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Abstract

Organisms respond to and often simultaneously modify their environment. While these inter-

actions are apparent at the landscape extent, the driving mechanisms often occur at very

fine spatial scales. Structure-from-Motion (SfM), a computer vision technique, allows the

simultaneous mapping of organisms and fine scale habitat, and will greatly improve our

understanding of habitat suitability, ecophysiology, and the bi-directional relationship

between geomorphology and habitat use. SfM can be used to create high-resolution (centi-

meter-scale) three-dimensional (3D) habitat models at low cost. These models can capture

the abiotic conditions formed by terrain and simultaneously record the position of individual

organisms within that terrain. While coloniality is common in seabird species, we have a

poor understanding of the extent to which dense breeding aggregations are driven by fine-

scale active aggregation or limited suitable habitat. We demonstrate the use of SfM for fine-

scale habitat suitability by reconstructing the locations of nests in a gentoo penguin colony

and fitting models that explicitly account for conspecific attraction. The resulting digital ele-

vation models (DEMs) are used as covariates in an inhomogeneous hybrid point process

model. We find that gentoo penguin nest site selection is a function of the topography of the

landscape, but that nests are far more aggregated than would be expected based on terrain

alone, suggesting a strong role of behavioral aggregation in driving coloniality in this spe-

cies. This integrated mapping of organisms and fine scale habitat will greatly improve our

understanding of fine-scale habitat suitability, ecophysiology, and the complex bi-directional

relationship between geomorphology and habitat use.

Introduction

Habitat suitability models for plants and animals often focus on course-grained abiotic habitat

characteristics at the expense of microhabitat factors and/or biotic interactions that can also be

important for structuring the use of space [1,2]. Despite their ubiquity and importance for spa-

tial ecology, the scale and extent of data used to explore relationships between organisms and

the space they occupy are often dictated by the availability of environmental data rather than
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the ecology and physiology of the organism under consideration [3]. Moreover, since data on

environmental conditions and the presence/absence of the organism are usually recorded

independently, there can be considerable spatial and temporal alignment errors between data

types, making it difficult to infer the true relationship between them [1,4]. Issues of scale or

spatiotemporal registration errors are relatively minor when key environmental covariates

vary slowly (e.g., elevation) or when the spatial scale of occupancy is large (e.g., an island), but

they can be highly problematic when modeling habitat suitability or space use at much smaller

spatial scales, where occupancy may hinge on the detailed hydrology of the site or subtle varia-

tions in exposure to wind scour or solar irradiation [5].

Microclimate is likely to be critical in driving occupancy and abundance of a range of plants

and animals because the environment as experienced by an individual can be very different

from the average background condition measured at much larger spatial scales [6]. When

high-resolution topographic maps are combined with climatic modeling, we may begin to

detect fine scale variations that drive habitat associations. Seabra et al. [7] demonstrated that

limpets at equal tidal heights and separated by less than two meters may experience signifi-

cantly different incident solar radiation depending on which side of a rock they inhabit. The

micro-scale differences in resulting temperature, which can be critical for the organisms as

they perceive their environment, are far smaller than could be mapped using traditional air or

water temperature datasets derived from satellite-based sensors. Terrestrial ecology also pro-

vides many such examples; different species of Anoline lizard occupy distinct microhabitats

based on shade availability [8], the distribution of saxicolous lichens in the Rocky Mountains

appear to be driven by fine scale variability in snow cover across the faces of boulders [9], and

thermally constrained butterflies select topographically-driven microhabitat based on fine

scale variations in temperature [10]. Topography can shape microclimate and provide fine-

scale habitat that falls within the physiological tolerances of a species in an otherwise appar-

ently unsuitable landscape. While these microhabitat drivers may not be as valuable as regional

scale variables in predicting occupancy over large geographic ranges, they may be key to

understanding small-scale interactions that structure the use of space by animals, and may

improve model performance when used in conjunction with these regional variables [11,12]

