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Abstract

We tested the feasibility of orbital CO2 sensors as detectors of leaks from sequestration sites 
using the SCIAMACHY and GOSAT instruments. From the footprint size of each instrument we calculated 
the atmospheric volume sampled by SCIAMACHY and GOSAT readings, and from this data the amount of 
CO2 leakage necessary to measurably impact readings from the instruments. We used a high-emission 
coal electric plant as a baseline leak quantity, which is a substantially larger amount of CO2 than would 
be expected from a sequestration leak. Nonetheless, the plant’s output is not detectable by either 
instrument. Geospatial and geostatistical analysis of collected data supports this conclusion. SCIAMACHY 
data from the summer of 2005 over the contiguous US showed broad topographic patterns in CO2

distribution, with the eastern flanks of mountain ranges hosting anomalously high levels of CO2, and 
basin regions hosting lows. The cause of these tendencies has not been determined. Calculations 
applied to the OCO-2 instrument, scheduled for a 2013 launch, found that it will be capable of detecting 
the coal plant’s emission and may be a viable tool for detecting large carbon leaks from sequestration 
sites.

Introduction

The global mean temperature of the Earth’s surface and atmosphere has been shown, through 

multiple data sources and metrics, to have increased over the past century, and the decade of 2000-

2009 was the warmest decade on record since 1880 [NCDC, 2011]. Multiple paleoclimatic studies have 

also demonstrated that recent decades were warmer than any other period in the past two millennia. 

This pattern has been tied in part to the continuing increase of carbon dioxide (CO2) concentration in the 

atmosphere. Global carbon output and average global temperature, correspondingly, are predicted to 

increase substantially over the 21st century. Decreasing the total anthropogenic CO2 output may 

significantly mitigate the effects and severity of future climate change [IPCC, 2007].

Carbon capture and geologic sequestration is a potential, though not currently widespread, 

method of reducing total atmospheric carbon. In this method, CO2 is filtered from industrial/power plant 

emissions and injected into a subsurface geologic formation capable of storing carbon. This approach 

can apply to coal seams and other porous formations, in which the carbon chemically and structurally 

affixes to the surrounding rock, and saline aquifers, in which carbon dissolves. In conjunction with 

carbon scrubbing techniques, sequestration could significantly mitigate the emission of carbon-burning 

power plants. Scrubbing and sequestration could reduce the carbon output of a given carbon-fired plant 

by 80-90%, and the geologic carbon storage capacity in the US alone is large enough for capture and 

sequestration to be a long-term (100+ year) method of emission reduction [Plasynski, 2011]. Although
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properly selected sites are predicted to maintain nearly all of their input carbon even over large time 

scales, the possibility exists for CO2 migration and eventual leaking [Holloway, 1997]. In addition to 

local methods of carbon leakage monitoring, such as flux towers [Lewicki et al., 2010] and monitoring of 

local vegetation health [Male et al., 2010], remote methods could be a significant asset to leak detection 

at sequestration sites. Orbital instruments in particular would be capable of instantaneous sampling of 

large areas with high time frequency, enabling regular monitoring of a sequestration region without the 

need for multiple, individual ground sites. After the initial launch investment, data collection and 

analysis would be inexpensive.

Our project tests the potential applicability of two orbital instruments to methods of detection 

of regional increases in atmospheric CO2 concentration: The SCanning Imaging Absoprtion spectroMeter 

for Atmospheric CHartographY (SCIAMACHY) and the Greenhouse gases Observing SATellite (GOSAT). 

GOSAT was launched by the Japan Aerospace Exploration Agency (JAXA) on January 23, 2009 on a five 

year mission, and is designed to measure atmospheric column densities of CO2 and methane (CH4) via a 

Fourier Transform Spectrometer (FTS) [Hamazaki, 2005; Butz et al., 2011]. SCIAMACHY is a spectrometer 

aboard the European Space Agency’s ENVISAT satellite, launched in March 2002, and measures total 

column densities for CO2 using the WFM-DOAS retrieval algorithm, which has been improved several 

times over the course of its mission [Bovensmann et al., 2010a]. This project used data from the v2.0 

algorithm.

Monitoring carbon dioxide (CO2) leaks from sequestration sites globally is critical to the viability 

of carbon sequestration as a method of reducing atmospheric CO2. Subsurface carbon sequestration 

within a geologic medium is considered an important tool in offsetting rising levels of atmospheric CO2

[Reiche et. al., 1999; Figuerora et al., 2008]. Remote sensing of emissions and associated atmospheric 

plumes can be challenging due to the high variability of natural CO2 in the atmosphere [Olsen and 

Randerson, 2004]. This study considered instrument response and sensitivity, potential geospatial 

methods for point source and plume detection, geostatistical and data aggregation methods, and large-

scale natural concentrations of CO2 in the atmosphere associated with topography. The viability of 

potential methods of detection and monitoring hinges on the sensitivity of the observing instruments.

