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Abstract 
 
 
The ability to reliably predict flow and transport in fractured porous rock is an essential 
condition for performance evaluation of geologic (underground) nuclear waste 
repositories. In this report, a suite of programs (TRIPOLY code) for calculating and 
analyzing flow and transport in two-dimensional fracture-matrix systems is used to model 
single-well injection-withdrawal (SWIW) tracer tests. The SWIW test, a tracer test using 
one well, is proposed as a useful means of collecting data for site characterization, as well 
as estimating parameters relevant to tracer diffusion and sorption. After some specific 
code adaptations, we numerically generated a complex fracture-matrix system for 
computation of steady-state flow and tracer advection and dispersion in the fracture 
network, along with solute exchange processes between the fractures and the porous 
matrix. We then conducted simulations for a hypothetical but workable SWIW test 
design and completed parameter sensitivity studies on three physical parameters of the 
rock matrix – namely porosity, diffusion coefficient, and retardation coefficient – in order 
to investigate their impact on the fracture-matrix solute exchange process. Hydraulic 
fracturing, or hydrofracking, is also modeled in this study, in two different ways: (1) by 
increasing the hydraulic aperture for flow in existing fractures and (2) by adding a new 
set of fractures to the field. The results of all these different tests are analyzed by 
studying the population of matrix blocks, the tracer spatial distribution, and the 
breakthrough curves (BTCs) obtained, while performing mass-balance checks and being 
careful to avoid some numerical mistakes that could occur. 
 
This study clearly demonstrates the importance of matrix effects in the solute transport 
process, with the sensitivity studies illustrating the increased importance of the matrix in 
providing a retardation mechanism for radionuclides as matrix porosity, diffusion 
coefficient, or retardation coefficient increase. Interestingly, model results before and 
after hydrofracking are insensitive to adding more fractures, while slightly more sensitive 
to aperture increase, making SWIW tests a possible means of discriminating between 
these two potential hydrofracking effects. Finally, we investigate the possibility of 
inferring relevant information regarding the fracture-matrix system physical parameters 
from the BTCs obtained during SWIW testing. 
 
 
Keywords: SWIW test, TRIPOLY code, solute transport modeling, complex fracture-
matrix system, hydrofracking. 
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Nomenclature 
 

Letter Unit Significance 

A m2 Cross-sectional surface area 

A0 m2 Surface area of the matrix block 

A(s) m2 Interface area for transport in the matrix blocks 
2b m Fracture aperture 

C g.L-1 Relative solute concentration 
d m Dispersion coefficient 

De m2.s-1 Effective diffusion coefficient (in matrix blocks) 

Dfw m2.s-1 Molecular diffusion coefficient in the water (in fractures) 

g m.s-2 Gravitational constant 
H m Hydraulic head 

K m2 Permeability 

KD m3.kg-1 Sorption coefficient or distribution coefficient for the solute with the rock 
L m Fracture length 
M g Mass of introduced tracer  
Prox(s)  Proximity function 

q m3.s-1 Flow rate 
r  Recovery factor 
R  Retardation coefficient 
S m Maximum available distance from fracture to a considered block center 
s m Local coordinate perpendicular to adjacent fractures 
t s Time 

u m.s-1 Pore velocity 

v m.s-1 Darcy velocity through the medium, where Aqv /  

VT m3 Total block volume 

VV m3 Volume of void space 

V(s) m3 Total fraction of matrix volume within a distance s from the adjacent fractures  
WD  Diffusive loss into the matrix on fracture wall 
x m Position axis x 
x' m Coordinate defined parallel to the fracture axis 
y m Position axis y 
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Symbol Unit Significance 
 m Dispersion coefficient (or longitudinal dispersivity in fracture elements) 
P Pa Pressure difference 

 H   Hydraulic head gradient 
 P  Pa.m-1 Pressure gradient 
  Porosity 
 Pa.s Dynamic viscosity of the fluid 

 kg.m-3 Density of fluid 

P kg.m-3 Rock density 
  Tortuosity 

 
   
Subscript – Superscript  Significance 
C  Chase fluid 
F  Fracture 
i  Bin time 
I  Injection 
M  Matrix 
W  Withdrawal 
 
 
   
Abbreviation Significance 
BTC  Breakthrough Curve 
MB  Mass Balance 
SWIW  Single-Well Injection-Withdrawal 
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I. Introduction 
 
 
The capability of reliably predicting flow and transport in fractured porous rock is a vital 
requirement for performance assessment of many geologic repositories for nuclear or 
toxic waste. Additionally, such capability leads to a better understanding of rocks under 
extreme conditions, such as in oil, gas, or geothermal energy exploitation. The transport 
behavior in such systems is characterized by fast transport in connected fractures coupled 
with slow diffusion into the porous rock matrix, the latter an important retardation 
mechanism for radionuclides. The size and shape distribution of matrix blocks, together 
with porosity, diffusion, and sorption properties of the rock, control this retardation 
mechanism.  
 
A wide range of techniques are available to carry out hydrologic and tracer tests in 
support of characterizing flow and transport in fractured porous rock. Hydrologic tests 
can involve one or more wells, whereas tracer tests typically involve two or more wells. 
It has been demonstrated, thanks to several previous studies (Haggerty et al., 2001 [7]; 
Schroth et al., 2001 [15]; Nordqvist and Gustafsson, 2002 [11]; Nordqvist and 
Gustafsson, 2004 [12]; Neretnieks, 2007 [10]; Gouze et al., 2008 [6]) that the single-well 
injection-withdrawal (SWIW) test, a tracer test using only one well, is useful in site 
characterization of fractured rock as well as in providing information on tracer transport 
diffusive properties. 
 
The usual conceptual model of flow and transport through fractured rock involves 
advection and dispersion through the fracture network, coupled with diffusion and 
sorption into the surrounding rock matrix. In a SWIW tracer test, one well injects fluid 
and tracer at a constant rate for a period of time, followed by injection of fluid (called 
chase fluid) without tracer for a certain amount of time. Then the pump is reversed and 
the well withdraws fluid at the same rate until most (or all) the tracer is retrieved. Unlike 
a typical two-well tracer test, which is typically very sensitive to advective heterogeneity, 
in SWIW tests, involving reversing flow fields by injection and then withdrawal at the 
same flow rate, these advective heterogeneities tend to cancel out. Thus, SWIW-test 
results are ideally independent of advective heterogeneity, flow channeling, and flow 
dimension. As a result, the breakthrough curve (BTC) is not sensitive to this “advective 
dispersivity” but is dominated by the presence of matrix diffusion (as well as other 
processes affecting solute exchange between fracture and matrix) (Doughty and Tsang, 
2009 [5]). Hence, matrix diffusion has to be taken into account in the advection-
dispersion equation used to model flow and transport through the fracture network. 
 
One key difference between a two-well test and a SWIW test is illustrated in Figure 1. In 
a two-well test, particles always “see” new rock matrix, whereas in a SWIW test, they 
return past the same rock matrix during the withdrawal period that they already passed 
during the injection phase. If this rock matrix is composed of finite blocks, the latter may 
become “saturated” with tracer (i.e., CM = CF) in a SWIW test, therefore accepting no 
more diffusion and sorption. Another key difference resides in the fact that travel distance 
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is essentially fixed for two-well tests, set by well separation, so that the peak arrival time 
may change, and thus time for diffusion may vary as well, whereas travel time is 
essentially fixed for SWIW tests, set by the schedule of the test, so that the tracer plume 
size (or spatial distribution) may change. Compared to a typical two-well test, a SWIW 
test is expected to produce a higher tracer recovery ratio, be more feasible in the field and 
provide information on the flow wetted surface of a fracture network – that is, the contact 
surface area between flowing water in fractures and the rock (Tsang and Doughty, 2009 
[17]). 
 
The purpose of this study is to evaluate the SWIW method for investigating complex 
fracture-matrix systems. Using the TRIPOLY simulator developed at LBNL by 
Birkholzer and Karasaki, 1996 [3] and a suite of pre- and postprocessing codes, such 
systems are numerically generated based on geostatistical data, and then flow and 
transport simulations are conducted for a hypothetical SWIW test. The numerical 
predictions for breakthrough curves are then interpreted with the goals of (1) verifying 
the basic physical processes occurring in the fracture network and the matrix system, and 
(2) developing methods for inversely extracting, from the BTC data, information on the 
impact of hydrofracking and the relevant diffusion and sorption parameters. These are 
hard to measure otherwise, in particular with respect to the size and shape distribution of 
matrix blocks. 
 
Most previous studies with TRIPOLY considered the fracture network only, such as 
Doughty and Karasaki, 2002 [4]. Previous SWIW-test analyses (Doughty and Tsang, 
2009 [5]; Tsang and Doughty, 2009 [17]; Pruess and Doughty, 2010 [14]) considered 
only a single fracture and either a semi-infinite matrix only or a semi-infinite matrix plus 
finite matrix blocks all with the same size. In the present study, a two-dimensional 
network of fractures creates a population of matrix blocks with a wide range of sizes, 
with the goal of verifying basic flow and transport processes that occur in the fracture 
network and the matrix system. 
 
We present the model and the methods used in Section II, then Section III describes the 
results obtained, followed by additional discussion in Section IV. Section V provides 
conclusions and describes future work that could be done.  
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II. Model and Methods 
 
The following sections represent the first step of the project. They will describe the 
original TRIPOLY code (Birkholzer and Karasaki, 1996 [3]), the modifications made to 
the suite of programs used to run TRIPOLY for the present problem, the parameter 
choices made, and how results will be displayed. 
 

II.1. TRIPOLY code and features 
 
The suite of programs used to run TRIPOLY aims to simulate flow and solute transport 
in two-dimensional fracture networks surrounded by porous matrix blocks. Three pre-
processing codes need to be utilized before running TRIPOLY simulations. These codes 
generate fracture networks (FMGN), optimize the network numbering and eliminate 
dead-ends if desired (RENUMN), and calculate matrix block shapes and properties 
(POLY), and are described in Section II.2. A flow chart for use of the programs is shown 
in Figure 2.  
 

1.1. Introduction to TRIPOLY theory and design 
 
Here we briefly describe the general background of TRIPOLY and the theory of treating 
the fluid and solute exchange between fractures and rocks. A complete description of the 
theory and design of TRIPOLY is provided by Birkholzer and Karasaki, 1996 [3]. The 
main feature of this code is that it enables us to study plume spreading processes in 
fractured porous rock. 
 
Fracture network models are useful tools for better understanding the hydrogeology of 
fractured rock. Once the geometry of a particular region has been fixed, flow and solute 
transport processes through the network and surrounding rock can then be studied using 
appropriate numerical procedures. A tool for studying such processes already exists: 
TRINET code (Karasaki, 1986 [8]; Segan and Karasaki, 1993 [16]). It solves the 
advection-dispersion equation with a mixed Lagrangian-Eulerian scheme, combined with 
adaptive gridding techniques. But it is limited in that it does not account for solute 
exchange between the fractures and the porous matrix. 
 
That is the reason why we use TRIPOLY: it combines the fracture network simulator 
TRINET with advanced numerical methods to account for fracture-matrix interaction. 
The basic approach consists of treating fractures and matrix blocks as two different 
systems, and the interaction between the two systems is modeled by introducing some 
shared terms in both systems. It is assumed that transport in the matrix can be 
approximated as a one-dimensional diffusion process, perpendicular to the adjacent 
fracture surfaces. Under that assumption, the geometrical shape of the individual matrix 
blocks can be described by proximity functions, which determine the fraction of matrix 
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volume within a certain distance from the adjacent fractures. Thus, a direct solution 
scheme is employed to solve the coupled fracture and matrix equations, which will be 
described in Section 1.3. 
 

1.2. Advection-dispersion equation and Lagrangian-Eulerian scheme 
 
The advection-dispersion equation for advective-dispersive transport in discrete fractures 
is based on the conservation of mass and is applicable when Darcy’s law is valid. The 
latter provides an accurate description of groundwater flow in almost all hydrogeological 
environments. Darcy’s law in a one-dimensional (1D) system can be defined as follows: 

 P
AK

q 





 (1) 

where q is the flow rate of the considered fluid in m3.s-1, K is permeability in m2, A is the 
cross-sectional area in m2, is the dynamic viscosity of the fluid in Pa.s (or kg.m-1.s-1) 
and P  is the pressure gradient. 
 