Biotic interactions can also influence how animals and plants use space, making it difficult

to infer the strength of abiotic habitat associations. Positive associations between conspecifics,

either caused by active behavioral aggregation such as colonial breeding or the more passive

dispersal limitations often seen in plant distributions, should lead to an increased density of

individuals. Alternatively, negative associations, such as competition for resources, territorial

behavior, or allelopathy should result in lower densities of individuals that are more regularly

spaced across the landscape. When these biotic interactions are excluded from habitat suitabil-

ity models, we risk erroneously assigning this variance to some landscape factor, and may find

that our models perform poorly at predicting the spatial distribution of a species [2]. Similarly,

if we do not explicitly include abiotic landscape heterogeneity into models of aggregation then

we may incorrectly attribute patterns of aggregation to complex biotic interactions.

The use of topography as an explanatory variable in distribution modeling has a long his-

tory in the field of gradient analysis, whereby the abundance of a plant species is related to

environmental gradients such as elevation. While most gradient analysis studies focus on the

landscape scale, important fine scale details can be lost when data are collected at such large

scales [13] as small scale heterogeneity in the landscape has been shown to promote species

richness and beta diversity in plant communities [14]. In addition to information lost due to

inappropriate scale, ecological datasets almost always project a three-dimensional landscape

onto a two-dimensional raster, preventing a complete consideration of covariates that require

a three-dimensional understanding of habitat (e.g., terrain, canopy structure, etc.) [14]. The
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additional information provided by digital elevation models (DEMs) can often be used as

proxies for environmental condition and permit direct modeling of many processes, such as

hydrological flow, critical to a site’s suitability. To fully understand the spatial ecology of a spe-

cies, it is important to map both organisms and the fine scale three-dimensional details of their

landscape simultaneously. These maps, which we refer to as ‘integrated’ terrain and occupancy

maps, are likely to be useful across a range of applications including ecology, ecophysiology,

and biogeomorphology.

Mapping fine-scale terrain

One of the basic structuring elements of habitat is elevation, however the resolution of avail-

able elevation data is highly variable across the globe. Within the United States, the USGS

National Elevation Dataset provides low-resolution elevation data with relatively high spatial

coverage, and a smaller number of high-resolution data products derived from aerial photo-

grammetry (with horizontal resolution up to 3 m). While similar data sets are available from

several national agencies and commercial providers, global coverage is limited and high quality

data are often hard to find and/or may be prohibitively expensive. Many of the more readily

available products are derived from sources such as RadarSat and yield elevation datasets with

horizontal resolutions in the range of hundreds or even thousands of meters. At these scales it

is unlikely that recorded environmental variables accurately reflect the environment as experi-

enced by an organism, as variation in microhabitat can lead to very different conditions exist-

ing at the smallest scales. Stereo pairs of imagery from commercial satellite images can be used

to construct digital elevation models with spatial resolutions on the order of meters, but imag-

ery at this resolution can be prohibitively expensive and cloud cover and shadows can create

holes in the imagery that must be imputed.

LiDAR technology is capable of recording high-resolution 3D landscape structure [15] and

it has been shown that such high resolution information on vertical structure can improve

habitat suitability modeling studies [12,16,17], but LiDAR surveys entail equipment costs and

often flight times that can be economically or logistically prohibitive. Structure-from-Motion

(SfM), a computer vision technique, can be used to rapidly and economically produce detailed

3D information on the structure of the landscape [18] and simultaneously record the location

of organisms within that landscape. SfM is simple enough to deploy in any landscape [19], and

provides data on fine scale habitat characteristics that are otherwise unavailable. While this

survey method has been used to create digital models of artifacts in archeology [20], measure

canopy cover [21,22,23] and record coral morphology [19] in ecology, this work represents the

first time the lower cost methodology of SfM has been used for modeling habitat suitability.