We tested these methods using CO2 column readings near geographically isolated, high-volume 

anthropogenic point sources. Geospatial and geostatistical methods include time series analysis, 

comparative measurement across distance from the source, anomaly and plume mapping, and analysis 

and data aggregation by wind directionality relative to the source. Large-scale, seasonal patterns of CO2
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distribution as measured by SCIAMACHY were found using Kriging interpolation of data collected over 

the continental US. The estimated theoretical sensitivity of GOSAT, SCIAMACHY, and the future OCO-2 

instruments to CO2 point sources were calculated using the absolute CO2 sensitivity and measurement 

footprint size of each instrument.

Background

The cumulative effect of industrialization has increased the global atmospheric CO2 

concentration from 280 ppm in 1750 to 392 ppm in 2011, with a global average temperature increase of 

∼ 1°C since 1850 [IPCC, 2007; NCDC, 2011]. The IPCC forecasted a continuation of the global warming 

trend through the 21st century, with a predicted total increase in global average surface temperature 

between 1.5° and 6.1° C, depending on the quantity of future carbon emission. This sharp change in 

atmospheric temperature is likely to have serious ramifications on human welfare and the natural 

environment through sea level rise and shifts in weather patterns. Some regions may become more 

susceptible to drought or flooding, and heavily populated, low-laying coastal regions will become 

especially vulnerable to surge flooding. Emission mitigation efforts, if widely applied, will reduce the 

amount and impact of future warming [IPCC, 2007]. Carbon capture and storage is capable of reducing 

the CO2 output of electric and industrial plants, which are responsible for about a third of the total US 

emission, by 80-90%.

Geologic carbon sequestration is the process of injecting supercritical liquid carbon dioxide, 

filtered and isolated from the emissions of industrial and electric plants, into a geologic medium capable 

of retaining the carbon. Typical locations for storage are coal seams and gas and oil wells, in which the 

carbon chemically and structurally affixes to the surrounding rock, and saline aquifers, in which carbon 

would dissolve. Sequestration in partially depleted oil and gas wells is particularly economical, as the 

displacing action of carbon injection aids the extraction of oil and gas. Similarly, injection into coal seams 

displaces the methane gas commonly contained in these formations. Both of these methods, properly 

applied, may provide a low net cost method of emission reduction in the power-generation sector [IPCC, 

2005; Plasynski, 2011]. In the US, oil, gas, and coal reservoirs have an estimated storage capacity of 316 

gigatonnes (Gt, 1012 kg), which at current estimated US point source emission rates would provide 83 

years of complete CO2 storage. Storage in saline formations, though without an intrinsic economic gain 

from carbon injection, would provide storage capacity for 867-3320 additional years at the current rate 

of emission [Plasynski, 2011].



Page | 5

Monitoring of CO2 behavior in sequestration sites after injection is a crucial part of the overall 

process. In addition to reducing the efficacy of the carbon storage method, leakage could have 

detrimental effects on vegetation and water resources. This possible effect on water quality brings 

sequestration methods under the purview of the Underground Injection Control (UIC) Program of the 

United States Safe Drinking Water Act, which further solidifies the demand for a wide variety of 

monitoring methods [Plasynski, 2011; Little, 2010]. Potential methods for monitoring include well 

analysis via boreholes and seismic sensors, soil sampling, local atmospheric sampling via eddy 

covariance towers, and aircraft-borne LIDAR measurements [Bateson et al., 2008]. DOE field studies in 

North Dakota and Kentucky have demonstrated that vertical seismic profiling and microseismic surface 

measurement will be capable of monitoring the plume behavior of the well as a whole, for oil/gas/coal 

wells as well as saline formations .Though this is a crucial level of well monitoring, it would not directly 

sense surface leakage [Plasynski, 2011]. Eddy covariance towers have been shown to provide this with 

some limitations [Miles, 2005]. Depending on atmospheric conditions, leak detection may be delayed or 

misidentified, and its effect is strictly local. This general result was duplicated at a controlled release test 

site in Montana [Spengler et al., 2009]. The Montana tests show encouraging results for laser-based 

instruments as well, although these and eddy flux instruments are similarly limited to strictly local 

measurement, making them best suited for detection of leakage at the injection point itself. Across 

larger regions of sequestration, a wider method of aerial CO2 detection is needed. We tested the ability 

of orbital remote sensors (SCIAMACHY, GOSAT, and, theoretically, OCO-2) to fill this need.