Another form of Darcy’s law in 1D can be expressed as follows: 

 H
gK

A

q
v 




 (2) 

where v is Darcy velocity in m.s-1,  is density of fluid in kg.m-3, g is gravitational 
constant in m.s-2, and H  is the hydraulic head gradient. Note that P and H can also be 
related by the following formula: .gHP   In our considered problem, rock density  is 
constant, as well as gravity g, so we can assume that .~ HP   
 
The pore velocity u  can also be introduced by the following formula: 
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where u  is pore velocity in m.s-1 and F is porosity in the fracture. 
 
The advection-dispersion equation in a one-dimensional system (along the x axis, for 
instance) can be written as follows: 
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where C is the relative solute concentration,  is the dispersion coefficient, and u  is the 
pore velocity. Note that the two coefficients ( x and xu ) are constant under the 

assumption of a steady-state flow field. Moreover, the hydrodynamic dispersion term 
usually also includes molecular diffusion, and advection can also be known as 
convection. 
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Then, the idea in using a mixed Lagrangian-Eulerian scheme is to decompose the 
advection-dispersion equation into two parts, one controlled only by advection, the other 
by dispersion. The advected concentration profiles are calculated by Lagrangian 
approaches (such as particle tracking methods), whereas the dispersed concentration 
profiles are solved by conventional numerical techniques on Eulerian grids (such as finite 
difference methods or finite element methods). Furthermore, adaptive gridding schemes 
are combined with the advection part, introducing forward-moving particles around sharp 
fronts. However, numerical dispersion may occur when the advected front is projected 
back to the fixed Eulerian grid. That implies that the accuracy of results is dependent on 
the number of particles introduced into the model. 
 
TRIPOLY features two major improvements compared to the above-mentioned methods. 
First, advective tracking in the fracture network is performed for nodal concentrations 
and not for particles. Therefore, the number of particles introduced is not a concern. 
Second, numerical dispersion is minimized by creating new Eulerian grid points instead 
of interpolating the advected profile back to a fixed Eulerian grid. 
 

1.3. Fracture-matrix interaction 

1.3.1 Conceptual model for matrix blocks in a two-dimensional system 

 
In this section, the theory of treating fracture-matrix interaction is presented. The 
advective-dispersive flow problem for the fracture network is assumed to be already 
solved as described above. The model is limited to two-dimensional fracture-matrix 
systems, but it could be easily extended to three-dimensional systems. 
 
As noted above, TRIPOLY assumes that global transport processes take place only in the 
fracture network: the rock medium does not contribute to those processes. However, 
concentration differences between the fractures and the matrix lead to a diffusive solute 
exchange at the fracture-matrix interface, and fractions of the solute may be stored in 
matrix pores. Since the diffusive transport in the matrix is much slower than the coupled 
advective-dispersive spreading in the fractures, it can be approximated as a one-
dimensional process, perpendicular to the adjacent fractures. Under these assumptions, a 
one-dimensional mass-balance equation describing the diffusive transport in single 
matrix blocks can be written as follows: 

 0
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where CM is the relative concentration in the matrix, M is matrix porosity, RM is the 
retardation coefficient, M

eD is the effective diffusion coefficient in the matrix, A(s) is the 

interface area for transport in the matrix blocks, A0 is the surface area of the matrix 
blocks and s  is a local coordinate perpendicular to the adjacent fractures. Further details 
regarding the model used for diffusive transport in single matrix blocks are provided in 
Figure 3. 
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Two boundary conditions are also added to solve the local fracture-matrix diffusion 
problem: 
 FM CsC  )0(  (6) 

   0)( 



Ss
s

C M

 (7) 

 
where the first boundary condition describes the fact that concentrations in the fracture 
and in the matrix blocks are equal at the fracture-matrix interface, and Equation (7) is a 
zero-flux boundary condition in the middle of the matrix blocks. These boundary 
conditions imply that the diffusion equations for individual matrix blocks are independent 
from each other. 
 

1.3.2 Coupling the fracture network with the matrix blocks 

 
After solving Equation (5), the diffusive solute exchange term W per unit fracture wall 
area is obtained by applying Fick’s law at the interface between fractures and porous 
blocks, using the following formula: 
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where WD can also be defined as the coupling term between the dispersion-diffusion 
equation of the fracture network and the diffusion equation of the individual matrix 
blocks. 
 
Hence, with the fracture network and the matrix blocks now coupled by the solute 
exchange term W defined by Equation (8), the dispersion equation for a single fracture 
can be written as follows: 

 0
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where CF is the relative concentration in the fracture, F is the dispersion coefficient in 
the fracture, (2b) is the fracture aperture, x’ is a coordinate defined parallel to the fracture 
axis, and WD1 and WD2 can be interpreted as the diffusive losses into the matrix on 
fracture wall one and two, in that order. 
 
The concept of coupling the fracture network and the matrix blocks is illustrated by 
Figure 4. Each matrix block is defined by its material properties (such as porosity M and 
diffusion coefficient De), by geometrical parameters (interface function and block size) 
and by its surface polygon, which is described by the node numbers of the surrounding 
fractures. In the meantime, each node of the fracture network is connected to a certain 
number of blocks, or polygons, each related to a one-dimensional concentration 
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distribution in the matrix. For each connection, the solute exchange is calculated by 
Equation (8) and the resulting exchange rate is then introduced into Equation (9). 
 

1.3.3 A short remark on the solution scheme and the proximity function concept 

 
Each individual matrix block in the modeled domain is associated with a certain number 
of one-dimensional independent diffusion equations describing the local transport in the 
matrix (i.e., one equation for each fracture bounding the matrix block). However, each of 
these equations is coupled to the advection-dispersion equation of the fracture network by 
the use of the solute exchange WD defined by Equation (8). The numerical solution 
procedure chosen for the coupled equation system of fractures and matrix is that the two 
media are discretized and solved separately. For further details on the solution procedure, 
please refer to Birkholzer and Karasaki, 1996 [3]. 
 
According to the one-dimensional diffusion Equation (5), interface function A(s) must be 
provided, which defines the interface area for diffusive transport at a distance s from the 
block surface. In TRIPOLY, interface functions for each block are defined following the 
concept of proximity functions, which has been described in Pruess and Karasaki, 1982 
[13]. The proximity function Prox(s) can be expressed as 

 Prox(s)
TV

sV )(
    (10) 

 
where V(s) stands for the total fraction of matrix volume within a distance s from the 
adjacent fractures, and VT is the total block volume. 
Thus, the interface area for diffusive flux in the matrix is simply defined as follows: 

 
ds

d
V

dV

sdV
sA T

Prox(s))(
)(     (11) 

 
Finally, in relation to Equation (5), the interface function A(s) is divided by the actual 
surface area A0 of each matrix block in order to normalize the values. 
 

1.4. Modeling a SWIW test 

 
As briefly described in the introduction, a Single Well Injection-Withdrawal test (SWIW 
test) is typically divided into four main parts: the injection period, the chase fluid period, 
the rest time, and the withdrawal period.  Concerning the injection part, the well injects 
both fluid and tracer at a constant rate for a certain period of time. Assuming a relative 
tracer concentration of 1.0, we must specify injection time and flow rate, i.e., how much 
tracer will be injected into the system. Regarding the chase fluid period, the duration of 
this part is hard to estimate: it has to be “both sufficiently long and short.” In other words, 
a too short chase fluid period will not impact the previously injected tracer enough, while 
a too long chase fluid period would spread too much tracer outside our domain of study. 
During the chase fluid period, only untraced water is injected, using the same rate as 
during the injection period. Regarding the rest time, this period can be used to ensure that 



 8

the tracer has plenty of opportunity to penetrate the matrix blocks. In our case, we 
decided to delete this step – this quiescent time is not considered essential for a SWIW 
test. The last part of a SWIW test is the withdrawal period. Typically, it consists of 
reversing the pump (the well withdraws fluid at the same rate that was previously chosen 
for injection) until most of the tracer is recovered. The only issue is to settle on the 
duration, that is, the fraction of injected tracer we would like to retrieve, while knowing it 
may take a long time to achieve this. 
 
Table 1 summarizes the parameters that have to be selected in order to run a SWIW test. 
 

1.5. Boundary conditions 

 
The choice of boundary conditions is fundamental in this study: while several 
possibilities exist, various tests are made to choose both the most efficient and most 
physically adequate conditions. Boundary conditions need to be provided only for a few 
nodes: the nodes located at the edge of our domain and the well node for injection and 
extraction of fluids. 
 
Regarding the flow equation, either a Dirichlet condition (i.e., fixed head) or a Neumann 
condition (i.e. fixed water flux) can be set. Regarding nodes at the edge of the domain, 
we are injecting fluid and tracer into the domain and consequently allowing some flow to 
leave our area of study. Therefore, a Dirichlet boundary condition is imposed at any 
outside boundary node, with a prescribed constant hydraulic head equal to zero. Because 
we are only interested in head differences, we choose 0H for convenience. Setting all 
boundary heads to the same value is equivalent to assuming that there is negligible 
regional flow naturally in the system. Concerning the well node, since the desired flow 
rate is known, a Neumann condition is set with a given value for the flux, the 
determination of which will be described later in this report. 
 
Then, a boundary condition must be imposed for solute transport at these same nodes. 
Once again, either a Dirichlet condition or a Neumann condition can be chosen. If we 
focus on outside boundaries, some trials are performed with a Dirichlet condition, i.e., a 
fixed concentration set to C = 0. But in this particular case, we are losing information, 
such as the loss of tracer during the injection and chase fluid periods. Besides, this 
specific condition is not very representative of the physical reality in the field (even 
though it would be convenient for modeling): the probability that some tracer arrives at 
the boundaries is high, depending on the amount of tracer injected, or depending on some 
preferential paths that could be taken. As a consequence, we finally decided to treat these 
particular nodes as internal nodes, where no specific boundary condition is assigned. 
However, the code internally treats these boundary nodes as Cauchy conditions, which 
means that fluids leaving the model domain will carry with them any solute they might 
contain. 
 
The same problem arises with the well node. Injecting a tracer at a given relative 
concentration of 1.0 (Dirichlet condition) or at a given flow rate over a certain amount of 
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time (Neumann condition) may seem equivalent in terms of “final result,” but these two 
options are physically different. We determine that a Neumann condition is more 
appropriate, because it accounts for the gradual increase in tracer concentration as the 
elements surrounding the injection node fill with tracer, while the Dirichlet condition 
merely imposes a given concentration that is instantly reached. Hence, a Neumann 
condition is assigned to the well node during the injection time with a specific value qI 
depending on the considered problem. 
 
Finally, once the boundary conditions are all set for the injection period, some of them 
must be adjusted during the process of the SWIW test. Regarding outside boundaries, 
there is no change needed during the entire process. Regarding the well node, once the 
injection period is over, no more tracer is injected, but water, i.e., a fluid with no tracer, 
continues to be injected, representing the chase period. Thus, the boundary condition 
value for solute transport has to be switched from the initial value of qI to .0Iq  Note 
that the node can be either treated in this manner or considered as an internal node for 
solute transport. Indeed, the code injects water by default into the system, making these 
two choices indistinguishable. Eventually, once the withdrawal period begins, the tracer 
is pulled back, so the pump is reversed. This implies that the flow value of the fixed flux 
must be reversed as well, while keeping the node as an internal node for solute transport. 
 
Table 2 recapitulates all the boundary conditions used in a SWIW test.  
 