Modeling conspecific interactions

While integrated terrain and occupancy models would find utility across a number of fields in

ecology, we demonstrate its use by applying it to the study of conspecific attraction in colonial

seabirds. Occupancy can be modeled either as a binomial process on a two-dimensional grid or

as an inhomogeneous spatial point process; both approaches are made feasible using SfM, how-

ever we use a point process approach to demonstrate the use of SfM in a case study of nest site

selection in the gentoo penguin (Pygoscelis papua). As in many colonially nesting birds, it is dif-

ficult to determine to what extent gentoo penguin nests are clumped due to active behavioral

aggregation or whether they are simply responding independently to patchiness in suitable nest-

ing habitat. High resolution terrain models integrated with information on patch occupancy

allow us to quantitatively estimate the strength of these two competing hypotheses and provide

an ecologically important case study for the use of this integrated mapping technique.

Computer Vision Based Ultra-Fine Scale Habitat Suitability
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Methods

Permits for this work were obtained from the National Science Foundation Division of Polar

Programs in accordance with the Antarctic Conservation Act and Antarctic Treaty System.

Structure-from-motion

Structure-from-Motion, a computer vision technique in which 3D structure is estimated from

a set of overlapping images of the landscape, was used to produce a high-resolution 3D model

of the study site with embedded information on nest locations (Fig 1). No prior information

on the position from which images are captured is required, as the SfM algorithm is able to

estimate the position of the cameras independent of the unknown 3D scene and, consequently,

the structure of the 3D terrain.

We use a commercial product, Photoscan Professional Edition [24], for the photogrammet-

ric workflow. Educational licensing is available for this product at a reduced rate, and in 2016

was priced at $59 for the standard edition and $549 for the professional edition. Alternative

freely available software include visualsfm [25,26], tools in the python module OpenCV,

and a selection of free-to-use web based services such as AutoDesk Catch 123D. All of these

options use similar processes and workflows, but have different strengths and weaknesses [27].

Having tested many of these options, we think Photoscan provides the most complete and

user friendly set of features for working with spatial data and producing georeferenced output

from 3D reconstruction.

Feature matching algorithms such as Scale Invariant Feature Transformations [28] are used

to automatically identify corresponding points observed in multiple images and solve for the

Fig 1. (a) Textured 3D mesh of Port Lockroy, Antarctica created from 493 images (b) Sample of images captured using a GoPro 3. Locations of

occupied penguin nests are marked with yellow dots and blue flags.

doi:10.1371/journal.pone.0166773.g001
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position of pairs of camera locations independently of the unknown structure of the 3D scene.

Given the positions and orientation of the cameras from which the images were taken the soft-

ware can project each matched point back into 3D space to yield a vector along which this

point must lie. For each matched point we expect the intersection of the projections from mul-

tiple images to converge, giving the location of that point in 3D space. The estimated camera

positions are then passed to a multi-view stereo algorithm to create a dense point cloud repre-

senting the 3D surface (Fig 2A). This dense point cloud is used as the basis for the generation

of a polygon mesh, a 3D surface consisting of polygons that interpolates between the points in

the dense point cloud (Fig 2). Though the mesh is in an arbitrary coordinate system, this mesh

can be transformed into a real-world coordinate system through the use of additional informa-

tion collected during the survey and an appropriate georectification method. When using cam-

eras with a built-in GPS system, the metadata attached to each image can be used to estimate

the position of the cameras. These estimated locations can then be used to transform the mesh

to a real world coordinate system, while providing estimates of errors in camera locations. It

should be noted, however, that these estimated errors convolve errors in the GPS positions

and in the reconstructed mesh. Alternatively, information on the real-world position of points

within the reconstructed scene can be used to georectify the model. Coded machine-readable

targets, which can be produced automatically by Photoscan, can be placed into the scene prior

to surveying and their positions recorded via a GPS (or differential GPS) unit. These targets

can be automatically detected by the Photoscan software and encode an identifying number

allowing unique markers to be identified. The model can then be georectified to these known

points. These markers, when visible in multiple overlapping images, can also aid in the align-

ment of images and estimation of camera positions. If coded targets are not available, any rec-

ognizable point within the scene, or identifiable non-coded markers, can be used, although

this requires the user to manually identify the targets within images and set their real-world

coordinates. Once a 3D mesh has been produced and georectified, it can be converted into a

raster DEM for convenient use in GIS software.

