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Abstract

We examine the performance of a strategy for Markov chain Monte Carlo (MCMC) devel-

oped by simulating a discrete approximation to a stochastic differential equation (SDE). We

refer to the approach as diffusion MCMC. A variety of motivations for the approach are

reviewed in the context of Bayesian analysis. In particular, implementation of diffusion

MCMC is very simple to set-up, even in the presence of nonlinear models and non-conju-

gate priors. Also, it requires comparatively little problem-specific tuning. We implement the

algorithm and assess its performance for both a test case and a glaciological application.

Our results demonstrate that in some settings, diffusion MCMC is a faster alternative to a

general Metropolis-Hastings algorithm.

Introduction

The advent of Markov Chain Monte Carlo (MCMC) has led to major advances in the applica-

tion of Bayesian analysis in complex problems. The idea is simply put: faced with a posterior

distribution too complicated to compute or simulate from directly (i.e., we cannot readily

obtain the normalizer or denominator appearing in Bayes’ Theorem), one develops a Markov

chain whose stationary distribution is known to coincide with the target posterior distribution.

One then runs that chain, knowing that eventually realizations from the chain form an approx-

imate dependent sample from the posterior. Those realizations are then used to estimate fea-

tures of the posterior (i.e., posterior expectations of interesting quantities, predictive densities,

etc.) [1–3].

For example, in some settings, nonlinearity and/or nonconjugacy of certain components of

a large model render the standard Gibbs Sampler unusable. Metropolis-Hastings algorithms

and Gibbs-Metropolis hybrids can be suggested, though these approaches can be taxing and

may require substantial tuning.

In response to such difficulties, we explore diffusion based strategies for MCMC analysis.

That is, one develops a diffusion (a solution, in the sense of Itô, to a stochastic differential

equation) whose stationary distribution is the target posterior, see Chapter 5 of [4]. The key

idea is certainly not new. Indeed, Langevin MCMC procedures are often suggested for
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generating candidate states in Metropolis steps in MCMC. In this article, we suggest diffusion

MCMC as a stand-alone algorithm.

In part, our motivation for suggesting diffusion MCMC is its simplicity in terms of set-up.

There are no probability calculations to perform, as in Gibbs’ Sampling, nor any need for

choosing and updating distributions for generating candidate states. Indeed, the approach is

recommended as an “off-the-shelf” strategy that can be readily implemented. However, as

indicated below, it is not a panacea. Further, issues such as burn-in, mixing, convergence rates,

and output analysis remain challenging.

Consider a Bayesian analysis for an unknown quantity θ (after the introduction, we allow

vector-valued unknowns) based on observational data Y, having conditional density g(y j θ).
Let π(θ) denote our prior distribution for θ. We are to obtain the posterior distribution for θ
based on the fixed observation Y = y,

pðyÞ ¼def pðy j yÞ ¼ CðyÞ� 1gðy j yÞpðyÞ; ð1Þ

where C(y) is the normalizing constant. Consider a one-dimensional stochastic differential

equation (SDE)

dyðtÞ ¼ bðyÞdt þ sðyÞdWðtÞ; yð0Þ ¼ y0; t � 0; ð2Þ

where θ0 is some fixed initial value and the drift b(�) and diffusion σ(�)> 0 are specified func-

tions, such that Eq (2) admits a unique weak solution. The initial state θ0 is a random variable

with specified density p(θ, 0); and dW(t) represents white noise. Specifically, {W(t): t� 0} is a

standard Brownian motion process or a Wiener process. Consider the temporal evolution of

the probability density function, p(θ, t), of a solution θ(t). Under regularity conditions requir-

ing b and σ to be differentiable and satisfy a Lipschitz condition

jbðyÞ � bðy0Þj þ jsðyÞ � sðy
0
Þj � Kjy � y

0
j;

for some constant K and for all θ, θ0, p(θ, t) is the solution to the ordinary partial differential

equation, known as the Fokker-Planck or Kolmogorov Forward Equation,

@p
@t
¼ 0:50

@
2

@y
2
ðs2 pÞ �

@

@y
ðb pÞ; ð3Þ

subject to the initial condition p(θ, 0) and the assumption that θ(0) and {W(t): t� 0} are

independent.

