doi.org/10.1371/journal.pone.0173443.t001
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Parker, and goerid Goerita flinti Parker), and from very few locations within [48–50]. Our best

estimates of the distribution of these species, from occurrence data, are limited to a small num-

ber of streams, within the same watersheds, in a small region of the park. The climate envelope

of this park then would also predict the “range” of these park endemic species (even if it might

over-predict the actual area containing these populations) so the analogy of a PAN unit endemic

is realistic, for at least some PAN unit sizes. The “range-like” property of the climate envelope of

PAN units is a simple and intuitive spatial generalization from traditional gap analysis and spe-

cies distribution modeling.

Predictive models of the “footprint” of climatic properties of a protected area are intuitively

easy to interpret, as “range-like” analogs of species distributions, since each may be built from

the same predictor variables. Climate envelopes and SDMs both offer the prospect of within-

and among-group comparisons that form the basis of management and conservation decisions

in PANs, so to the extent that climate or other modeled features determine species distribu-

tions within a network, climate envelope models may be directly biologically relevant to exist-

ing management objectives. Using larger areas (e.g. ecoregions) to summarize the behavior of

climate envelopes across a protected area network is a novel extension of gap analysis methods

to conservation.

Q-mode biogeography: Raster maps are “sites” and “species” matrices. With the rap-

idly burgeoning availability of raster and polygon data on species occurrences, climate, land

cover, and protected areas, a litany of interesting predictor variables may now be derived for

S-SDM analyses. Rasters are essentially sites-environment matrices, and thus can be analyzed

using methods developed for sites-species matrices (including those developed for S-SDM).

“R-mode” sites-species matrices have a long history of use in ecology, framing questions about

the patterns or processes driving the divergence of the assemblages of plants and animals in

Fig 5. Individual protected area unit occupancy by protected area climate envelopes tends to increase in the future

scenario. 1:1 line shown.

https://doi.org/10.1371/journal.pone.0173443.g005
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areas (e.g., islands), and in particular as examples for how to derive null hypotheses from a

background distribution of species among sites [51–52]. Interestingly, [53] considered the

value of “Q-mode” analyses (viz. flipping the sites-species matrix 90˚ to consider as a species-

sites matrix), essentially a conceptual predecessor of our analyses of resources occurring within

sites. However, uses of MaxEnt or other predictive SDM to model properties of sites qua taxa

have, to our knowledge, not been published in the ecological or conservation literature.

Protected area networks, as in our example, may protect large areas of land. Land areas will

always have some climate conditions (and other spatial properties) in any circumstance. Since

every site has some climate, values within protected areas will tend to be spatially autocorre-

lated [16]. The Q-mode analysis of the sites-environment matrix uniquely leverages this auto-

correlation (relative to species-based SDMs), since protected area environments are non-

random samples from the background distribution of environmental features, and because we

are likely to have relatively greater predictive certainty around future environmental condi-

tions than our certainty of how individual species will respond to those projected conditions.

The landscape context of protected area climates is a conservation

target

Given some matrix of species, environmental variables, and a spatial network of individual pro-

tected areas, the potential conservation value of the lands within that network can be described

by measures of the distribution of the values of climatic explanatory variables, or the “footprint”

of these network resources, against the background [54–57]. “Coarse-filter” geodiversity rela-

tionships can be used to describe features or properties independently of what species currently

occur in the PAN [56]. Because these features tend to be spatially autocorrelated (i.e. follow

Tobler’s Law), any protected area will be somewhat similar to the surrounding landscape. The

geographic extent of this similarity will likely be unique for each park and landscape, but these

properties are extremely relevant to both the ecological processes within the park and the man-

agement of those ecological processes in networks of protected areas.

Much recent research in predictive biogeography and conservation has been directed

towards the “envelope” occupied by species, underemphasizing the corollary result that pro-

tected areas will also tend to have “envelopes” in the same resource space that predicts species

presences. Although we are frequently interested in predicting how organisms respond to

these features, we emphasize that the locations of protected areas are simply spatially autocor-

related samples from the background distribution of the features that determine species distri-

butions. No matter which is the focus, the aggregate behavior of these individual envelopes can

be summarized by metrics of stacked species distribution models (S-SDM) to provide an intui-

tive framework for understanding the properties of PANs: occupancy, richness, geographic

changes in rates of diversity associated with change. The climate envelopes of a protected area

network estimate the distribution of climate states conserved by the default boundaries of pro-

tected areas, without biases introduced by the contingent processes of ecology, evolution and

demographics that shape the actual geographic ranges of individual species.

Gap analyses of S-SDMs are central to many studies analyzing the geographic range or cli-

mate envelopes of species in protected area networks (e.g. [58–61] and many more throughout

the literature). In the example we presented here, S-SDM of the climate envelopes of each

national park are analogous to the hypothetical case of an endemic species with a geographic

distribution entirely restricted to within the boundaries of the protected area. The properties

of the climate occurring within the protected areas can be used to evaluate several different

metrics of PAN ecological performance, without knowledge of the particular biology of indi-

vidual species within the PAN, a strength of coarse-filter approaches [62].