If no positional information is available at the time of surveying it is possible to export the

model in an arbitrary coordinate system to GIS software where it can be georectified to satellite

imagery as long as corresponding features, such as the corners of buildings, can be identified

in both the 3D model and the satellite imagery. If this is the case, as it was in this study, it is

important that the data are rescaled in the z-axis as georectification outside the SfM software

will leave the elevation values in the original unscaled coordinate system. We exported an

orthorectified image to ArcGIS and georectified it to existing 0.5 m resolution panchromatic

satellite images using a linear transformation.

The ideal approach to SfM is to produce images using an aerial survey either from aircraft

or unmanned aerial systems (UASs). However, due to cost considerations, frequent high

winds, and risk of negative interactions between wildlife and UASs, we use a GoPro Hero 3

mounted on a 2.7 m pole that is carried around the site, with the camera capturing images of

the terrain every ten seconds. While these oblique images are not ideal for SfM, tests showed

that the elevation provided by the pole system was sufficient to allow reconstruction of the ter-

rain. In an ideal scenario, a systematic transect survey would be planned in advance to ensure

complete coverage; however, the opportunistic nature of field site access in the Antarctic and

the need to avoid disturbing potentially sensitive nesting birds made this impossible for our

application. To compensate for the lack of a systematic survey plan we collected many more

images than necessary to ensure that we had complete coverage and sufficient views of all ter-

rain. Despite the challenges of three-dimensional mapping across such complex terrain we

managed to reconstruct an area of over 50,000 m2 in with only around 40 minutes of survey

effort.

Computer Vision Based Ultra-Fine Scale Habitat Suitability
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Fig 2. (a) Dense point cloud of Port Lockroy containing 113,338,579 points produced using 493 images processed with

Photoscan (Agisoft). (b) Textured mesh containg 2,495,043 vertices fitted to dense point cloud.

doi:10.1371/journal.pone.0166773.g002
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Occupancy

After estimating the camera locations, we can project any given point in an image back into

3D space, resulting in a vector along which that point must lie. If we calculate the 3D coordi-

nate of the intersection of this vector and the 3D mesh, we can place the point into the 3D

landscape.

We selected a subset of the images that contained multiple projections of every occupied

nest at the study site. The viewpoint afforded by the 2.7 m pole was sufficient to ensure that

there was no occlusion of nests, and while we cannot always distinguish between a resting

non-breeder (juvenile) and a nest with eggs being incubated by a breeding penguin, the use of

expert interpretation of images minimizes false positives. In each of the images the pixel coor-

dinates of each nest were used to project back to an intersection point on the 3D mesh. This

step is possible directly in the Photoscan software package through marker placement on an

image after generation of the mesh. This approach results in a set of points on the 3D surface

corresponding to the estimated locations of all penguin nests in the site. Due to errors in align-

ment and the fact that different points within each nest are selected and projected onto the 3D

mesh from different viewpoints, nests are occasionally recorded as a cluster of points. We filter

these points assuming a minimum distance (10 cm) between the centers of adjacent nests,

visually check the images to ensure each cluster is in fact an artifact of using multiple projec-

tions for a single nest, and then reduce these clusters to a single point at the center of the clus-

ter. We can also use the total number of nests counted on the ground during surveying as a

check on the number of clusters identified. The latitude and longitude of each point is then

exported to GIS software.

Point process modeling

Ripley’s K-function [29], K(r), a measure of the average number of points occurring within a

radius ‘r’ of any other point, was used to provide a visual representation of pattern present.

The value of Ripley’s K can be assessed over a range of values of ‘r’ and compared against a the-

oretical value expected under complete spatial randomness to understand scale dependent pat-

terns occurring within the point pattern.