Our interest is in stationary solutions, i.e., solutions that are functionally independent of

time, so the partial derivative with respect to t is zero. Setting the right-hand side of Eq (3)

equal to zero and integrating the result once w.r.t. θ, it suffices to find a stationary density p(θ)
such that

0:50
@

@y
s2ðyÞ pðyÞð Þ ¼ bðyÞ pðyÞ ; ð4Þ

for all values of θ in the parameter space. The general solution of Eq (4) is

pðyÞ ¼ ðcs2ðyÞÞ
� 1 exp

Z y

0

2bðzÞ
s2ðzÞ

dz
� �

;

where the constant c is a normalizer.

Diffusion-based MCMC

PLOS ONE | https://doi.org/10.1371/journal.pone.0173453 March 16, 2017 2 / 14

Funding: RH has been supported in part by the

National Science Foundation (www.nsf.gov) grant

number DMS-1209142. RP has been supported in

part by the National Science Foundation (www.nsf.

gov) grant NSF-CMMI-1537379. LMB was

supported in part by the National Science

Foundation (www.nsf.gov) grants ATM-07-

3024403 and DMS-10-49064. The funders had no

role in study design, data collection and analysis,

decision to publish, or preparation of the

manuscript. Any opinions, findings, and

conclusions or recommendations expressed in this

material are those of the authors and do not

necessarily reflect the views of the National Science

Foundation.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0173453
http://www.nsf.gov
http://www.nsf.gov
http://www.nsf.gov
http://www.nsf.gov


We let p(θ) be the target posterior Eq (1) for our Bayesian model and find appropriate func-

tions b(θ) and σ(θ) such that p(�) satisfies the Eq (4). That is,

bðyÞ ¼ 0:50 s2ðyÞ
0
þ s2ðyÞ

pðyÞ0

pðyÞ

� �

¼ 0:5s2ðyÞ
s2ðyÞ

0

s2ðyÞ
þ
pðyÞ0

pðyÞ

� �

where the derivatives are taken with respect to θ. When p(θ) = g(y | θ)π(θ) as in Eq (1), we look

for functions b(�) and σ2(�) satisfying

bðyÞ ¼ 0:50s2ðyÞ
d
dy

log gðy j yÞpðyÞs2ðyÞð Þ

� �

¼ 0:50s2ðyÞ
gðy j yÞ

0

gðy j yÞ
þ

pðyÞ
0

pðyÞ
þ

s2ðyÞ
0

s2ðyÞ

� �

;

ð5Þ

Having completed this step, we can simulate the diffusion and proceed as in MCMC. This

is typically accomplished by forming a discrete-time approximation to Eq (2), that is, a Markov

chain approximation to the continuous-time process. There may be many pairs (b(�), σ2(�))

that work for a fixed Bayesian model. It is important to note that the core of a diffusion MCMC
(DMCMC) implementation has been completely described.

In this article we discretize the diffusion Eq (2) using the Euler scheme. This method has

been extensively discussed in the literature, see for example [5] for a comprehensive overview

and [6–8] for recent developments. The solution of the stochastic differential Eq (2) is approxi-

mated using a discrete time Markov chain {θm}m � 0,

ymþ1 ¼ ym þ hbðymÞ þ sðymÞh1=2Zmþ1; m � 0 ð6Þ

where θ0 = θ(0), h> 0 is the discretization step-size, and Zm+1 is a realization from a standard

Gaussian distribution. Abusing notation, we use θ to denote both the continuous-time defined

in Eq (2) and the discrete-time process from Eq (6). It is typical to extend {θm}m � 0 to a contin-

uous time process via interpolation; however this step is not necessary for this paper. From a

practical perspective, we are interested in the process {θm}m � 0. Two critical questions arise:

1. Does the discrete stochastic process converge to a stationary, ergodic distribution?

2. If so, is that stationary distribution “close” enough to the target posterior distribution to jus-

tify the use of conventional output analysis to enable approximate Bayesian inference?