1.6. Code adaptations for SWIW test 
 
Some changes had to be carried out to adapt TRIPOLY to our case. Indeed, TRIPOLY 
was created to simulate flow coupled with solute transport moving through the generated 
fracture-matrix network. Thus, the code was specially designed to introduce tracer 
entering the fracture network from one side, with appropriate boundary conditions, with 
this information hard-wired into the code itself. This particular problem has been 
addressed by removing those specific tracer boundary conditions from the code, thus 
allowing the user to specify all boundary conditions through input files. Moreover, it was 
discovered that the code was injecting only tracer by default; it did not allow injection of 
water together with tracer. This limitation was changed in the revised code. Furthermore, 
the code needed to be adapted to model the different time periods of a SWIW test within 
one simulation. This was accomplished by adding a new feature in the code to modify 
boundary conditions during code execution. Also, a new feature was added to calculate 
the total tracer mass in the fractures and the matrix for each time step. Lastly, a final code 
adaptation had to be performed to fix some crashing problems at the end of our 
simulations. 
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II.2. Sequence of programs and parameter choices 
 

2.1. Fracture generation (FMGN) and line network optimizer (RENUMN) 
 
The main purpose of FMGN is to generate a two-dimensional fracture network, with any 
desired distribution of aperture, length, and orientation for each fracture set that 
composes our model. FMGN is a new version of FMG (Fracture Mesh Generator), whose 
theory and design are thoroughly described in Billaux et al., 1988 [1]. The fracture 
system generated by FMGN may include dead-end fractures. 
 
FMGN enables us to choose the shape of the generation and flow regions, namely a 
rectangular region or a circular region with a circular hole in the flow region. Even 
though the second option would seem appropriate for our case, it was finally decided to 
work with a rectangular region, because (1) it can be easily transposed to the field and (2) 
the rectangular generation is a standard choice for directional permeability 
measurements. The well would then be modeled as a specific node located as close as 
possible to the middle of the generated rectangular area. 
 
Next, we specify parameters for the different fracture sets in order to generate the fracture 
network. This includes the number of sets, the number of fractures per set, the 
orientation, length, and aperture for each fracture of each set, and the dimension of the 
rectangular region. It should also be noted that other parameters exist, but they are set to 
their default value. For instance, a standard deviation is not taken into account in the 
statistical distribution of orientation, length, and aperture values, nor is an angle of 
rotation within the flow region employed. 
 
As a result, we generate two orthogonal sets of 700 fractures each, in a 10 m × 10 m 
square flow region. The angle between the fracture axis and the x-direction is 5° for the 
first set and 95° for the second set. It is assumed that the fractures have uniform 
properties within each set – that is to say, a uniform fracture aperture of 1.10-4 m, a 
uniform fracture length of 1.0 m, and uniform angles between the fractures and the x-
axis. 
 
Additionally, some outside boundary conditions have to be specified at this point. In our 
case, all the boundaries have a constant hydraulic head fixed to 0H  for convenience. 
Table 3 provides a recap of all the chosen features used to generate the fracture network 
geometry. Figure 5 shows the generated geometry using FMGN. 
 
Once FMGN has been executed, RENUMN reads the output generated by FMGN so as 
to generate and to optimize the finite-element mesh for the fracture network. Specifically, 
RENUMN merges nodes very close to each other, removes dead-end fractures if desired, 
renumbers the nodes to minimize the bandwidth of the linear equation system to be 
solved in TRIPOLY, and creates the POLY and TRIPOLY input files of the fracture 
network. For further details on the theory and design of RENUMN, please refer to the 
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two reports written by Billaux et al., 1988 [1] and 1989 [2]. RENUMN provides some 
general information on the material parameters of the fracture network, such as 
dispersion, values for dynamic viscosity, etc. The only significant modification to the 
default settings concerns the dispersion coefficient , which has to be taken into account 
and is therefore set to 0.5 m. 
 

2.2. Matrix blocks geometry calculation (POLY) 
 
The third program to be executed, POLY, calculates the geometrical properties of the 
porous matrix blocks surrounding the fracture network given by FMGN. In our particular 
case, POLY is critical because solute exchange processes between the fracture network 
and the porous matrix are taken into account; in other words, matrix diffusion is 
considered. 
 
POLY calculates the matrix block geometry. It starts by extending dead-end fractures 
until they intersect either another fracture or the flow-region boundary. Then, as porous 
matrix blocks are described by polygons created by RENUMN, POLY determines the 
geometrical shape of the matrix blocks by using the proximity function and the maximum 
orthogonal distance of the block center to the nearest fracture. Figure 6 illustrates the 
work done by POLY. The theory and use of POLY is fully described in another report 
(Birkholzer and Karasaki, 1996 [3]). 
 
POLY requires information about the network with dead-ends. These input files are 
provided by RENUMN. However, it is possible to choose whether or not the output 
polygons (and proximity functions) provided to the simulation code TRIPOLY should 
include dead-end fractures. In our case, we assume that the impact of dead-end fractures 
can be neglected, so the polygons for fracture network do not include dead-ends. This 
hypothesis turns out to be confirmed by some tests carried out in this context. 
 
Another input file contains the material properties for matrix blocks: the porosity , the 
diffusion coefficient De and the retardation coefficient R. A number of control variables 
for the generation of polygons and proximity functions can be modified at this point as 
well. 
 
The retardation coefficient accounts for sorption. This retardation factor may be written 
as follows: 

 DPM

M

KR 




1

1    (12) 

where  is porosity in matrix blocks,  is rock density in kg.m-3, and KD is sorption 
coefficient or distribution coefficient in m3.kg-1 (see Birkholzer and Karasaki, 1996 [3] 
and Pruess and Doughty, 2010 [14] for more details on retardation coefficient). It should 
be noted that 1R  implies that a nonsorbing tracer is used (KD = 0), whereas 1R  
means that sorption is taken into account, so that the tracer can be considered as 
nonconservative. An example of a nonsorbing tracer that could be used would be uranine, 
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whereas rubidium and cesium are considered to be sorbing tracers (Doughty and Tsang, 
2009 [5]). 
 
At this point, it should be stressed that realizing the numerical solutions of advection-
dispersion processes in a fracture network is a complex task, one in which instabilities 
and numerical problems can occur. In our particular case, the geometry created by 
FMGN must be physically and numerically feasible; otherwise POLY is unable to link 
the fractures together. An example of “bad geometry” is provided in Figure 7, a case in 
which the fracture network has insufficient connectivity. Furthermore, if the geometry is 
either too complex or includes too many fractures, the program can either crash or be 
blocked at some point. This problem can sometimes be solved by decreasing a certain 
precision or tolerance, but this can lead to a decrease in accuracy. 
 

2.3. Flow and solute transport processes simulation (TRIPOLY) 
 
TRIPOLY is the final step in our chain of simulating flow and solute transport processes 
in fracture-matrix systems. TRIPOLY solves for flow and transport in two-dimensional 
fracture networks, taking into account solute exchange processes between the fractures 
and the porous matrix. Full details about the theory and use of the code are described in 
Birkholzer and Karasaki, 1996 [3]. 
 
TRIPOLY is primarily governed by one input file named ctrl.inp, which contains all the 
general information and the main control variables that are needed to simulate a SWIW 
test. To begin with, the type of simulation can be controlled by two variables: IDOPO 
and IMODE. The former determines whether the porous matrix is considered, the latter 
enables us to choose between a steady-state and a transient flow field. Initial testing 
indicates that using a transient flow field is a problem for the code. Ultimately, we 
assume that the transient flow can be neglected for our simulations, because compared to 
the duration of each stage of the SWIW test, the transient flow that arises at the transition 
between stages is nearly insignificant. Hence the establishment of steady flow is 
considered instantaneous for each stage in the SWIW test. 
 
Another key issue to consider carefully is time-stepping. Indeed, as a matter of accuracy 
and consistency, it has been shown that TRIPOLY is very sensitive to the chosen time 
step sequence (Birkholzer and Karasaki, 1996 [3]; Najita and Doughty, 1998 [9]). 
According to the numerous runs carried out in this context, optimal values are selected 
for the variable PRR (the factor for increasing the time step) and the different output time 
steps specified for writing the desired output data sets. 
 
After that, some numerical parameters need to be carefully chosen, in order to avoid 
numerical dispersion, making the simulation as accurate and consistent as possible. The 
numeric control variables are DEPS, DCDIF, DCON, DCOFF, TOLE and LOGDIF, 
which determine how many new nodes are added and removed during adaptive gridding. 
These variables are described in Birkholzer and Karazaki, 1996 [3]. Determining optimal 
values for these variables has a strong effect on the accuracy, efficiency, and total length 
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of program execution. Thus, these numerical parameters are adapted for each different 
main problem and maintained at those values for subsequent problem variations. Table 4 
summarizes the different values used during different tests. 
 
Next, input files elmt.inp and node.inp are also mandatory and must be supplied for any 
simulation. These files, coming from RENUMN, determine the structure of the mesh for 
the fracture network. The well node is chosen as close as possible to the center of the 
modeled field. Moreover, some other optional input files can be supplied: npn.inp 
belongs to this category and is used to obtain head values versus time for any desired 
node, such as the well node. 
 
Last of all, we could consider the possibility of adapting ctrl.inp for each particular case 
we consider. Indeed, after some simulations, we found that customizing ctrl.inp did 
improve some mass-balance results. But (1) customizing raises the question of lengthy 
research times for each test, and (2) it would make it difficult to fairly compare physical 
results for different cases. Thus, to maintain a fair basis for comparison, once all the 
parameters are chosen for a base case, they are not modified thereafter. Table 5 reviews 
all the other parameters presented in the TRIPOLY section. 
 
 

II.3. Problems considered 
 
Once all the parameters have been specified and the sequence of the SWIW test is well 
defined, we need to choose a base case for which the parameter sensitivity study will be 
conducted. 
 

3.1. Large problem 

 
Based on some previous studies (Doughty and Tsang, 2009 [5]; Tsang and Doughty, 
2009 [17]) and some actual field experiments conducted in Sweden, a first simulation 
problem has been established with the goal of creating a tracer plume with a typical 
spatial distribution and obtaining easily interpretable breakthrough curves. Thus, a 
“standard” procedure would consist of 1 h for the injection period, 5 h for the chase fluid 
period, and 500 h for the withdrawal period, with a flow rate equal to qI = 2.8.10-6 m3.s-1 
per meter in the 3rd dimension which means that a total 10.08 L of tracer fluid are injected 
into the system (again per meter in the 3rd dimension). The entire sequence of our 
modeled SWIW test would be quite similar to procedures followed for actual SWIW 
tests. 
 

3.2. Medium problem 
 
The injection-chase-withdrawal sequence described above turned out to be problematic, 
primarily due to the fact that there is a non-negligible loss of tracer through the outer 
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boundaries of the model; this issue will be further described below in Section III.1.3. One 
probable explanation is a too long chase-fluid period. As a remedy, we design a medium 
problem with a shortened chase fluid period of 1 hour. The injection and withdrawal 
period remain unchanged, at 1 hour and 500 hours, respectively. 
 

3.3. Small problem 

 
Another possibility is that too large a volume of tracer was introduced into the system. As 
a remedy, we design a small problem, featuring a 30-minute injection time at the same 
flow rate as chosen before, 45 minutes for the chase fluid period, and 350 h of 
withdrawal. This small problem introduces only 5.04 L (per meter in the 3rd dimension) 
of tracer in the system. 
 
Table 6 displays a summary of the various problems considered. 
 

3.4. Parameter sensitivity study and hydrofracking 
 
The parameter sensitivity study is conducted to observe the system response to some 
particular effects. It includes a variation of three main physical properties of the rock 
matrix that can strongly change the solute exchange between the fracture network and the 
surrounding rock matrix: (1) matrix porosity , (2) diffusion coefficient De and (3) 
retardation coefficient R. These parameters and their significance will be described in 
more detail below. 
 
Hydraulic fracturing, or hydrofracking, may result in the creation of new rock fractures or 
an increase in aperture of existing fractures. We examine these two hydrofracking effects 
separately in our modeling study. For simplification, we assume that hydrofracking has 
similar effects in the entire model domain, not just near the injection well. Note that 
because this model of hydrofracking is so simple it should be considered as a preliminary 
approach in order to gain insight into the effect of the hydrofracking process on SWIW-
test results. 
 