Mapping individual penguin nest locations also allows us to model the location of nests as

the outcome of a spatial point process. We hypothesize that the observed clumping of Pygosce-
lis penguin individuals (both at the scale of the colony and sub-colony units) is a convolution

of preference for auto-correlated terrain (specifically, well-draining areas at the top of local

peaks in elevation) and significant levels of conspecific attraction. We model nest locations as

the outcome of a hybrid Gibbs point process [30]. This model allows for interactions among

points even as the intensity of the point process varies according to the underlying abiotic

landscape features mapped using SfM. The hybrid model has three components; hard-core

repulsion that prevents points from occurring within a distance h of each other, a Strauss inter-

action in which points separated by a distance between h and a radius r1 contribute a factor γ1

(γ1 < 1), to the probability density, resulting in a decreased probability of inter-point distances

being found within this range, and a Strauss interaction in which points separated by a dis-

tance between r1 and a radius r2 contribute a factor γ2 (γ2 > 1), resulting in an increased proba-

bility of points within this distance. The probability density for the hybrid process is:

f ðΖÞ ¼ a
Yn

i¼1

bðΖiÞ

" #
Y

i<j

cðΖi;ΖjÞ
� �

where Z = (Z1,. . .,Zn) is the set of n points in the observed point process, α is a normalizing
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constant, and ψ(Zi,Zj) represents the pairwise interaction between points that depends on the

distance kZi − Zjk between the points

cðΖi;ΖjÞ ¼

0; kΖi � Ζjk � h

g1; h < kΖi � Ζjk � r1

g2; r1 < kΖi � Ζjk � r2

1; r2 < kΖi � Ζjk

8
>>>><

>>>>:

with γ> 1 representing attraction. The function β(Zi) is related to the first order intensity of

the point pattern at the point locations Zi,

logðbðΖiÞÞ ¼ mþ
Xl

k¼1

rkxk;i;

where μ is an intercept term, ρk are the coefficients for the set of l environmental covariates,

and xk,i are the values of the kth environmental covariate at the point location Zi.

In the case of gentoo penguins, we hypothesize that the hard-core repulsion at small dis-

tances is driven by the physical size associated with each individual nest, while at slightly lon-

ger length scales territorial behavior increases average inter-nest distance, and at larger scales

defense against aerial predators creates positive attraction. The main drivers of nest site selec-

tion (i.e. the inhomogeneous intensity of the point process β(Zi)) are likely to be associated

with the hydrology of the site, as waterlogging of the nest may prevent important gas exchange

over the egg shell [31], and cause hypothermia in chicks that have not yet reached thermal

independence [32]. Covariates associated with the underlying suitability of terrain which were

selected for inclusion in the statistical model of nesting include elevation, flow accumulation,

and a travel cost metric that combines distance to the coast (where penguins haul out of the

water after foraging) and slope along their commute back to the nest. While cost-weighted dis-

tance and elevation are generally inversely correlated, cost-weighted distance also accounts for

those areas in which there is no direct path from the coast to the nest. Flow accumulation uses

the aspect of each cell to determine the sum of cells likely to contribute to water-flow into any

given cell. The calculation of flow accumulation is dependent on the scale used for analysis; for

this reason, flow accumulation was calculated at a variety of scales and model selection used to

determine which scale(s) should be retained in the best-fitting model.

Point process models were fitted using the ‘ppm’ function in the ‘statspat’ R package [29].

Appropriate interaction distances are estimated via a model comparison method in which

models for all combinations of parameters h and r are fitted and the model with the lowest

Akaike Information Criterion (AIC) score selected. While artificially introduced boundaries in

a point pattern can affect model fitting, the point pattern’s boundary in this case is created by

the coastline of the island and is thus not an artifact of the sampling; correspondingly, no edge

correction was used in fitting the models.