Unfortunately, there are situations where for any choice of the time step h> 0, the Markov

chain described by Eq (6) will behave drastically different than the continuous time version Eq

(2), see [9] for a discussion on this issue. Nevertheless, in many cases the ergodic properties of

the discretized process {θm}m � 0 are similar to those of {θ(t)}t � 0. In particular, in [10] the

author shows that under regularity conditions, the Euler discretization scheme does have a sta-

tionary measure which converges at an appropriate rate to the unique stationary measure of

the continuous-time SDE. Furthermore, in [9] the authors provide conditions under which

the continuous-time Langevin diffusion (defined below in Eq (7)) as well as the discretized ver-

sion Eq (6) are geometrically ergodic. In [7], the authors study the asymptotic properties of

time averages ð1=MÞ
PM
m¼1
FðymÞ, where F is a given function. This statistic is the natural esti-

mate for the expected value E(F(θ)) =
R
F(θ)dp. They use Poisson equations to show that under

mild regularity conditions, any stationary measure of the Euler-discretized process Eq (6) will

be close to the unique stationary measure of the underlying SDE. Their Theorem 5.1 also

shows that the time average estimator is of order O(h + 1/M).

Diffusion-based MCMC
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To illustrate diffusion-MCMC and indicate its potential value and simplicity, examples are

reviewed in the next section. Henceforth, we set σ� 1, and then find the function b(�); this

approach often has the tag Langevin. That is, we restrict ourselves to diffusion processes of the

form

dyðtÞ ¼
1

2

@

@y
logpðyðtÞÞdt þ dWðtÞ; t � 0; ð7Þ

where p(�) is the posterior distribution Eq (1). We note that application of Eq (6) yields the cor-

responding transition distribution as

ymþ1jym � N ym þ 0:5hr logpðymÞ; hð Þ:

We emphasize again that our goal is to present the benefits of a procedure that has been

present in the literature for over a decade. Due to its wild behavior even in some simple cases,

it has received little attention, especially from practitioners and applied scientists. It has been

proposed (see for example the MALA algorithm presented in [9]) that an additional Metropo-

lis-Hastings step will correct the explosive behavior. The MALA algorithm has been further

studied and extended in [11] and [12]. In both cases the improvement comes with an increase

in computational complexity. We stress that our goal is to avoid a Metropolis-Hastings accept-

reject step and this work is motivated by recent theoretical advances in this direction, see [7].

We explore the efficiency and applicability of DMCMC to high-dimensional problems arising

in a Bayesian framework, without performing the Metropolis-Hastings correction step. When

classical (or adaptive) MCMC fails (for example, due to computational time restrictions or

inability to select good proposals), we show that diffusion MCMC is a viable alternative which

requires little input from the user and can be computationally more efficient.

Motivating examples

The multivariate form of the diffusion Eq (2) is written as

dθ ðtÞ ¼ bðθðtÞÞdt þ sðθðtÞÞdWðtÞ; t > 0; ð8Þ

where {θ(t): t� 0} is a q-dimensional stochastic process. The initial state is θ(0) and {W(t),
t� 0} is a q-dimensional vector whose elements are each independent standard Brownian

motions. Except for the first one, the examples below were chosen to be suggestive of realistic

problems for which other MCMC methods can be difficult. As in Eq (1), we use g(y j θ) to

denote the likelihood function, where y is the observed data and π(θ) to denote the prior

density.

One class of problems in which diffusion MCMC may be useful involve nonlinearity.