 

II.4. Displaying results 
 

4.1. Population of matrix blocks 
 
We would like to examine how FMGN generates the fracture network and the subsequent 
distribution of matrix block size. Some minor revisions to POLY need to be performed to 
extract this particular information. The desired variable, called S, is the value of the 
maximum orthogonal distance of points in the matrix blocks to the adjacent fractures; in 
other words, this variable stands for the maximum existing distance from adjacent 
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fracture to the considered block center. This datum provides us with a useful estimate for 
the different sizes of our numerous matrix blocks. 
 
First, we create a histogram from the obtained list of S values, which can be broken down 
into three main groups: the small ones, with a distance lower than 0.001 m; the medium 
ones, with a distance between 0.001 m and 0.05 m; and the large ones, with a distance 
greater than 0.05 m. Figure 8 shows the distribution of S values for the matrix blocks in 
the fracture-network geometry shown in Figure 5. It is evident that our study involves a 
densely fractured domain with small fracture distance and generally small matrix block 
sizes. 
 

4.2. What you see in the field: breakthrough curve and head change 
 
The breakthrough curve (BTC) is a line graph representing the evolution of the relative 
concentration at the well node. The relative concentration in the well is plotted versus the 
time of the experiment in seconds. A logarithmic scale is used for both of the two axes, to 
better emphasize some specific trends. The BTC can be divided into three main parts, 
which correspond to the same parts of the SWIW test: injection, chase fluid, and 
withdrawal. A linear scale for both of the two axes can also be used to better underline 
the beginning of the withdrawal part, especially when some comparisons are established. 
 
Figure 9 exhibits a typical example of a tracer breakthrough curve as described above. 
Concentrations at the injection well increase during the injection period, followed by a 
strong decrease during the chase period, as pure water is injected. Withdrawal of water 
then leads to a temporary increase in concentrations, as contaminated water mostly from 
the fractures is being pulled back. This early increase during the withdrawal period is 
followed by a long tail of slowly decreasing concentrations (as solutes diffuse slowly out 
of the matrix blocks and are transported back to the well). We often superpose several 
BTCs together in the same graph in order to make comparisons more easily: in that case, 
the base case is usually represented in blue and the comparison is either in red, black, or 
green. Note that in SWIW tests in the field, the only observable portion of a breakthrough 
curve is during withdrawal, as water is removed from the system and tracer concentration 
can be measured. We show here the concentrations in the injection node for all time 
periods to provide additional information from the model, but we need to remember that 
BTC data for injection and the chase period are not available in field experiments. 
 
The change in the flow field is exemplified by the head value at the well node. The 
magnitude of the head change to a given injection rate is an indicator of the permeability 
of the fracture network near the well. 
 

4.3. What we know from the model: spatial distribution and mass balance 
 
The spatial distribution in Figure 10 represents the relative concentration in our modeled 
fracture-matrix complex system at a given time. For the sake of visualization, the figure 
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shows the average concentration value for each matrix block (averaged over the one-
dimensional variation within each block), the concentration between two nodes for the 
fracture network, and the calculated concentration value for each node. The range of 
relative concentration has a relatively large magnitude and is therefore plotted on a 
logarithmic scale. Both matrix blocks and fracture network segments are represented in 
the visualization, together with the considered node for the well. Figure 10 provides a 
typical example of the spatial distribution. We can see in Figure 10, which plots the 
situation at the end of the tracer injection period, that the fractures are the main transport 
pathways in the system, with concentrations that are typically higher than those in 
adjacent matrix blocks. Smaller blocks have higher average concentrations than larger 
ones. Typically, four snapshots of the system are presented together to give a better idea 
of the evolution of the spatial concentration distribution during the whole process of the 
SWIW test. 
 
Another model output is mass balance, a useful tool to determine whether SWIW tests 
have a good recovery ratio. As already mentioned above, the adapted code yields values 
of the total tracer mass present in fractures and matrix blocks. Thus, the interesting values 
are (1) the total tracer mass at the end of the injection part, (2) the total tracer mass at the 
end of the chase fluid period and (3) the total remaining tracer mass in the system at the 
end of the withdrawal period. 
 
However, the program has some difficulty with calculating the mass balance, and 
therefore our results must not be considered as absolutely correct, but rather as providing 
a tolerable estimate. Specific problems include a substantial sensitivity to time-stepping 
and an overestimate of the amount of injected tracer at the end of the chase-fluid period. 
 
Meanwhile, some other calculations can be carried out to determine (1) the total retrieved 
mass at the well and (2) the total amount of tracer lost at the different sides during the 
injection and chase-fluid periods. Calculations are based on the fact that the flow at each 
side is known (the values are provided by an output file), as well as the average 
concentration for each time step. Thus, the mass of tracer retrieved at the well node, and 
likewise the mass of tracer lost at each side, can be known for each bin time with the 
following formula: 
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where M is mass in g  (per meter thickness in the 3rd dimension) t is time in s, qside is flow 
at the considered side in m3.s-1 (per meter thickness in the 3rd dimension), C is relative 
concentration in g.L-1, the factor of 1000 converts L to m3, and the subscript i stands for 
the bin time.  
 
At the end of the withdrawal period, the Tracer Recovery Factor r  is calculated as 
follows: 
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This recovery factor is related to what we would measure in the field and tells us how 
important losses are through the outer boundary, while also giving an idea of how much 
tracer remains in the system at the end of the withdrawal period. 
 
Similarly, we can also define another ratio called Mass Balance, which is just a check on 
the accuracy of the simulation, by the following formula: 
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With all these parameters finally set up, we can consider the first step of the project to be 
done. The second step, which is presented next, concerns results coming from some 
parameter sensitivity studies, where porosity , diffusion coefficient De and retardation 
factor R will vary within a predetermined range of values. Eventually a third step will 
address the effects of hydrofracking on our system, by increasing the fracture aperture 
and adding a third set of fracture to the two previous ones. 
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III.  Results 
 
The next step of the project presents the results obtained after all the code adjustments are 
made and all the parameters are established beforehand. Detailed interpretations of the 
results are then presented in the parameter sensitivity study. 
 

III.1. Base cases 
 
In this part, we provide the results obtained after conducting the simulations described 
earlier, by showing histograms of block size distribution, breakthrough curves and spatial 
distributions of concentration for each case. Please refer to Figure 5 for the geometry of 
the fracture network considered. 
 

1.1. Histogram of block size distribution 

 
Figure 8 shows the histogram of block size distribution for our predetermined geometry 
as described in Section II.4.1. Note that the notion of “block size” is defined by variable 
S, which is the maximum orthogonal distance from the adjacent fracture to the considered 
block center. As illustrated by this diagram, almost 50% of the blocks have block sizes 
ranging from 0.01 m to 0.05 m, which is in accordance with the average block size value 
of 0.042 m. Only about 1% of all blocks are larger than 0.25 m. 
 
These results clearly indicate that the fracture network generated for this example is very 
dense and creates mostly small matrix blocks. There are some larger blocks that could act 
as a semi-infinite matrix, and some very small blocks that could be filled up relatively 
quickly with solutes diffusing in from the fractures.  
 

1.2. Breakthrough curves 
 
Figures 11, 12, and 13 illustrate respectively breakthrough curves for the large problem, 
the medium problem, and the small problem. Each breakthrough curve comprises the 
evolution of solute breakthrough for the three different time periods previously defined 
for a SWIW test in Section II.4.2. Later on, we will focus only on the withdrawal period, 
which always starts with a peak and then gradually decreases until the end of the test. It 
should be noted that the BTCs all follow the same trend and present the same general 
characteristics. 
 
Since the general behavior of the BTCs during the withdrawal period usually shows two 
linear sections (in the double log plot), a linear fit is added to the relevant part of the tail 
when possible. Figure 14 illustrates this situation, with Figure 15 providing a 
superposition of the three BTC into the same graph. From the three test cases shown in 
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Figures 11, 12, and 13, we are interested in selecting an “optimal” base case, with criteria 
for optimal representation including (1) a sufficiently large number of blocks with 
different sizes affected by contamination, and (2) the injected tracer remaining in the 
modeled area.  
 

1.3. Spatial distribution and mass balance 

 
Figures 16, 17, and 18 show the respective spatial distributions of concentration in 
fractures and matrix blocks during SWIW tests for each problem in the following order: 
large, medium, and small problem. The distribution consists of four snapshots taken at (1) 
the end of the injection, (2) the end of the chase fluid period, (3) the middle of the 
withdrawal period and (4) the end of the withdrawal period. The figures nicely illustrate 
the transport processes occurring through the test sequence. At the end of injection, the 
fractures near the injection location exhibit the highest concentrations close to 1.0. As the 
advective-dispersive transport in the fractures away from the injection well is fast, solutes 
diffuse in a slower process into the porous matrix blocks. At the end of the chase period, 
with clean water being injected, fracture concentration decreases. This induces a reverse 
concentration gradient from the initially contaminated matrix blocks back to the fractures, 
but the diffusive exchange caused by this is relatively slow. Thus matrix blocks remain 
contaminated at the end of the chase fluid period. Withdrawal of water then pulls the 
remaining solute present in the model domain back towards the well, initially from the 
fractures in a fast process, then from the matrix blocks in a slow process. The 
concentration distribution shown at the end of withdrawal still shows very low 
concentrations of tracer present in the matrix blocks, with lowest values observed for the 
smallest matrix blocks. Table 7 gives mass-balance results for each case. 
 
It is obvious that according to the spatial distribution and mass-balance results, the large 
problem case is not appropriate for our study. Despite it being the closest in testing 
sequence to actual field experiments, we are losing too much tracer on each side of the 
model domain, and the plume is too spread out, so that the recovery ratio would not be 
good enough. The small problem, on the other hand, shows a contaminant plume that 
does not extend very far from the injection point, implying that not many different block 
sizes are encountered.  
 
For these reasons, we decided to use the medium problem as the base case for our various 
sensitivity studies as a reasonable compromise between the other two cases. To recap the 
conditions of the medium problem, it consists of injecting a tracer for one hour, then 
adding water to disperse this tracer for another hour and finally recovering as much tracer 
as possible over a long time period of 500 hours. The total length of our experiment in the 
field would be close to 21 days. 
 



 20

1.4. Tabulation of BTC characteristics 

 
When parameters such as porosity  or diffusion coefficient De vary in a sensitivity 
study, two analyses may be conducted to compare results: (1) a spatial distribution 
analysis and (2) a breakthrough curve study. The former gives us an idea of the tracer 
advection and dispersion patterns influenced by matrix diffusion, while the latter must be 
examined carefully to determine whether the main characteristics of the case would be 
observable in the field.  
 
Once all tests and analyses are conducted, we may determine three main features of the 
withdrawal period in the breakthrough curves on which to base our comparisons: (1) the 
peak concentration and time during that period, (2) the slopes of different portions of the 
tail, and (3) the length of the superposition between the linear fit and the curve for the 
tail. Two other main features could also be studied – the general aspect of the withdrawal 
period or the intersection time of the linear fits to the tail. However, they are strongly 
linked to the three previous features already presented. 
 
 

III.2. First parameter sensitivity study: porosity 
 

2.1. Definition 
 
Used in hydrogeology, the porosity  of a porous medium such as a matrix describes 
the fraction of void space in the material, where the void may contain a fluid. However, 
in solute transport problems, we use the term effective porosity, which refers to the 
fraction of total volume in which fluid flow is effectively taking place, excluding dead-
ends or unconnected cavities. Thus, matrix porosity is defined by the following ratio: 
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where VV is the volume of void space where flow occurs and VT the total volume of the 
material, including the solid and all void components. It is therefore a function between 0 
and 1 (or expressed as a percentage, 0–100%). 
 