Results

Of the 493 images available for Port Lockroy, the Antarctic penguin breeding site considered

for this analysis, 459 were successfully aligned, providing at least 9 views of all areas of the

island for generation of the 3D point cloud. The point cloud consisted of 113,338,579 points in

3D space (5,667 points per square meter over an area of 66,395.90 m2), which were generalised

to a mesh containing 2,495,043 vertices and 4,988,477 faces. This mesh was georectified and

converted to a raster with a resolution of ~6 mm.

Computer Vision Based Ultra-Fine Scale Habitat Suitability
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Ripley’s K indicated significant under-dispersion, or clustering of points, at distances

greater than 0.3 m while at smaller distances the points were over-dispersed relative to a sta-

tionary Poisson point process (Fig 3). Model selection via AIC indicated that the estimated

hard-core distance for the point process model (h) was 0.28 m while the Strauss interaction

radii (r1,r2) were 0.5 m and 1.86 m, respectively.

Elevation, flow accumulation, and cost distance were found to be statistically significant

(p< 0.001) for the occurrence of nests even after allowing for the interaction of points. Flow

accumulation was found to be significant at multiple scales (p< 0.001). Nest densities were

higher in areas at greater elevations and in those locations unlikely to become water–logged

(Fig 4, Table 1). The interaction coefficients (Table 1) are the natural logarithm of the esti-

mated interaction parameters γ1 and γ2. Our estimates of bg1 ¼ � 1:13 (95th percentile CI =

[-1.36,-0.88]) and of bg2 ¼ 0:56 (95th percentile CI = [0.54,0.58]) indicate strong negative inter-

action at short length scales (� 0.5m), and positive interactions at longer scales (0.5 m—1.86

m), leading to a higher density of nesting than would be expected based on first-order inhomo-

geneity in habitat suitability.

Fig 3. Ripley’s K-function (mean number of points within radius r from any point) for the observed point

pattern (black), theoretical value under complete spatial randomness (blue), and value under an

inhomogeneous Poisson process with no inter-point interaction (red). Confidence intervals generated

through 1,000 simulations of point processes. Gentoo nests show over-dispersion (fewer points than expected)

at short scales (inset) and under-dispersion (more points than expected) at larger scales.

doi:10.1371/journal.pone.0166773.g003
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Fig 4. (a) Estimated intensity of inhomogeneous point process of nest locations driven by underlying terrain characteristics. White circles represent

the locations of nests in the observed point pattern. (b) A stochastic realization simulated from the fitted Strauss hard-core point process.

doi:10.1371/journal.pone.0166773.g004

Table 1. Parameter estimates for the fitted hybrid Gibbs process model of gentoo nest locations at Port Lockroy, Antarctica. There is zero probabil-

ity of points existing within 0.28m (h) of each other. From 0.28m to 0.5m (r1) the probability of occurrence is reduced by eg1 , and from 0.5m - 1.86m (r2) the

probability of occurrence is increased by eg2 .

Coefficient Lower 95% CI Upper 95% CI p Value

Intercept (μ) -4.01 -4.18 -3.84 < 0.001

Elevation (ρ1) 0.11 0.09 0.13 < 0.001

Flow Accumulation (ρ2) -0.00195 -0.00269 -0.00018 < 0.001

Flow Accumulation 4x scale (ρ3) -0.0082 -0.0095 -0.0008 < 0.001

Flow Accumulation 16x scale (ρ4) -0.0305 -0.0323 -0.0025 < 0.001

Cost Distance (ρ5) -0.0012 -0.0014 -0.0010 < 0.001

Interaction (γ1) -1.13 -1.36 -0.88 < 0.001

Interaction (γ2) 0.56 0.54 0.58 < 0.001

doi:10.1371/journal.pone.0166773.t001
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Discussion