For example, suppose the likelihood function g depends on θ via a “link” function k(�), that is

g = g(� j k(θ)). Nonlinear structures may also arise in hierarchically specified priors. Nonlinear-

ity may make both Gibbs sampling and Metropolis algorithms difficult. However, if the non-

linearity does not disable the required differentiation, diffusion MCMC may be comparatively

simple. We remark that in such cases, the drift function b(�) may be unruly. If necessary, selec-

tion of the diffusion coefficient σ(�) may be used to control b(�). However, for the balance of

the article we restrict to Langevin diffusions (σ = 1).

Example 1. Assume that for τ2 known, Y | θ* N(θ, τ2) and θ* N(μ, η2). Of course, we

know that θ | Y = y is normally distributed with easily computed mean and variance (these will

Diffusion-based MCMC

PLOS ONE | https://doi.org/10.1371/journal.pone.0173453 March 16, 2017 4 / 14

https://doi.org/10.1371/journal.pone.0173453


appear below). Applying Eq (5) with the choice of σ(θ) = 1, yields

bðyÞ ¼ 0:50
y
t2
þ

m

Z2
� y

1

t2
þ

1

Z2

� �� �

:

Let α = 0.50(τ−2 y + η−2 μ) and β = 0.50(τ−2 + η−2). The solution to

dyðtÞ ¼ ða � byðtÞÞdt þ dWðtÞ

is

yðtÞ ¼
Z t

0

ae� bðt� sÞdsþ
Z t

0

e� bðt� sÞdWðsÞ þ yð0Þe� bt:

It follows that

EðyðtÞÞ ¼
Z t

0

ae� bðt� sÞdsþ Eðyð0ÞÞe� bt ð9Þ

¼
a

b
ð1 � e� btÞ þ Eðyð0ÞÞe� bt: ð10Þ

It can be shown that

varðyðtÞÞ ¼
Z t

0

e� 2bðt� sÞdsþ varðyð0Þe� btÞ ð11Þ

¼ ð2bÞ
� 1
ð1 � e� 2btÞ þ varðyð0ÞÞe� 2bt: ð12Þ

Returning to the original parameterization, we conclude that as t!1,

EðyðtÞÞ !
1

t2
þ

1

Z2

� �� 1 y
t2
þ

m

Z2

and

varðyðtÞÞ !
1

t2
þ

1

Z2

� �� 1

;

which are the usual posterior mean and variance for this Bayesian model. If the initial condi-

tion θ(0) is normally distributed, then for each t, θ(t) is also normally distributed. Note that the

convergence rate to the stationary distribution is exponentially fast.

Example 2. Diffusion MCMC is useful in combining data from highly different likelihoods.

Let θ = (θ1, . . ., θK) and assume that Yij|θi* gi(�|θi) where i = 1, . . ., K and j = 1, . . ., ri and all

Yij are conditionally independent. For example, let gi be the Gaussian pdf with mean θi and

variance τ2, and the prior for θi be a Cauchy distribution with median μ and scale parameter A.

For a Langevin setting (i.e. σ = 1), the ith component of the drift coefficientr log p(θ) is

@

@yi
r logpðθÞ ¼ �

Xri

j¼1

ðyi � YijÞ
t2

�
XK

i¼1

2ðyi � mÞ

A2 þ ðyi � mÞ
2
:

Note that conjugacy plays no direct role in this approach, though the presence of the Cau-

chy distribution makes a Gibbs sampler infeasible. This example is further analyzed in the next

Section.

Diffusion-based MCMC
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Example 3. (Mixture Models) Suppose Y1, . . ., Yn are conditionally independent and iden-

tically distributed given θ according to a finite mixture ofm probability density functions

gi(� | θ). For example, assume that the conditional distribution of the data is

gðy j yÞ ¼
Yn

j¼1

Xm

i¼1

aigiðyj j yÞ

 !

;

where y = (y1, . . ., yn)0, αi> 0, i = 1, . . .,m and ∑i αi = 1. Diffusion MCMC is easily formulated

if the derivatives of the gi with respect to θ are easily available, either via formal calculations or

by using symbolic software, such as Mathematica. We note that similar steps can be used to

treat mixture priors.