The range of values considered in our case will be between 2% and 20%, where the 
former could describe solid granite and the latter could depict sedimentary rock. The base 
case porosity value is 10%. Low porosity problems are carried out within the range of 2% 
to 6%; high porosity problems are carried out within the range of 15% to 20%.  Figure 19 
illustrates the breakthrough curves for low and high porosity compared to the base case. 
Figure 20 represents the evolution of the spatial distribution during the SWIW test. 
Finally, Table 8 supplies a summary of BTC characteristics for the different conducted 
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tests. Note that porosity in fractures does not vary during this sensitivity study, but 
porosity within matrix blocks does. 
 

2.2. Low porosity 
 
Typically, low porosity, between 2% and 6% in our study, would indicate that our 
considered material does not contain much void space. Thus, as this particular system is 
not very porous (e.g., solid granite), the injected tracer does not have much opportunity to 
diffuse into the matrix blocks, so there is much less tracer buildup in the matrix blocks. 
As a result, the tracer advects farther into the fracture network, exposing more rock 
matrix to tracer. Although there is little diffusion into each matrix block, a large volume 
of rock matrix is contacted by tracer, ultimately resulting in a significant amount of 
matrix diffusion. 
 
This theory is illustrated by Figures 19 and 20. In the spatial distribution (Figure 20), the 
lower the porosity, the farther the contamination moves out from the injection well during 
the injection period. In other words, less tracer transfers into the matrix blocks, so that it 
can be transported to more places in the fracture network. As a result, the plume is 
generally enlarged. Therefore, as more tracer advects through the fracture network, there 
are correspondingly more matrix blocks contacted by tracer. The usefulness of the chase-
fluid period, namely introducing water such that tracer contacts more matrix blocks, is 
also highlighted by these results. In addition, the concentration of the closest matrix 
blocks to the well is higher than in the base case. Since the porosity is lower, the matrix 
blocks have less ability to receive and store tracer, which results in higher fracture and 
higher matrix concentrations near the injection well. 
 
The general behavior of the system is also different at the end of the withdrawal period. 
The plume is still quite spread out, because it takes a long time to recover the tracer 
stored in the matrix blocks. In other words, as more matrix blocks are contaminated by 
the tracer, it is normal to still observe many matrix blocks remaining well saturated, 
because diffusion is a much slower process than advection. Moreover, it should be noted 
that there is very little remaining tracer present in the fracture network, and some small 
blocks are also completely empty: all solutes have been recovered, owing to advection 
transport and the diffusive effect for the small blocks. 
 
Regarding the BTC characteristics as shown in Figure 19 and characterized in Table 8, at 
the beginning of the withdrawal period they are also evolving as expected. The peak 
height is higher than in the base case because more tracer is present in the fracture 
network, where it can be readily withdrawn. The peak height occurs slightly later than 
before, because it takes slightly longer to recover tracer from the more distant regions of 
the plume in the fracture network. Note also that the slope of the first part of the tail is 
almost a -3/2 log slope, which is characteristic of tracer recovery from a semi-infinite 
medium, but this is not the case for the second part of the tail, which seems surprising. 
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Concentrating on the late-time behavior, we note that the late-time slope is more negative 
than in the base case, indicating that there is less tailing than with higher porosity values. 
In fact, once the tracer located in the fracture network has been retrieved and the fracture 
concentrations are all very low, the recovery of the tracer located in the matrix blocks 
takes more time and leads to low concentrations and less tracer recovered. Hence, it is to 
be expected to retrieve less tracer at the end if we retrieve more tracer at the beginning. 
Besides, the length of the linear fit is quite long and the slope of the second tail is more 
negative than the -3/2 log slope, indicating that finite matrix block effects are significant. 
That is, the tracer that was in the finite matrix block has already come out, so the BTC 
decreases faster. It is, however, also possible that the lowest-porosity BTC shows a single 
linear dependence instead of two different linear parts. 
 

2.3. High porosity 
 
Conversely, a high porosity (20%) such as is typical of sedimentary rock would indicate 
ample opportunity for diffusion and solute storage into the rock matrix. The opposite 
effects (compared to low porosity rock) are therefore observed: much of the injected 
tracer diffuses into the matrix, so that tracer can more easily fill the closest matrix blocks 
to the well. As a consequence, the tracer does not extend very far from the injection well, 
as is reflected in Figures 19 and 20. According to the spatial distribution, the higher the 
porosity, the smaller is the plume, implying that fewer matrix blocks are contaminated, 
but that there is more diffusion into and solute storage in those fewer matrix blocks. 
 
Regarding the BTC characteristics shown in Table 8, the peak height is also lower than in 
the base case, for all the reasons mentioned earlier. The peak time occurs slightly earlier 
than in the base case, because there is more tracer located near the well, which can be 
quickly recovered when the withdrawal period starts. As a result, the length of the linear 
fit is longer than in the base case. The late-time behavior of our system is also modified 
when porosity is increased. We can still observe through the spatial distribution that the 
plume is concentrated near the injection point, so that fewer matrix blocks than in the 
base case are playing a role. However, it should be stressed that the remaining mass in 
our system is still quite significant. The spatial distribution at the end of withdrawal 
shows us that there is still a substantial amount of tracer inside the fracture network (as 
opposed to the low porosity case), because the matrix blocks are still feeding the fracture 
network with tracer.  
 
Concerning the BTC, the late time tail is higher than the base case, mainly because of the 
remaining mass still present in our system. The slope of the second part of the tail and the 
linear fit are also similar to the base case. However, increasing porosity has two opposite 
effects: it implies more diffusion, but also more capacity for the matrix to hold tracer. 
Finally, it should be noted that the effects of lower porosity on the spatial distribution and 
the BTCs are more visible in the system than the effects of higher porosity. 
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III.3. Second parameter sensitivity study: diffusion coefficient 
 

3.1. Definition 
 
The diffusion coefficient (or diffusivity) is a proportionality constant between the molar 
flux due to molecular diffusion and the gradient of concentration for the considered 
species. In our case, the considered diffusion coefficient is called “effective diffusion 
coefficient”, or De, which describes diffusion through the pore space of porous media. 
Molecular diffusion in matrix blocks is given as follows: 

  M
fwe DD    (17) 

 
where Dfw is the diffusion coefficient in the water filling the pores (and which is defined 
in Section II.2.3),  is matrix porosity, and  is tortuosity, a factor that is difficult to 
estimate. Because we have considered porosity variation in the previous section, when we 
talk about variation in the effective diffusion coefficient, we are essentially referring to 
the variability of tortuosity , which is a fitting parameter. The physical effect of the 
diffusion coefficient is such that the higher the diffusivity (of one substance with respect 
to another one), the faster they diffuse into each other. 
 
For our chosen base case, the matrix blocks in our domain have a diffusion coefficient of 
2.10-9 m2.s-1. The range of values for this diffusion coefficient starts from 4.10-10 m2.s-1, 
which corresponds to the base case value divided by five, hence considered as the small 
diffusion effect. Large diffusion effects are comprised between 4.10-9 and 2.10-8 m2.s-1, 
i.e., the base case value is respectively doubled and multiplied by five. 
 
Figure 21 illustrates the respective breakthrough curves for small and large effective 
molecular diffusion coefficients compared to the base case. Figure 22 represents the 
evolution of the spatial distribution during the SWIW test. Finally, Table 9 recaps BTC 
characteristics for the different tests. 
 

3.2. Small diffusion 
 
The base case has a diffusion coefficient equal to 2.10-9 m2.s-1. The first sensitivity study 
divides this value by five. Like decreasing porosity, decreasing the diffusion coefficient 
serves to limit the amount of solute taken up by the rock matrix. However, unlike 
decreasing porosity, when the diffusion coefficient is decreased, the capacity of the 
matrix to hold tracer remains unchanged. Consequently, the effects shown are similar to 
those previously observed for the porosity study, but with some noticeable differences in 
matrix saturations, as exhibited by Figures 21, 22, and Table 9.  
 
Concerning the spatial distribution, the plume, while still well spread out, is a bit less so 
than for the low porosity case, because the matrix blocks are less prone to filling up with 
solute. Basic characteristics, such as an enlarged plume with more tracer transported in 



 24

the fracture network and more matrix blocks affected, are noted. Moreover, the 
concentration of the closest matrix blocks to the well is a bit lower than in the base case. 
At the end of the withdrawal period, the same general pattern for the plume can be 
observed, namely a low-concentration tracer plume in the matrix blocks still well 
dispersed, and virtually no tracer present in the fracture network. 
 
Regarding the BTC, the previous discussion for low porosity is almost entirely applicable 
for diffusion coefficient. The main differences reside in (1) the magnitude for the peak 
height and time, which is a little bit lower for the diffusion BTC, (2) the matrix blocks, 
which do not fill up so fast, (3) more blocks still filled up with tracer (especially the small 
blocks) and (4) the first part of the tail, which does not have a -3/2 log slope. However, it 
turns out that the second part of the tail has “nearly” a -3/2 slope: our finite matrix blocks 
act now more like infinite ones, because of the higher storage capacity in the matrix. 
Besides, the first part of the tail has a stronger slope than the base case, as with low 
porosity, but the general aspect is much more concave than in the low porosity case. For 
this particular case, it is impossible to model any part of the BTC with a linear fit. 
 

3.3. Large diffusion 
 
A large diffusion coefficient, such as the base-case value multiplied by ten, indicates that 
diffusion from the fractures into the surrounding matrix blocks is more effective. Hence, 
increasing the diffusion coefficient is “similar” to increasing porosity but without 
increasing storage capacity. According to the spatial distribution shown in Figure 22, 
there is indeed less tracer in the fracture network, but the concentration in the matrix 
blocks nearest to the well is also higher than the base case. So when diffusivity is 
increased, more tracer is going into the matrix blocks, owing to this diffusive effect. As a 
result, there is also less tracer in the fracture network, just as was observed for the 
increased-porosity case. Given that diffusion is a process that takes time, the nearest 
fractures to the well center are still contaminated by the tracer coming back from the 
matrix blocks. 
 
Focusing on the BTC represented by Figure 21, we find the general behavior quite 
similar to high porosity, namely, the peak height lower than in the base case and the late 
time tail higher than in the base case. But when we look at some BTC characteristics, 
some differences appear, resulting from the diffusive effect. First, the retrieved mass is 
higher than in the base case coupled with a remaining mass lower than in the base case: 
the recovery ratio is very good. Second, there is a “long” transition between the first and 
the second parts of the tail, such that the general aspect is more concave and the lengths 
of the linear fits are shorter than usual. As a consequence, the slope of the second part of 
the tail is more negative than usual: the effects of finite matrix blocks are considerable in 
this particular case. 
 
The differences in BTCs (Figure 23) for the high porosity and large diffusion cases may 
arise from the fact that although diffusion into the rock matrix is increased for both cases, 
only for the high porosity case is the capacity of the matrix blocks to hold tracer 
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increased. Thus, more blocks (especially the smaller matrix blocks) may become 
saturated with tracer for the large diffusion case. During the withdrawal period, recovery 
of tracer from saturated blocks differs significantly from recovery of tracer from 
unsaturated blocks, which act like a semi-infinite medium. We interpret departures from a 
linear tail with a -3/2 slope as indications that finite matrix block effects are important. 
 
 

III.4. Third parameter sensitivity study: retardation coefficient 
 
The retardation coefficient R was previously defined in this report (see Section II.2.2., 
Equation 12) and is related to sorption effects. We know that sorption tends to slow the 
effective transport velocity of contaminants dissolved in groundwater. When this 
effective transport velocity is less than the pore water velocity of the groundwater, the 
contaminant is said to be retarded. The retardation coefficient R is used to estimate this 
retarded contaminant velocity. It is a dimensionless number greater than or equal to 1. 
 
Our base case involves 1R , which means that sorption is not taken into account. In the 
sensitivity study, different values of retardation are used with values up to 25R . Figure 
23 illustrates the breakthrough curves for different values of retardation coefficient 
compared to the base case. Figure 24 represents the evolution of the spatial distribution 
during the SWIW test. Finally, Table 10 summarizes the BTC characteristics for each 
test. However, we should point out that the retardation effects on our system are 
somewhat uncertain, because the simulator does not account for sorbed mass when 
calculating mass balance values, and thus the mass balance of sorption runs cannot be 
adequately checked. 
 