Climate envelopes of protected area landscapes
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Protected area effectiveness: Composition, rarity and future quality

A number of measures and methods have been proposed to measure the value of different

aspects of the ecological performance of protected areas. [63] argued that four main categories

of performance are generally valued in protected area network units: the composition of plant

or animal assemblages, the rarity of individual elements (either within the PAN or range wide

among species) the future quality of the habitats within the PAN in some future state and

whether the PANs solve problems identified by end users or shareholders. The taxon-specific

utility of some of these measures of performance may further be limited by gaps in the knowl-

edge of the ecology of organisms or habitats [64]. These concepts are directly applicable to

the climate envelopes analysis we have derived here, treating the climates within PANs as

“species”.

Here, the composition of the conserved group is the aggregate of the individual climate

envelopes of each individual protected area unit, which we have described as climate envelope

“richness” (Figs 2 and 3). These maps of envelope richness identify geographic areas where

there are climates similar to the climate of some protected areas, as well as areas with climates

not similar to any PAN unit. Maps will provide intuitive summaries of the distribution of cli-

mate envelopes of PAN units, at larger geographic scales. To the extent that ecological commu-

nities are determined by climate, protected area climate distributions could serve as an index

of environmental redundancy or under-representation within the network [65]. In our exam-

ple (using the US National Park System), climates occurring within these protected area units

tend to be clustered around clusters of protected area units. In regions with numerous parks,

the climates occurring within a park may be similar to the climates of several nearby parks.

When PAN units are close to each other, units with similar climate envelopes might have simi-

lar management concerns, contain similar assemblages of plant and animal species, or respond

similarly to climate change. If these units are ecologically connected by migration and gene

flow, or by relatively undisturbed landscapes, we would predict increased similarity of species

assemblages among those units even if we know nothing else about the assemblages within these
units. Alternatively, protected area units that are isolated from other units, may have ecological

assemblages not well represented across the network. In our example, at the landscape of the

conterminous United States, the composition of the climates within the protected area system

alone is not sufficient to conserve all of climate variability that exists in the larger landscape,

since such large regions of the map are not similar to the climates within in any PAN unit (Fig

2) and our PAN does not capture large fractions of many ecoregions (Table 1).

Results from climate envelope analyses can be used to summarize the composition of the

envelopes predicted within protected area units themselves, or in larger geographic units like

ecoregions. To the extent that ecological communities are shaped by climate, the composition

of protected area climates might serve as a measure of environmental redundancy or under-

representation within the network [65]. Landscapes in neighboring PAN units, predicting sim-

ilar climate envelopes, may have similar management concerns, contain similar assemblages of

plant and animal species, or respond similarly to climate change. When considered across the

landscape of the conterminous United States, the composition of the climates within the pro-

tected area system alone is clearly not sufficient to conserve all of climate variability that exists

in the larger landscape (Fig 1; Table 1). Some ecoregions are simply better represented within

this PAN than others (e.g. eastern broadleaf forests), and this will have real material conse-

quences for the management of those PAN units for particular ecological assemblages or pop-

ulations of individual species. When species occurrence data are limited, as is often the case for

broad taxonomic groups [64], these analyses may provide meaningful results to managers that

would otherwise be unattainable without intensive inventories and literature searches.
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In our approach, using rarity as a criterion for PAN performance emphasizes the back-

ground of the geographic areas that have climates dissimilar to the climates within the units of

the PAN, and identifies geographic areas where the acquisition of new protected areas might

have maximal impact on the climate total climate envelope protected in the PAN. This rarity

metric can be assessed by the landscape distribution of climate envelope richness (Figs 2 and

3) or by the proportion of larger geographic areas (e.g. states or ecoregions) that are populated

by these predicted envelopes (Table 1). Alternatively, rarity metrics can be derived to assess the

relative landscape uniqueness of a park climate (e.g. the ratio of boundary area to envelope

area, or the fraction of network units with climates predicted for extinction, Supplementary S2

Table). Protected areas which are climatically similar to the geographical background may face

different management challenges than protected areas that protect relative climatic novelty

(i.e. have a higher frequency of rarity in the network). For example, large areas of the Midwest

and Great Plains have few parks of any large area, and large parks are clustered in the South-

west and Southeast (Fig 1). In many geographic regions, the climates conserved within the

PAN units are relatively rare across the landscape (Figs 2 and 3). Even in the hypothetical total

absence of information about species occurrences, climate envelopes could still serve as a

meaningful proxy for making management decisions based on the composition and rarity of

climate envelopes within a network.