Example 4. (Hierarchical Models). In many models g and π are products of a variety of

terms, e.g., for conditionally independent observations, g is a product; π is often represented as

a product of hierarchical components. In such cases, we have that

@ log ðgpÞ
@yi

¼
@ log ðgðiÞpðiÞÞ

@yi
;

where the superscripts indicate that only those components of g and π that explicitly depend

on θi are involved in the calculation. This parallels the familiar step in computing full condi-

tionals in setting up a Gibbs Sampler. Namely, for each i, one computes the distributions

½yi j all other yj� ¼
gðiÞpðiÞ

R
gðiÞpðiÞdyi

: ð13Þ

Suppose that the Bayesian model takes the form Y | θ1, . . . θq* g(y | θ1, . . . θq) and

pðy1; . . . yqÞ ¼ p1ðy1 j y2; . . . yqÞp
2ðy2 j y3; . . . yqÞ � � � p

qðyqÞ:

We adapt the notation in Eq (5) as follows: for a function f(θ1, . . . θq) define

fðiÞ ¼
@f
@yi

; i ¼ 1; . . . ; q:

Hence,

@ log ðgpÞ
@yi

¼
gðiÞ
g
þ
Xi

j¼1

p
j
ðiÞ

pj
ð14Þ

We note that Gibbs sampling is useful when the full conditionals Eq (13) are readily

obtained and simulated. This typically arises when the full conditionals actually depend on a

small subset of the parameters in the conditions. This is not necessary in diffusion MCMC.

Applications

To provide insight into diffusion MCMC (DMCMC), we present a standard test case and a

real-data example. Our goal is to assess the performance of DMCMC, especially in comparison

with the current state-of-the art adaptive MCMC approach, see [13, 14]. The DMCMC meth-

odology is compared to a multivariate adaptive Metropolis sampler (AM). For the AM algo-

rithm, the proposal distribution at iterationm is given by

ð1 � bÞNðx; ð2:38Þ
2
Sm=qÞ þ bNð0; ð0:1Þ2Iq=qÞ

where Sm is the current estimate of the covariance matrix of the target distribution and β is a

Diffusion-based MCMC
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small positive constant (we take β = 0.05). The AM algorithm is widely accepted as one of the

best sampling algorithms, especially for complex target distributions where dependencies

among parameters make it difficult to select proposal distributions. We refer the reader to [15]

for several comparisons between MCMC algorithms. The scaling factor (2.38)2 can also be

“adapted”; in this case we refer to the procedure as adaptive scaling within adaptive MCMC.

However, user input is not eliminated completely as there remain tuning parameters to be

specified.

For comparisons, we inspect trace-plots to assess convergence and compare algorithms via

their averaged squared jumping distance

ASJD ¼ EððXm � Xm� 1Þ
2
Þ:

This quantity is estimated by 1

M

PM
m¼1
ðXm � Xm� 1Þ

2
for both AM and DMCMC algorithms.

Comparatively large ASJD indicates the desirable property of fast mixing.

We also add a computational constraint for our examples. We limit ourselves to relatively

short runs of the Markov chains (AM and DMCMC). This can be very dangerous for classical

MCMC since one will have difficulty assessing whether the chains have reached stationarity.

Our examples will show that the diffusion approach quickly finds regions with high posterior

probability and explores them thoroughly.