A higher retardation coefficient enhances the storage capacity in matrix blocks, as solutes 
can be sorbed onto rock grain surfaces in addition to be dissolved in the water. The 
spatial distribution of solute concentration in the model domain (Figure 24) shows at first 
sight the expected behavior of our system when subject to retardation. Specifically, when 
retardation increases, the plume is less spread out, and diffusion into distant matrix 
blocks is less significant. But it turns out that the concentration in the blocks nearest to 
the well is lower, as is the concentration in the fracture network. In fact, a large 
retardation factor implies substantial capacity to uptake tracer in the matrix blocks: the 
diffusive effect is now coupled with the sorption effect. Hence the matrix blocks are first 
“consuming” the tracer, due to sorption, and then storing it, due to diffusion. This 
explanation also applies to the spatial distribution at the end of the withdrawal period. 
The process of pulling tracer back from matrix blocks is very long, because of the 
matrix’s capacity to store tracer, especially when retardation becomes more and more 
important. That is why there is still a lot of tracer in the fracture network. We can 
therefore suppose that there is a non-negligible remaining mass in our retarded system, 
and that it takes more and more time to retrieve the injected tracer when sorption is 
relevant.  
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The BTCs (Figure 23) for retardation cases generally illustrate these same processes: for 
instance, the peak height is lower than in the base case.  However, some other findings 
can also be deduced strictly from the BTC. First of all, the first part of the tail is quite 
long, which means that the tracer is coming back from finite matrix blocks during much 
of the withdrawal period. As a direct consequence, the length of the second linear fit is 
quite short, but it has a -3/2 slope, which is the signature of tracer coming back into the 
fractures from semi-infinite matrix blocks. 
 
 

III.5. Hydrofracking effects 
 
Hydrofracking can have two main consequences both increasing the permeability of the 
rock mass: either increasing the fracture aperture of existing fractures or creating new 
fractures. The second consequence can be represented by adding a third fracture set to the 
initial model. While we evaluate here the effect of hydrofracking on the observed SWIW 
test response, we should point out that this study is somewhat academic: our fracture 
network is quite well connected and permeable, which means that hydrofracking would 
not be necessary in this case.  
 

5.1. First effect: larger fracture aperture 

 
Hydrofracking can lead to an increase in fracture aperture. We are interested in 
evaluating the lower limit of aperture increase at which we can observe noticeable 
changes in BTC or spatial distribution. We study three different size effects (small, 
medium, and large) in order to understand the required scale for those changes. 
 
After some trials, it appears that there is only a small effect on tracer transport when the 
aperture is doubled, i.e., when 41022 b m. Thus, an increase of 25%, 50% or even 
75% of the fracture aperture can be considered as “negligible” for us if we look only at 
the BTC. However, we should not forget the pressure change: small increases in aperture 
lead to significantly reduced pressure increases in response to injection. Table 11 recaps 
the different pressure increases for each aperture modification, in addition to the various 
BTC characteristics. Regarding the other cases, medium and large effects are obtained 
when the aperture is multiplied by factors of five and ten, respectively. What we should 
expect from this change is that when we increase aperture, (1) diffusion becomes a 
smaller effect compared to advection, and (2) there is less fracture-matrix contact area 
relative to fracture volume. Figure 25 shows the breakthrough curves for the small, 
medium, and large aperture changes in the same plot, and Figure 26 exhibits the spatial 
distribution for these cases.  
 
If we first focus on the spatial distribution as represented in Figure 26, we can see that the 
plume is less spread out for larger aperture cases. By increasing the aperture while 
keeping the same flow rate of injection, there is more tracer staying in the fractures. 
Hence, as the aperture increases, the fracture network close to the well contains more 
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tracer, and the nearest blocks to the well are slightly more contaminated. However, at the 
end of the withdrawal period, the various cases show a similar pattern: the fracture 
network is empty and the blocks still contain some tracer. This results from advective 
transport being easier to reverse and being a faster process than diffusion, so the 
influence of increasing aperture is less visible at the end of the withdrawal period. 
 
Moreover, what we know from the model (spatial distribution) is in accordance with what 
we could see in the field, namely the BTC (Figure 25) and the pressure change as shown 
in Table 11. The peak concentration during the withdrawal period varies almost 
proportionally upwards with increasing aperture, and the peak time occurs proportionally 
later. Concerning the slope of the tails, the second part is similar to the base case, 
whereas the first part has a more negative slope compared to base case. Note that the 
general behavior of BTCs is in accordance with the proposed theory, namely more 
recovered tracer at the beginning, because of the faster advection and more tracer stored 
in the fracture network. However, we are not able to observe any -3/2 slope for the 
second part of the tail, so the blocks still have to be considered as a finite medium. 
Finally, the pressure change reduces strongly when the aperture is increased. 
 

5.2. Second effect: more fractures in the field 
 
Hydrofracking can also create a new set of fractures. This effect is investigated here by 
adding a third set to the two previous ones, with a predetermined amount of fractures in 
the third set. The number of additional fractures is limited by some numerical issues, 
namely the length of program execution and stability regarding the geometrical choice. 
Nevertheless, we were able to insert a third set with the same number of fractures as the 
previous ones (700 fractures per set). We also run two other cases adding a third set 
including 200 and 450 fractures, respectively. Table 12 provides the different pressure 
values obtained for each numerical experiment, as well as the diverse BTC 
characteristics. Figure 27 displays the new block size distributions when adding new 
fracture sets with 200, 450, and 700 fractures. Figure 28 shows the BTC, while Figure 29 
illustrates the spatial distribution when a third set of fractures is added. 
 
Figure 27 provides the various histograms for each new third set, ranked in ascending 
order by the number of fractures, and shows the comparison between the different cases. 
At first glance, there is little difference, in part due to the fact that the original fracture 
network was already quite dense and well connected, so the effect of adding fractures is 
relatively modest. On average, the matrix blocks are slightly smaller when adding more 
fractures, so they will act less infinite. If we now focus on the spatial distribution as 
represented by Figure 29, we realize that there are virtually no major modifications or 
changes compared to the base case. The geometry is obviously different, but the 
characteristics remain similar: fractures well filled up with tracer, matrix blocks near the 
well easily filled up, and plumes almost the same size. Nevertheless, the tracer extent for 
the 700-fractures case is a little bit smaller than the others. Concerning the end of 
withdrawal, the same general pattern is observed between the cases.  
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The BTC confirms the similarity between all cases: the peak height and time are of the 
same magnitude for all the cases. The only anomalous part resides in the non-
proportional increase of the peak height versus the number of fractures added. But as 
shown by Table 12, this could be linked to a numerical mistake when adding too many 
fractures, because of the problems encountered with the remaining mass calculation. The 
other noticeable change can be found in the late-time part of the withdrawal: the larger 
the number of fractures, the more the late-time tail of the BTC departs from a linear fit 
with a -3/2 slope. Thus, the change in block size distribution that comes from the addition 
of new fractures makes for fewer matrix blocks acting infinite. 
 
Actually, a theory explaining the reason why adding more fractures has so little effect on 
BTC can be expressed.  By adding more fractures, the contact area between the fracture 
network containing tracer and the matrix blocks is not necessarily increased: there is just 
a change in the spatial distribution of tracer-filled fractures. In other words, if there are 
more fractures near the well, the tracer does not travel far away from the well, but it still 
contacts approximately the same amount of matrix (unlike an aperture increase, where 
there is less fracture-matrix contact area). There is a difference in the relative importance 
of diffusion and advection, since advection through any one fracture is slower when there 
are more fractures. 
 
Finally, it is also possible to observe a non-negligible pressure change when more 
fractures are added to the field, as illustrated by Table 12. Indeed, as the total number of 
fractures is increased (i.e., the fracture network is larger than the base case), the overall 
permeability of the fracture network is larger. However, this pressure change is less 
significant than when increasing fracture apertures, because of the proportionality of the 
pressure gradient to the cubed fracture aperture. 
 

5.3. Comparison between the hydrofracking cases 
 
To objectively compare the sensitivity between additional fractures and enlarging the 
aperture, we must establish a fair comparison (i.e., the same additional fracture volume 
should be generated by either case). Thus, the ratio of fracture volume before and after 
hydrofracking is calculated. For the enlarging-aperture cases, it simply corresponds to the 
factor by which aperture is increased, whereas for the additional fracture cases, it is equal 
to the ratio of the new total volume of fractures in the model area over the total volume of 
fractures in the base case (values provided by RENUMN). 
 
The increased-aperture cases that were first considered as having too small an effect on 
BTCs (refer to Section 5.1) are interesting here, because increasing aperture from 25% up 
to 75% changes fracture volume comparably to adding a third set of fractures, as 
illustrated by Table 13. Figure 30 represents the BTCs for this small aperture increase 
and can be compared to Figure 28 for adding a third fracture set. We notice that the peak 
concentrations during withdrawal are very similar for both hydrofracking cases. 
Regarding the late-time tails, they all are quite similar for the increasing-aperture cases, 
while they are all a bit different for the cases that add a third fracture set (but still 
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relatively close to the base case). Generally speaking, the BTC results are globally the 
same between the two hydrofracking cases and the base case. In contrast, the pressure 
drops faster for the aperture-increasing cases than when adding a third set because of the 
cubic law, as already explained in Section 5.2. 
 
Ultimately, this comparison makes us realize that our initial geometry is very dense (a 
highly connected fracture network), which could explain why adding a third set to our 
chosen geometry does not fundamentally change the system. It should also be stressed 
that when both hydrofracking changes are comparable, they behave in the same way in 
terms of breakthrough behavior, and only the pressure change can help us to distinguish 
them. 
 
 

III.6. Comparison between sensitivity cases 
 
After all the different sensitivity simulations are carried out, some combinations of results 
are made to determine which effects are the most significant compared to others. Pairs of 
tests involving two varying parameters allow us to determine that retardation has the 
strongest effect on the system, followed by porosity and then diffusion, as expected after 
the results obtained during the parameter sensitivity study. 
 
Similarly, some comparisons with the base case are performed between analogous effects 
with respect to their BTCs, because it is hard to precisely distinguish key features in the 
spatial distribution. Actually, the spatial distribution only gives us general trends about a 
case, because there are no precise indicators that we can look at carefully, unlike 
breakthrough curves. 
 
Three groups can be formed: (1) the group in which BTCs are higher than the base case 
at the beginning of the withdrawal period and lower at the end (indicating less retarding 
function of the matrix blocks), represented by Figures 31 and 32, which illustrate 
respectively the BTC and the spatial distribution; (2) the opposite, where BTCs are first 
lower and then higher (indicating more retarding function of the matrix blocks), 
illustrated by Figure 33 for the BTC and Figure 34 for the spatial distribution; and (3) the 
group in which there is virtually no difference with the base case, as represented by its 
BTC (Figure 35) and its spatial distribution (Figure 36). 
 
As mentioned above, the first group corresponds to BTCs that are higher than the base 
case at the beginning of the withdrawal and lower at the end. The higher peak indicates 
that more tracer can be immediately retrieved, and it makes sense for the late-time slope 
to be more negative than the base case. It is therefore not surprising to gather in this 
category a low porosity, a small diffusion, and a bigger aperture case. Although these 
cases share the same BTC behavior in trend, as shown on Figure 31, this is not the case 
for their spatial distributions, as represented by Figure 32, of the outlier being the larger-
aperture case.  
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The second group describes the opposite situation, i.e., BTCs are first lower and then 
higher than the base case. The group contains a high porosity, large diffusion and high 
retardation effect. According to what has been previously studied, it is logical to find 
these parameters together, given their resemblance to each other. According to Figures 33 
and Figure 34, not only are they all presenting the same characteristics on the BTC, but 
they share similar spatial distributions as well.  
 
Finally, the third group assembles the parameters that show no significant differences 
from the base case. They comprise a slightly higher porosity (15%), a doubled aperture, 
and slightly more fractures added into the system (200 fractures). These effects are 
considered as small effects – they cannot be neglected but they have only a small 
influence on overall transport behavior. They are reflected in Figure 35 and (by their 
spatial distribution) in Figure 36. 
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IV. Discussions 
 
This section discusses some issues concerning the numerical performance of TRIPOLY 
and some ideas that arise from the results. 
 