In-situ climate refugia for PANs as future quality

If we prioritize the future quality of protected areas, an outcome of “no change in the climate

envelope area” would be an optimal outcome for an ecologically resilient protected area. This

is because our estimate of the future ecological quality of some protected area will be highest

when the future climate in that protected area is most similar to the climate experienced by the

area under current conditions. If climate envelopes generally tend to shift with warming, a

protected area where the current climate envelope is predicted to persist into future conditions

may be potentially useful as core habitat for species with preferences for the climate in that par-

ticular envelope. Areas where these persisting protected area climate envelopes “stack up” may

be important for assessing whether these sites are potentially suitable for assessments of the

feasibility of assisted migration, or for designing dispersal corridors and other climate refugia

within a PAN.

Future climate projections allow us to investigate future changes in the spatial distribution

or similarity of protected area environments. Our predictions are estimates of the future qual-
ity of the environments protected within this PAN. In our example, we predict that the future

similarity of climates in protected areas will tend to decrease across the total landscape, since

the maximum total envelope richness decreases across the map (from maximum of 7 in Fig 2

to a maximum of 6 in Fig 3). This is not surprising, since 22 park climate envelopes were pre-

dicted to go extinct (Fig 4A; S2 Table) and we found no significant relationship between park

area and future footprint area. Concurrent with this general reduction in climate footprint dis-

tributions, the total occupancy of climate envelopes with the PAN is predicted to increase as

environments within the PAN become more homogeneous (Fig 5). This analysis of occupancy

and quality does not consider whether novel climates might replace current climate states

within the PAN. Similarly, we cannot systematically examine the relationship between occu-
pancy and park area, since this relationship is confounded by the clustering of parks in geo-

graphic and climate space.

One problem facing management of species, under changing environmental conditions,

will require the identification of refugia, locations where climates do not shift outside of the

bioclimatic envelope and thus enable populations to persist. Here we have identified examples

Climate envelopes of protected area landscapes
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from across the United States where we predict locations within national parks that maintain

climates in situ in the future conditions (Fig 3). In some cases, these climate refugia (i.e. per-

sisting climate states) might not lay within the boundary of the PAN, yet still be priority areas

for directing land acquisition efforts in lands under other management or administration. Cli-

mate envelope analysis is an approximation of the maximum geographic extent of the potential

refugia associated with a PAN. However, land use and ownership, as well as dispersal connec-

tivity and community composition within these refugia, will influence the actual ecological

outcomes experienced by populations of plants and animals in PANs and refugia [66–67].

Considered objections

We have offered this method as a demonstration of how the climate envelope, or resource foot-

print, can be a quantity useful for planning for climate change conservation in a PAN. This

effort is not intended as a comprehensive analysis of the fate of the climate envelopes of units

within the PAN we used in this analysis (US National Parks in the conterminous 48 states),

which would require modeling these distributions more intensively across ensembles of multi-

ple climate datasets, under current and future conditions, and various emissions scenarios.

Similarly, we could have expanded our climate envelope analysis to include other types of

PANs, under different administration or with varying conservation significance. These choices

are myriad, but our main point is that it may be useful to consider these methods as a way to

describe the background distributions of environmental features within a map, or the spatial

domain of a study area.

We have argued that the climate envelope of a protected area possesses a “range-like”

ontology. Models of species-environment relationships often assume that species ranges

are the outcomes of particular ecological and evolutionary processes. This reasoning

underlies the choice to use instances of occurrences of individuals of a species as a sample

from the multivariate environmental space where individuals have positive fitness [43].

The climate envelope of a protected area has no such evolutionary history or biological sig-

nal, but it still remains true that for any map of environmental features, any particular geo-

graphic region will inherit some set of environmental features from its position and

location and that neighboring sites are more likely to share features than distant sites. It

might be true that we could simply divide a PAN into multiple arbitrary subunits and

derive different climate envelopes for these smaller entities, but we emphasize that in the

case of a PAN we are explicitly modeling lands that are under unified or centralized man-

agement. Any account of what climates or ecological features occur within a protected area

or region is described in this same way, our method simply takes advantage of the “range-

like” nature of a PAN unit to evaluate the composition, rarity, persistence and quality of

the environmental features protected within a PAN.

It’s now easy for most researchers or protected area network managers to get climate data

for the regions in which they work, but it may still be much harder to get good species distribu-

tion data or predictions for those PANs. The climate envelope idea is similar to the idea of geo-
diversity in conservation planning [68–70], in that it implicitly recognizes that PANs have

abiotic characteristics that can be compared against the background of abiotic characteristics

in the surrounding landscape. Where our analysis differs from these efforts is in the use of

SDM techniques to explicitly predict the geographic extent of the climate occurring within a

protected area and the climatic refugia associated with this PAN in future conditions. The

enormous variety of lands under management in any real world setting means that PAN cli-

mate envelopes, or other predictive models of other resource footprints, could be leveraged to

conserve particular biodiversity and ecological processes.
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