Synthetic example

Assume that Yi1, . . ., Yiri|θi, γ are an iid sample from a Gaussian(θi, V(γ)) distribution, where

1� i� 1000 and 1� j� ri. We specify the variance V(γ) to be

VðgÞ ¼
aþ b eg

1þ eg
; for g 2 R; ð15Þ

where 0< a< b<1 are specified constants. The reason behind Eq (15) is twofold: (1) we

require that all the parameters of the model be supported on the entire real line, hence a trans-

formation is required for all variances, and (2) we aim for a Uniform(a, b) prior distribution

for the variance V(γ). Certainly, other distributions (such as Gamma or Inverse Gamma) can

be considered. Using an inverse transformation, this is equivalent to specifying the prior den-

sity for γ as

f ðgÞ ¼
eg

ð1þ egÞ2
; g 2 R :

We let the sample sizes ri vary between 5 and 500. For θ1, θ2, . . ., θ500 we specify independent

prior distributions, θi|μ, A* Cauchy(μ, A), with density proportional to [1 + ((θi − μ)/A)2]−1.

The parameter A is held fixed for this example, although it can be treated similarly to the data

variance V(γ). For the hyperparameter μ we specify a Gaussian(0, 1) prior distribution. Using

the independence assumption, the likelihood function is written as

gyðθÞ � gyðy1; . . . ; y1000; g; mÞ

/
Y1000

i¼1

VðgÞ� ri=2
� �

exp �

Pri
j¼1
ðYij � yiÞ

2

2VðgÞ

( )

;
ð16Þ

Diffusion-based MCMC
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and the prior density is proportional to

pðθÞ � pðy1; . . . ; y1000; g; mÞ

/
Y1000

i¼1

1

1þ
yi � m

A

� �2

2

6
6
6
4

3

7
7
7
5
�

eg

ð1þ egÞ2
� exp f� m2=2g :

ð17Þ

Selection of the time step. The selection of “good” time steps for DMDMC is challenging.

First, time steps that are too large may result in explosive (transient) processes. In general, the

user faces a conundrum: a very small time step typically results in chain whose dynamics are

similar to those of the target continuous-time diffusion, but is slowly mixing.

In our experiments we observed that selecting h = O(1/q) results in a good performance of

the DMCMC algorithm for this example. In Fig 1 we display the trace plots and autocorrela-

tion functions for three parameters (results for all parameters where quite similar) from the

Fig 1. Trace plots and autocorrelation functions for three parameters: θ1, θ101, θ201.

https://doi.org/10.1371/journal.pone.0173453.g001
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DMCMC approach. Fig 2 shows trace plots for the same parameters resulting from two adap-

tive approaches as described above. In each case the chains were run for 20000 iterations and

thinned by ten. It is evident from these figures that the adaptive approach has difficulty explor-

ing the state space. The key issue is the dimension of the state space (1000+ in this example).

The adaptive approach will not “learn” a one thousand dimensional covariance matrix prop-

erly. In Table 1 we summarize the target values and estimates (posterior means) for two

parameters, θ1 and θ201. Table 2 contains corresponding estimates of ASJD. We see that the

estimated ASJD indicates that the mixing rates of the diffusion MCMC algorithm is much

higher than the adaptive case.

Fig 2. Trace plots for three parameters: θ1, θ101, θ201. The left panels show the results from the adaptive MCMC sampler. The right panels

show the adaptive scaling within adaptive MCMC sampler.

https://doi.org/10.1371/journal.pone.0173453.g002

Table 1. Selected DMCMC and AM point estimates.

Parameter Target value DMCMC estimate AM estimate

θ1 0.2508 0.2517 0.2451

θ201 -0.9333 -0.8403 -0.8637

https://doi.org/10.1371/journal.pone.0173453.t001
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Glacial dynamics