IV.1. Mass balance 
 
At this point, some comments must be made regarding mass-balance results. The first 
general point to stress is that the mass-balance calculation provided by the program is not 
completely accurate. For example, the value calculated by the program for the injected 
mass in the system is always slightly overestimated. Moreover, some issues exist with 
mass-balance results regarding the retrieved mass: it can be greater than the injected 
mass, as shown by Table 7. This problem occurs when too much tracer goes outside the 
domain of study, confirming that the code has some difficulties in treating this particular 
case. We also point out that some mass-balance results for the recovered mass seem 
substantial in error. The same problem arises for retardation, but we know that the code 
does not take into account retardation in the calculation. 
 
Another issue that could be stressed is the dependence of the results to certain parameter 
choices driving the numerical solution process. The code is very sensitive to time-
stepping, and this too has a non-negligible impact on mass-balance results. Moreover, 
adding too many fractures to the system can lead to problems of consistency and 
reliability with some results: such “overloading” could affect the remaining mass 
calculation carried out by the code, as illustrated by Table 12 for the 700- fractures case. 
Given all this, clearly some improvements need to be made within this new feature of 
TRIPOLY. 
 
 

IV.2. Inverting BTC 
 
It is clear that the entire simulation study described in Section III is based on precisely 
knowing the physical settings used for each test, so that we can observe the response of 
the system to our various experiments. After running a series of simulations, we have at 
our disposal the predicted transport behavior for various sensitivity cases. In particular, 
we have determined BTCs, which are observable in the field. The question arises whether 
the process can be inverted, that is, would one be able to derive from the BTCs some 
relevant predictions with respect to fracture-matrix system parameters. 
 
One thing to emphasize is that for a given BTC, there is more than one possible set of 
parameters required to reproduce it. The goal of this study is to examine carefully some 
specific BTC characteristics and then try to infer information about the corresponding 
parameters. Indeed, the information available for typical SWIW field experiments is the 
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breakthrough curve and the pressure change. As already described earlier in Section 
III.1.4, the BTC characteristics that we are studying are the peak concentration and time 
during withdrawal, the slope of the tails, and the length of the superposition of the linear 
fit and the effective curve. Table 14 summarizes the results found regarding the 
correlation between physical settings and BTC characteristics. 
 
Concerning the peak concentration, the higher the peak, the more tracer can be retrieved 
straightaway. This implies that the tracer is mainly contained in the fracture network or in 
the nearest surrounding matrix blocks. This is exactly the case for a low porosity, a small 
diffusion coefficient, and/or a large aperture. Not only do these properties share the same 
characteristic, but they have similar effects on BTC as well. In contrast, the smaller the 
peak, the more difficult it is to recover tracer once the withdrawal period has started. This 
can be explained by there being less tracer in the fracture network and more tracer 
penetrating into the matrix blocks, so it takes a while to reverse this process. As expected, 
this characteristic is shared by the elements of the second group, namely a high porosity, 
a large diffusion coefficient, and a significant retardation effect. 
 
Regarding the -3/2 slope of the BTC tail, recall that it is the signature of tracer coming 
back into the fractures from a semi-infinite matrix. In other words, the biggest blocks of 
our system can sometimes act as semi-infinite for the time periods considered, even 
though we have generated only finite matrix blocks. A -3/2 log slope is therefore 
expected for the second part of the tail when we have high porosity, small diffusion, and 
small retardation. It would seem consistent that our finite matrix blocks act more infinite 
(1) when the diffusion coefficient is small, because not much tracer moves into the matrix 
blocks; (2) when retardation is large, because there is more capacity for storing tracer in 
the matrix; and (3) when porosity is large, because diffusion is more important, even 
though there is also more capacity.  
 
Finally, with respect to the length of the linear fits for the BTC tail, generally, the longer 
the fitted portion, the more significant it is. Often, a long fitted portion is associated with 
a previous short fitted part, as described in Table 14. The problem is that it is a qualitative 
parameter and not a quantitative one. It also depends on how long the withdrawal period 
lasts, so that we would be able to observe longer tails, but with more uncertainty due to 
the limited precision of low-concentration measurements. We can observe that usually a 
short tail in the second part of the withdrawal curve can be linked to a -3/2 slope: the 
semi-infinite matrix block behavior takes time to appear, due to the presence of a range of 
matrix-block sizes in our model. 
 
It is hard to precisely determine the possibility of inversely determining physical 
properties of the fracture-matrix system from the BTCs. There are many variables to take 
into account, and it is difficult to distinguish precisely some effects among others. 
However, we should not forget that SWIW-test BTCs can provide some general sense of 
the characteristics of fractured rocks, as well as providing constraints on the parameters 
relevant to tracer diffusion and sorption through fractured media. Besides, the results can 
be coupled with other tracer tests to establish some crosschecks between those tests that 
are focusing on different physical parameters. 
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IV.3. Comparison with temperature case 
 
Thermal SWIW tracer tests have recently been modeled to determine the fracture-matrix 
heat transfer area, as reported in Pruess and Doughty, 2010 [14]. Here, we would like to 
compare the consistency of our results with those results.  
 
The general idea of the temperature case is to focus on SWIW tests in which temperature 
itself is used as a tracer, and then observe the thermal response to (1) making additional 
fractures accessible to injected fluids, which is similar to adding a third set of fractures, 
and (2) increasing the aperture and permeability of pre-existing fractures, which is similar 
to increasing aperture in our study. When aperture was decreased and the fracture-matrix 
contact area was concurrently increased, as in our aperture variation study, a larger 
matrix effect was observed, just as in our results. However, when a new fracture was 
added, a slightly larger matrix effect was noticed, whereas our simulations almost no 
effect on BTCs. 
 
Ultimately, our results can be considered consistent with the temperature case, 
considering the very different relative importance of diffusion and advection for 
temperature and tracer problems. (For the temperature problem, the equivalent diffusion 
coefficient would be four orders of magnitude greater than for our base case.) Besides, 
the temperature case considers only a semi-infinite matrix, whereas we take into account 
a range of finite-matrix-blocks sizes, with a few larger matrix blocks probably acting 
semi-infinite. 
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V.  Conclusions and future work 
 
 
An evaluation of the SWIW method has been carried out, using the numerical code 
TRIPOLY, for a complex fracture-matrix model consisting of a two-dimensional network 
of fractures surrounded by rock matrix blocks of various sizes and shapes. Results of 
modeling SWIW tests show that TRIPOLY can meet the requirements for such model 
experiments as long as some adjustments are made (TRIPOLY was indeed not designed 
for this specific purpose). Furthermore, we must be careful when choosing the numerical 
parameters that control accuracy and error tolerance within TRIPOLY.  Ultimately, the 
solute transport modeling done by TRIPOLY is quite acceptable:  numerical predictions 
for BTCs and spatial distributions are consistent with each other and with mass-balance 
calculations. Parameter sensitivity studies performed on matrix properties porosity, 
diffusion coefficient, and retardation coefficient show that the basic physical processes 
are well represented by our model, both in the fracture network and the matrix system. 
Potential changes created by hydrofracking are also modeled to observe the response of 
our model and compare the consistency of these results to similar previous studies. The 
results of all simulations confirm the importance of the role that the matrix plays in solute 
transport through fractured rock.  
 
The modeling studies can be summarized in terms of how various parameter choices 
control the impact that the rock matrix has on tracer transport, and how this impact is 
manifested in SWIW-test tracer distributions and BTCs, as illustrated by Table 15. The 
spatial tracer distributions provide more insight into the physical processes that occur, but 
the BTCs (together with injection pressure) are all that we will typically be able to 
observe in a SWIW test under real field conditions. Hence, it is valuable to study the 
BTCs carefully, in order to infer as much as possible about the physical processes 
occurring for the various cases. Formally inverting SWIW-test BTCs could potentially be 
a very useful tool for scientists, allowing them to infer field-scale transport properties, 
information on fracture-network/matrix-block geometry, or the results of hydrofracking. 
As Table 15 indicates, BTCs do not provide unique solutions for these properties, but 
comparing different features of the BTCs do provide some indication of what properties 
or processes could be responsible. This suggests that SWIW-tests can be a valuable 
contribution to site characterization, especially if coupled with other forms of hydrologic 
and tracer testing. 
 
Future work that could be done would consist of more precisely adapting the TRIPOLY 
code to various potential SWIW test designs, such as including a rest period.  We could 
also vary the values for some currently unused parameters, such as introducing a non-
zero standard deviation for fracture aperture or orientation. Even with the same 
parameters, it would be interesting to create a different geometry for the fracture network 
to see its impact on BTCs. It would be also interesting to consider other hydrofracking 
consequences such as increasing both aperture and number of fractures. Additionally, 
more realism could be put into the hydrofracking cases – for example, to consider 
aperture increase as a function of distance from the well. Another important follow-up 
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possibility would be to generate a much sparser fracture network (still connected) for the 
base case; this would provide better tests of hydrofracking, because hydrofracking would 
significantly increase fracture connectivity. It could also be interesting to compare the 
results obtained with TRIPOLY to other codes, such as TOUGH. For this comparison, it 
would be useful to determine the optimal numerical parameter choices for TRIPOLY 
when using a tracer equivalent to temperature, which acts like a strongly sorbing tracer. 
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Table 1: SWIW parameters 
 
 

Sequence Parameters 
Injection It , Iq  

Chase fluid 0C , Ct , CI qq   

Withdrawal Wt , IW qq   

 
 
 
 
Table 2: Boundary conditions 
 
 

Boundary conditions Injection Chase fluid period Withdrawal 

Outside Dirichlet: 0H  Dirichlet: 0H  
Dirichlet: 

0H  Flow 
Well Neumann: Iq  Neumann: Iq  Neumann: Iq  

Outside X X X Solute 
transport Well Neumann: Iq  X X 

NB: X indicates that the node is treated as an internal node, so no boundary condition is 
necessary in this case 
 
 
 
Table 3: FMGN variables 
 
 

Variable Value Significance 
APER 10-4 Fracture aperture (in meter) 

BCODE 1 Boundary code for each side of the flow region 
BVALUE 0 Value of the constant hydraulic head (in meter) 
LENGTH 1 Fracture length (in meter) 
NFRAC 700 Number of fractures per set 
NSETS 2 Number of fracture sets 

ORIEN 5/95 
Orientation between the fracture axis and x direction for 

set 1 and set 2 respectively (in °) 

XGENE, YGENE 10 
Dimension of the generated region in x and y direction 

respectively (in meter) 

XMESH, YMESH 10 
Dimension of the flow region in x and y direction 

respectively (in meter) 
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Table 4: TRIPOLY numerical variables 
 
 

Value 
Variable 

Base Case 
Medium and 

Small Problems 
Significance 

DCOFF 10-2 10-4 Used for removing nodes 
DCDIF 10-1 10-1 
DCON 10-2 10-3 
DEPS 10-3 10-4 

Used for inserting nodes 

LOGDIF -1 2 
Used to determine the criterion for inserting 

and removing dispersive nodes 

TOLE 10-2 10-5 
Tolerance for numerical round-off: if 

distance between 2 nodes is less than TOLE, 
they are merged to 1 node 

 
 
 
Table 5: Other variables used in TRIPOLY and modified from their default value 
 
 
Variable Value Significance 
DIFMOL 2.10-7 Dfw: molecular diffusion coefficient in fractures (in m2.s-1) 
IDOPO 1 Porous matrix is considered in simulation 
IMODE 2 Advection-dispersion in steady-state flow field 

NPN Node # Head value at the designed node (typically the node # of the well) 
PRR Variable Factor for increasing the time step (≥1, typically 1 < PRR < 1.1) 

TMAX Variable Maximum simulation time allowed (in s) 
 
 
 
Table 6: Problems considered 
 
 

 Large Problem Medium Problem Small Problem 

Injection 

3600It s 
(1h duration) 