While the datasets required to study occupancy at large spatial scales are readily available

through remote sensing, the environment experienced by individual plants and animals is usu-

ally quite localized and may depend on idiosyncratic features not apparent in remotely sensed

imagery [16]. Species may occupy sites that at a landscape scale appear unsuitable, but at fine

scales contain topographic features that produce microclimates vastly different from the

regional average and fall well within physiological requirements. SfM provides a means to

understand the interactions between organisms (particularly sessile organisms such as plants

or nesting birds) and their environment, and provides data on occupancy and abundance that

can be used in a range of spatially-explicit modeling frameworks. While SfM is capable of pro-

ducing highly detailed 3D models, the standard workflows associated with habitat suitability

or point process modeling require data in a planar geometry, causing us to collapse our dataset

back to a 2D representation of the environment for analysis (Fig 5). The derived metrics that

describe key factors of the microclimate such as hydrology or hillshade may be estimated

directly from the high-resolution 3D information collected through SfM. This high resolution

topographic information has been shown to improve habitat suitability studies, although pre-

vious efforts have utilized LiDAR systems, and have recognized that the associated costs are

high. While lower resolution datasets may be constructed through intensive point sampling

and interpolation, SfM offers the ability to collect this 3D information of comparable quality to

LiDAR at a fraction of the cost.

Recommendations for best results

To produce high quality 3D models it is important to have sufficient overlap between images

(between 60–70%) to allow an adequate number of points to match between images. While

camera alignment is theoretically possible with as few as eight matched points, in practice the

number of matched points should be orders of magnitude larger. Images should be captured

from different locations around the site of interest rather than from an in-situ rotation of the

camera. Additionally, an ideal camera should be at least 12 megapixels with a 50 mm film

equivalent focal length. Photoscan also supports a fish-eye lens camera model in addition to

the standard frame camera model, enabling the use of cameras such as the Go-Pro3 in the SfM

pipeline. While results obtained using cameras with a fish-eye lens are of lower quality, the

trade-off of lower camera weight may often inform the choice of camera particularly when

aerial images are required. The parameters of the camera model, a representation of the

transformation of light rays from lens to sensor, are estimated at the same time as the scene

structure; however, it is also possible to calibrate cameras in a separate process using a checker-

board pattern image.

The density of reconstructed points is a function of the number of matched points between

overlapping images and the distance of the point from the camera. This results in a variable

density of points across the reconstructed scene. In fact, there may be portions of the scene

that cannot be reconstructed in cases where there is insufficient overlap or coverage in images,

occlusion of an area, or insufficient surface texture. While interpolation of the mesh can be

used to fill these holes (and can be carried out in Photoscan simultaneously with mesh crea-

tion), it is preferable to consider image capture paths prior to surveying to minimize the need

for interpolation. In this study, there were several small areas that required interpolation due

to the lack of matchable features in snow banks, however these represented a very small pro-

portion of the total surface reconstructed (< 7%) and these areas did not contain penguin

nests. It should be noted that the proportion of the surface that was not constructed was far
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Fig 5. Raster and contour map derived from 3D model produced by Structure-from-Motion.

doi:10.1371/journal.pone.0166773.g005
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smaller than in most stereo-derived satellite DEMs where cloud cover can result in large holes,

particularly in coastal areas.

While it is impossible to calculate errors in the point cloud in the absence of a reference set

of measurements of known accuracy, previous studies have compared the accuracies of the SfM

approach and traditional LiDAR systems and found the two systems to have similar accuracies

[18]. In some instances, greater point densities are achievable through SfM, however it should

be noted that errors may not be constant across the scene and may be affected by scene-depen-

dent factors such as the distance of the camera from the scene [18]. Reconstruction may fail

completely or result in systematic errors when there is insufficient overlap between images, or

when the scene being reconstructed lacks sufficient texture for feature matching. The result

may be either a model based on a small subset of the available images with those images that

could not be aligned excluded, or a model in which cameras have been incorrectly aligned and

erroneous points included. These points can often be manually identified by their position and

the projection of the incorrectly aligned camera can be reset. Manual placement of control

points between images may then be used to attempt to correct the alignment issues.