In [16], the authors present a hierarchical Bayesian analysis for inferring features of the

dynamics of the Northeast Ice Stream in Greenland. For our purposes, we use a subset of their

data and a simplified version of their model. Glaciers flow under the influence of gravity mod-

erated by resistive forces at its base and sides. For a path roughly along the center of the glacier

as it flows toward the sea, physical reasoning and simplifying approximations lead to a model

for surface velocity of the stream as a function of ice thickness and the shape of the surface. Let

x (m) denote a spatial location. The model for the surface velocity u(x) (ms−1) used here is

uðxÞ ¼ ubx þ ð0:50ÞAðxÞ ðrgÞ3H4ðxÞ
dsðxÞ
dx

� �3

; ð18Þ

where ubx is sliding velocity, s(x) (m) is ice-surface elevation,H(x) (m) is ice thickness, ρ = 911

kgm−3 is the density of ice, and g = 9.81ms−2 is the gravity constant. Though the quantity A(x)
depends on temperature, it is often treated as a constant flow parameter. In this article we

model A using a Fourier expansion

AðxÞ ¼ a0 þ
X3

k¼1

ak cosðkxoÞ þ bk sinðkxoÞ: ð19Þ

We assume the following quadratic model for the surface:

sðxÞ ¼ b1x2 þ b0; ð20Þ

where β0 and β1 are unknown parameters. The authors in [16] use a different, more compli-

cated functional form for s. We found Eq (20) sufficient for our purposes. Let B(x) be the eleva-

tion of the base of the glacier so that

HðxÞ ¼ sðxÞ � BðxÞ:

The dataset consists of vectors S observed at fill-in spatial locations covering approximately

200 km of the ice stream, the observed surface topography; B, the observed basal topography;

and U, surface velocities. Additional description of the data is given in [16].

Data models. Let θ represent the set of all parameters introduced in the modeling. We

assume that S, B, U are conditionally independent given θ.

Surface Data. The data model for S is a conventional Gaussian measurement error model:

S j θ � Nðs;s2
S IÞ; ð21Þ

where s is the vector of values of Eq (20) at the observation locations; s2
S is an unknown mea-

surement error variance; and I is the identity matrix.

Basal Data. It is argued (see [16]) that the basal data must be smoothed to be useful in Eq

(18). Following their approach we partition the domain of the data into 210 = 1024 bins of

equal length (189.5 m). All basal observations within each bin are averaged, leading to a data

vector �B of length 1024. As in [16], we use a wavelet model with two sets of wavelets to provide

Table 2. Average squared jumping distance for θ1 and θ201.

Parameter AJSDDMCMC ASJDAM

θ1 0.0042 0.17 × 10−4

θ201 0.0044 0.16 × 10−4

https://doi.org/10.1371/journal.pone.0173453.t002
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smoothing. The first group of wavelets captures a smooth signal; the second captures fine-scale

or detail signals. Based on the results of [16], we used four smooth and 28 detail wavelets. Spe-

cifically, we assume that

�B j θ � NðWC; s2

B diagfn� 1

i gÞ; ð22Þ

where W is the 1024 × 32 matrix of discretized wavelet basis functions; C is the 32-dimensional

vector of wavelet coefficients; s2
B is an error variance; and diagfn� 1

i g is a 1024 × 1024 diagonal

matrix with diagonal elements equal to n� 1
i where ni is the number of observations averaged in

bin i (all ni are either one or two). We selected Daubechies wavelets, see [17] and [18] for

discussion.

Velocity Model. We assume that

U j θ � Nðu; s2

U IÞ; ð23Þ

where u is the vector of values given by Eq (18) at the observation locations; s2
U is the unknown

measurement error variance; and I is the identity matrix. Note that the sliding velocity is

assumed to be a constant over the study range.

Priors for parameters. Error Variances. The measurement error variances s2
S, s2

B, and s2
U

were assigned independent, inverse gamma distributions with means and standard deviations

(100, 10), (2500, 500), and (9, 3), respectively.

Surface Model Parameters. The prior distributions for β0 and β1 were specified to be inde-

pendent normal distributions with large variances: 10,000 for β0 and 10 for β1. The means of

these normal distributions were set to be equal to the least squares estimates of β0 and β1

derived from a traditional analysis fitting the model in Eq (20) to the surface observations.