8.2Iq 610 m3.s-1 

3600It s 
(1h duration) 

8.2Iq 610 m3.s-1 

1800It s 
(30 min duration) 

8.2Iq 610 m3.s-1 

Chase fluid period 
80.1Ct

410 s 

(5h duration) 

3600Ct s  

(1h duration) 

2700Ct s  

( 45 min duration) 

Withdrawal 
80.1Wt

610 s 

(500h duration) 

80.1Wt
610 s 

(500h duration) 

26.1Wt
610 s 

(350h duration) 
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Table 7: Mass balance of various problems considered 
 

 
Large 

Problem 
Medium Problem Small Problem 

Theoretical Injected Mass (in g) 10.08 10.08 5.04 
Value of Injected Mass calculated 

by the program (in g) 
12.62 10.12 5.23 

Retrieved Mass (in g) 13.98 8.978 4.316 
Remaining Mass (in g) 0.360 0.261 0.180 

Loss at the sides at the end of 
the chase fluid period (in g) 

0.402 7.74 710  2.37 810  

Recovery Ratio 1 (in %) 139 89.1 85.6 
Mass Balance 2 (in %) 117 91.3 86.0 

1: as defined by Equation 14: Retrieved Mass / Theoretical Injected Mass 
2: as defined by Equation 15: (Retrieved Mass + Remaining Mass + Loss out sides) / 
Program Injected Mass 
 
 
Table 8: BTC characteristics for porosity tests 
 

 2 % 6 % 10 % 15 % 20 % 
Retrieved Mass (in g) 9.093 8.930 8.978 9.232 8.478 
Remaining Mass (in g) 0.104 0.194 0.261 0.350 0.378 
Recovery Ratio (in %) 90.2 88.6 89.1 91.6 84.1 
Peak height (relative 

concentration) 
0.143 0.110 0.100 0.096 0.081 

Peak time (s) 9017 8121 7973 7626 7780 
Slope tail 1 -1.53 -1.20 -1.09 -1.03 -1.01 

Length tail 1 Normal Normal Normal Quite long Quite long
Slope tail 2 -1.71 -1.67 -1.65 -1.63 -1.62 

Length tail 2 Very Long Long Normal Normal Normal 
 
 
Table 9: BTC characteristics for diffusion coefficient tests 
 

 4.10-10 2.10-9 4.10-9 1.10-8 
Retrieved Mass (in g) 8.785 8.978 9.461 9.618 
Remaining Mass (in g) 0.403 0.261 0.212 0.135 
Recovery Ratio (in %) 87.2 89.1 93.9 95.4 
Peak height (relative 

concentration) 
0.116 0.100 0.099 0.088 

Peak time (s) 8348 7973 7626 7632 
Slope tail 1 -1.25 -1.09 -1.00 -0.94 

Length tail 1 Normal Normal Little short Little short 
Slope tail 2 -1.60 -1.65 -1.77 -1.93 

Length tail 2 Normal Normal Little short Little short 
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Table 10: BTC characteristics for retardation coefficient tests 
 

 R = 1 R = 2 R = 5 R = 10 R = 25 
Retrieved Mass (in g) 8.978 9.032 7.469 8.551 5.929 
Remaining Mass (in g) 0.261 0.245 0.147 0.138 0.052 
Recovery Ratio (in %) 89.1 89.6 74.1 84.8 58.8 
Peak height (relative 

concentration) 
0.100 0.096 0.074 0.079 0.052 

Peak time (s) 7973 7626 7783 7799 7644 
Slope tail 1 -1.09 -1.06 -1.06 -1.03 -1.03 

Length tail 1 Normal Normal Long Long Normal 
Slope tail 2 -1.65 -1.58 -1.51 -1.42 -1.26 

Length tail 2 Normal Normal Quite short Short Normal 
 
 
Table 11: BTC characteristics for aperture tests 
 

 Base case x 2 x 5 x 10 
Retrieved Mass (in g) 8.978 8.833 9.315 10.003 
Remaining Mass (in g) 0.261 0.237 0.207 0.177 
Recovery Ratio (in %) 89.1 87.6 92.4 99.2 
Peak height (relative 

concentration) 
0.1002 0.0998 0.1136 0.1341 

Peak time (s) 7973 8258 8784 8784 
Slope tail 1 -1.09 -1.11 -1.25 -1.39 

Length tail 1 Normal Normal Normal Quite short 
Slope tail 2 -1.65 -1.69 -1.68 -1.70 

Length tail 2 Normal Normal Quite long Quite long 
Pressure (m) 0.8006 0.1001 0.0064 8.006.10-4 

 
 
Table 12: BTC characteristics for 3rd set tests 
 

 Base case + 200 + 450 + 700 
Retrieved Mass (in g) 8.978 9.337 9.686 9.699 
Remaining Mass (in g) 0.261 0.290 0.278 -0.121.103 
Recovery Ratio (in %) 89.1 92.6 96.1 96.2 
Peak height (relative 

concentration) 
0.1002 0.1011 0.1018 0.1008 

Peak time (s) 7973 8057 8057 7763 
Slope tail 1 -1.09 -1.05 -1.05 -1.04 

Length tail 1 Normal Quite long Long Long 
Slope tail 2 -1.65 -1.70 -1.85 -1.95 

Length tail 2 Normal Quite short Short Short 
Pressure (m) 0.8006 0.7580 0.5689 0.4847 



 43

Table 13: Comparisons between the two cases of hydrofracking 
 
 

Aperture 
(mm) 

Ratio P 
(m) 

Peak 
height 

Number 
of 

fractures 

Total length 
of fractures 

(m) 
Ratio P 

(m) 
Peak 

height 

0.1 1 0.8006 0.1002 Base case 973 1 0.8006 0.1002 
0.125 1.25 0.4099 0.1019 + 200 1188 1.22 0.7580 0.1011 
0.15 1.5 0.2372 0.0973 + 450 1440 1.48 0.5689 0.1018 
0.175 1.75 0.1494 0.0988 + 700 1673 1.72 0.4847 0.1008 
0.2 2 0.1001 0.0999 
0.5 5 0.0064 0.1136 
1 10 0.0008 0.1341 

 

 
 
 
 
Table 14: Summary of inferring physical parameters from withdrawal period of BTC (a 
check mark indicates a positive correlation) 
 
 

Peak height  -3/2 slope Long tail Short tail 
 

High Low Part 1 Part 2 Part 1 Part 2 Part 1 Part 2 
Low porosity         
High porosity         

Small diffusion         
Large diffusion         

Retardation         
Big aperture         

More fractures         
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Table 15: Summary of model studies in terms of their effect on the impact of the rock 
matrix (a check mark indicates a positive correlation) 
 
 

Strong matrix impact 
High porosity – Large diffusion – 1R  – Small aperture – More fractures 

  High  High De R > 1 Small aperture 3rd set 

Small extent of plume      
(slightly) 

Few blocks exposed      
Lots of diffusion into 
each matrix block      

High capacity, may not 
see saturation      

Same capacity as base 
case, more likely to see 
saturation 

     

Processes & 
Spatial 

distribution 

More small blocks, 
more saturation 

     

Low peak      
Early peak      
Two linear trends in tail      BTC 
Late time behavior close 
to -3/2 log slope      

 
 
 

Weak matrix impact 
Low porosity – Small diffusion – 1R  – Large aperture 

  Low  Low De R = 1 Big aperture 
Big extent of plume     
Lots of blocks exposed     
Low diffusion into each 
matrix block     

Little capacity, possibly 
more saturation     

Processes & 
Spatial 

distribution 
Same capacity as base 
case, less likely to have 
saturation 

    

High peak     
Late peak     BTC 
Single linear trend in tail     
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Figure 1: SWIW test principle 
 
Schematic diagram of particle travel path during a two-well test (a) and a SWIW test (b). 
Arrows represent advection through the fracture and circles and ovals represent finite 
blocks into which diffusion and sorption may occur. I and W stand for Injection well and 
Withdrawal well, respectively. In SWIW test, matrix blocks are traversed by tracers twice 
(outwards and return) but in two-well test, matrix blocks are traversed only once with 
new blocks seen at all time steps. So in SWIW test, matrix blocks are more likely to be 
saturated by tracers, but in two-well test, they are not saturated. 
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Figure 2: Flow chart for use of programs 
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Figure 3: 1D concentration profile for diffusive transport in matrix blocks 
 
s  is a local coordinate perpendicular to the adjacent fractures. This local coordinate is 
equal to zero at the fracture-matrix interface, and it has an upper limit at Ss   which is 
the maximum orthogonal distance of any location inside the block to the nearest fracture. 
A(s) is the interface area for transport in the matrix blocks at a certain distance s  from the 
surface. Hence, for ,0s  this area is equal to the contact area with the fracture, i.e. equal 
to the surface area A0 of the matrix blocks, and for blocks of limited extent, it steadily 
decreases when approaching the block center  Ss  . 
 
 

 
 
 
 
 

A(0) 
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Figure 4: Defining matrix blocks in TRIPOLY 
 
Each node of the fracture network is connected to a certain number of blocks (polygons), 
i.e., one polygon for dead-end nodes (e.g. node 12), two polygons for moving nodes 
between fractures intersections (e.g. nodes 33 and 78), and more than two polygons for 
fixed nodes located on fracture intersections (e.g. nodes 34, 48, 67, and 109). Each of 
those node-polygon connections is thereby related to a one-dimensional concentration 
distribution in the matrix. 
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Figure 5: Geometry generated by FMGN 
 
The circle indicates the position of the well node. 
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Figure 6: Calculation of the polygons defining the block geometry made by POLY 
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Figure 7: Sample of “bad geometry” generated by FMGN 
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Figure 8: Matrix block size (in m) distribution for the selected geometry 
 
S (expressed in meters) is the value of the maximum orthogonal distance of points in the 
matrix blocks to the adjacent fractures. 

 
 
S
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Figure 9: Tracer breakthrough curve (BTC) 
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Figure 10: Spatial distribution 

 
 
 
 
 
 



 56

Figure 11: Breakthrough curve for large problem 
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Figure 12: Breakthrough curve for medium problem 
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Figure 13: Breakthrough curve for small problem 
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Figure 14: Breakthrough curve with modeled tails 
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Figure 15: Superposed breakthrough curves 
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Figure 16: Spatial distribution of the large problem 
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Figure 17: Spatial distribution of the medium problem 
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Figure 18: Spatial distribution of the small problem 
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Figure 19: BTCs for porosity (top – log-log scales; bottom – linear-linear scales) 
 

 
Dashed tail: -3/2 slope 
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Figure 20: Evolution of spatial distribution for different porosity values 
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Figure 21: BTCs for diffusion coefficients (top – log-log scales; bottom linear-linear 
scales) 
 

 
Dashed tail: -3/2 slope 
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Figure 22: Evolution of spatial distribution for diffusion coefficients 
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Figure 23: BTCs for retardation coefficients (top – log-log scales; bottom – linear-linear 
scales) 
 

 
Dashed tail: -3/2 slope 
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Figure 24: Evolution of spatial distribution for retardation coefficients 
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Figure 25: BTCs for apertures (top – log-log scales; bottom – linear-linear scales) 
 

 
Dashed tail: -3/2 slope 
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Figure 26: Evolution of spatial distribution for different apertures 
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Figure 27: Histograms of the new block size (m) distribution when adding a third set 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Reminder: Base Case 
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Figure 28: BTCs for 3rd sets (top – log-log scales; bottom – linear-linear scales) 
 

 
Dashed tail: -3/2 slope 
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Figure 29: Evolution of spatial distribution for adding a 3rd set 
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Figure 30: BTC for small aperture enlargements 
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Figure 31: 1st group of similar effects – BTC 
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Figure 32: 1st group of similar effects – Spatial Distribution 
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Figure 33: 2nd group of similar effects – BTC 
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Figure 34: 2nd group of similar effects – Spatial Distribution 
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Figure 35: 3rd group of similar effects – BTC 
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Figure 36: 3rd group of similar effects – Spatial Distribution 
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