Lessons for seabird ecology

In our demonstration of SfM as applied to gentoo penguin nesting, we find strong evidence of

intraspecific interactions that are, in fact, more important to the probability of occupancy than

the underlying terrain of the nest site. Simulations from the fitted model show exaggerated

clustering, a well-known problem in aggregative point process models [33]. It may be the case

that the interactions among individuals are more complex than we have assumed here and

that additional repulsive forces would stabilize the point pattern. The smallest inter-nest dis-

tance in our dataset was 0.28 m and, accordingly, the hard-core distance in our model was esti-

mated to be 0.28 m. However, the average nearest-neighbor distance is 1 m, consistent with

previous estimates that have suggested inter-nest distances of around 1 m [34]. The smallest

inter-nest distances found in our dataset could be caused by the reduction from three dimen-

sions to two, with the z component in inter-nest distance lost during the projection onto the

planar surface. While the ‘spatstat’ package [30] provides the tools to visualize and summarize

point patterns in 3D, the tools for fitting point process models on a 3D surface have not yet

been developed.

The interaction effects that we observe may also be due partially to some spatially autocorel-

lated abiotic feature not considered in our model. The use of SfM to produce a virtual repre-

sentation of the scene allows us to return to the dataset and derive new explanatory metrics

that describe additional features of the landscape in a way not be possible with a traditional

field survey. In this way, SfM provides an opportunity for reanalysis if new biological hypothe-

ses arise after the survey and initial analysis.

Finally, the realized point process recorded by SfM in the field is likely to be a sub-optimal

arrangement of nests that reflects, in part, the residual influence of the initial colonization pro-

cess. Simulated nesting patterns highlight deviations between the observed point process and

the classic Strauss hard-core process and suggest the potential importance of initial conditions,

though a more complete analysis of ‘optimal’ nesting strategies and non-equilibrium dynamics

is required.

Structure-from-Motion offers a cheap alternative to LiDAR to produce high-resolution

3D information on a landscape [22]). While the software used in this study (Photoscan) is a

commercial product, with the use of free software, such as visualSfM, it is now feasible to

completely integrate organism and habitat mapping for the price of a suitable camera. Data

collected at this resolution are much closer to the scale that is relevant to behavioral choices or
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dispersal limitations of individual organisms than most datasets currently being used in either

habitat suitability or range modeling [16]. The ability to characterize micro-habitat, which can

be highly heterogeneous at very small spatial scales, will provide ecologists a much better

understanding of the niche requirements of a species.

Additional ecological applications of SfM

In addition to the production of high-resolution data at scales suitable for individual level hab-

itat suitability modeling, SfM technology could be applied to a range of other ecological prob-

lems. SfM has already been demonstrated as a means of extracting morphological information

from individual objects such as corals, fossils or skeletons, enabling researchers to record met-

rics such as the volume of individual regions of an object, as well as providing a means to store

and share the 3D structure of an object without the need for access to the original sample (e.g.

[15]). This technology also shows potential for rapid, opportunistic abundance surveys for

static organisms, such as plants, nesting seabirds, and hauled out seals to name just a few. Tra-

ditional panoramic photography has long been used for the census of organisms [35] but com-

plex topography often makes it difficult to align the perspectives of each overlapping image to

identify portions of the scene that may have been missed. Through the use of SfM to recon-

struct the scene, the uncertainty in overlap between images can be identified and the coverage

of the survey estimated. Incomplete surveys can be then be extrapolated as needed.

While we have demonstrated this technology with oblique imagery captured from the

ground, results may be further improved, both in terms of consistency of point density and

coverage, by using orthogonal imagery captured from an aerial platform, such as a plane, kite,

or UAS. With the rapidly decreasing price and increasing usability and autonomy of UASs

such as quadrocopters, this technology offers the potential for mapping relatively large areas at

high spatial resolution, and producing both DEMs and orthorectified imagery of a location at

much higher spatial resolutions than commercially available satellite imagery. All of these tech-

nologies will create new opportunities for understanding the fine-scale spatial ecology of

organisms.
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