Basal Model Parameters. The prior used for the four coefficients of the smooth-signal

wavelets is

Cs � Nðμs ; s
2

c I4Þ

where μs is the vector of conventional least squares estimates of Haar-wavelet coefficients. The

prior for the remaining 28 coefficients is

Cd � Nð0; s2
d I28Þ:

We set s2
c ¼ 2000 and s2

d ¼ 10000.

Velocity Model Parameters. The prior for the sliding velocity is

ub � Nð35; 142Þ:

To develop reasonable priors for the Fourier coefficients in Eq (19), we first obtained the

least squares fits to the surface and the basal models (20) and (22). These fitted models were

substituted into the velocity model (23). We then fitted the result via least squares. As above,

the least squares estimates of the Fourier coefficients were used as prior means for the corre-

sponding parameters. These values were on the order of 10−16 (which is consistent with the

theoretical value of the parameter A) except for the frequency parameter ω which was esti-

mated to be roughly 10−5. These parameters were all assumed to be independent, normal ran-

dom variables with prior variances equal to 10.

Performance. Fig 3 shows trace plots for various parameters. We ran the algorithm for

100000 iterations and thinned it by fifty steps. The diffusion MCMC algorithm performs very

well. It appears that it explores the state space properly and mixes very fast. In Fig 4 we show

posterior means for the surface, velocity and basal processes. For comparison, we added the
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posterior means (dashed lines) for the three processes from a much longer adaptive MCMC

run. This plot confirms that diffusion MCMC performs as expected, giving similar results to

the adaptive MCMC approach with the added benefit of a much shorter computing time.

Conclusions

Simulation of a diffusion formulated to have stationary distribution coinciding with a target

posterior distribution is a viable MCMC method. The approach is comparatively simple to

implement since it requires no probability computations such as those needed in Gibbs’

sampling nor any accept-reject steps as in Metropolis algorithms. These advantages can be

Fig 3. Trace plots for three parameters: Parameter β1 from the surface model (20)—Top plot; a wavelet coefficient from the basal

model—Middle plot and a Fourier coefficient from the flow model (19).

https://doi.org/10.1371/journal.pone.0173453.g003

Fig 4. Data (light grey) and posterior means for the diffusion MCMC (solid black lines) and adaptive MCMC (dashed

lines). Left panel shows the surface data, middle panel show the velocity data, right panel shows the basal data.

https://doi.org/10.1371/journal.pone.0173453.g004
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significant in a variety of settings including mixture likelihoods and/or priors, hierarchical

models, nonconjugate priors, and nonlinear models.

The key problem that arises in diffusion MCMC is the approximation of the desired contin-

uous time diffusion by a discrete time Markov chain. Our implementations use Euler discreti-

zations. As reviewed in the Introduction, there are results in the literature providing sufficient

conditions under which the discrete approximation has a stationary distribution that approxi-

mates that of the target, continuous-time diffusion. Though beyond our scope here, selection

of the time-step h can be done adaptively, see [6] for some recent theoretical developments in

this area.

We implemented diffusion MCMC for a familiar test problem and compared it to an adap-

tive MCMC procedure. We found that diffusion MCMC out-performed the “state-of-the-art”

adaptive MCMC. Next, we implemented the diffusion MCMC approach in a complicated,

nonlinear model involving glacial dynamics. Again, we found that our suggested approach

performs well, mixing very fast.

In summary, we believe that diffusion MCMC is a valuable addition to the MCMC toolbox.

By construction, the DMCMC algorithm has the ability to quickly find important regions of

the target distribution, while a classical, even adaptive MCMC, may require longer exploration

times (as seen in the glaciological example). It can be applied in great generality and with ease

in some complicated contexts for which other MCMC methods are difficult or very time-con-

suming to implement. DMCMC does carry the baggage of temporal discretization and con-

cern for the quality of the resulting approximation. Nevertheless, the potential power of

diffusion MCMC justifies its application and further development.

Supporting information

S1 Dataset. The data set used in this analysis are available in the file S1_Dataset.zip. We

provide the surface, basal and velocity data used in this manuscript.
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