ENVISAT’s SCIAMACHY instrument is capable of quantifying the spectral absorptions and column 

densities of O3, NO2, OClO, H2O, SO2, BrO, and CO, and can also measure cloud cover and cloud optical 

thickness. It uses the unique Full Spectral Initiation Weighting Function Modified Differential Optical 

Absorption Spectroscopy (FSI WFM-DOAS) algorithm applied to its NIR Nadir sensor to estimate CO2

column ratios in ∼30×60 km ground swath footprints. ENVISAT’s orbital pattern is repeated every 35 

days, though taking full swath width into account the globe is covered over 2-3 days. Cloud cover and 

aerosol measurements are used to flag the quality of each reading, where data flagged as “bad” are 

discarded. Practically, the highest concentration of “good” SCIAMACHY CO2 measurements on the 

ground occurs between 15° and 30° latitude (Figure 1). The SCIAMACHY data used in this project was 

calculated using the WFM-DOAS v2.0 algorithm. This version of the data was tested against 

CarbonTracker data in 2010 by the University of Bremen [Schneising et al., 2010]. CarbonTracker is a 

global predictive model of CO2 based on a wide array of NOAA CO2 ground measurements. The increase
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in annual mean carbon ratio over this time span was measured as 1.8±0.13 ppm for SCIAMACHY and 

1.8±0.09 ppm for CarbonTracker. The amplitude of global seasonal CO2 change for SCIAMACHY and 

CarbonTracker was 2.8±0.2 ppm and 1.7±0.1 ppm, respectively. This discrepancy in seasonal amplitude 

measurement was attributed to a noted underestimation of net ecosystem exchange in the 

CarbonTracker model. WFM-DOAS v2.0 data has also been tested against local, ground-based FTS and 

Total Carbon Column Observing Network (TCCON) sensors [Reuter et al., 2011]. SCIAMACHY was shown 

to have a standard error of 0.2-0.8 ppm, with a single measurement precision of 2.5 ppm. The 

FTS/TCCON and SCIAMACHY data was also compared against CarbonTracker. The site in Darwin Australia 

showed CarbonTracker having lower winter estimates than both methods, suggesting that the 

discrepancy in seasonal amplification between SCIAMACHY and CT observed in the ealier study was 

largely due to CT’s underestimation.

GOSAT, launched in January 2009, is a joint venture of the National Institute for Environmental 

Studies (NIES), the Japanese Space Agency (JAXA) and the Ministry of the Environment (MOE), carrying 

the Thermal And Near-infrared Sensor for carbon Observation Fourier Transform Spectrometer (TANSO -

FTS) [Hamazaki, 2005]. Concurrent measurements are taken by a second, NIR-Thermal sensor, designed 

to detect cloud and aerosol cover at the location of the FTS CO2/ CH4 measurements, and through this 

the quality of the column measurements are classified. CO2 column measurements have a nadir 

footprint of 10.5 km, with an orbital repeat cycle of three days. It uses a wide, flexible, sweeping scan 

pattern capable of sequentially testing regions within ±35° (∼750km) of the nadir track [Boesch et al., 

2011]. Tested against 6 TCCON sites, GOSAT measurements had a root mean standard deviation of 2.8 

ppm [Butz, A., et al., 2011].

OCO-2, due for an early 2013 launch, is being developed by JPL for the specific purpose of 

regional CO2 source/sink analysis. OCO-2 is a refinement of the OCO satellite, which failed during launch 

in 2009. OCO was designed for high spatial precision CO2 detection, and was considered potentially 

capable of detecting surface carbon fluxes, such as emission from landfills [Vigil and Crisp, 2010]. OCO-

2’s goals are 1-2 ppm XCO2 sensitivity with nadir-mode measurements taken over a 3 km2 footprint, with 

10km swath width. This relatively small footprint size will have the effects of increased data density 

(fewer regions will be invalidated by partial cloud cover) and increased sensitivity to point source carbon 

(sources will have a greater impact on the carbon ratio of thinner columns). It uses a unique algorithm, 

the OCO Full Physics Retrieval Algorithm, originally designed for the OCO satellite [Boesch et al, 2011].

Before the launch of the OCO satellite, this algorithm was tested using the SCIAMACHY sensor against
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ground FTS readings in Wisconsin, showing the SCIAMACHY data with a positive bias of ∼3.5% versus 

the FTS. This was seen as a successful proof of concept for the algorithm, given that it’s designed for 

much greater spatial resolution than SCIAMACHY can provide [Bösch, H., et al., 2006]

The University of Bremen is now developing a satellite designed with CO2 and CH4 point source 

detection specifically in mind: The Carbon Monitoring Satellite, or CarbonSat. This satellite is one of two 

candidates for the European Space Agency’s Earth Explorer 8 launch in 2018 [Bovensmann, H., et al, 

2010b]. CarbonSat would have a 4 km2 footprint with a 500km swath width, with a <1ppm precision in 

carbon ratio. This is projected to produce an average of 6,440,000 cloud free measurements daily (in 

comparison to 453600, 3500, and 1300 for OCO, SCIAMACHY, and GOSAT respectively). The resulting 

high data density should increase the viability of CO2 plume mapping techniques for emission detection 

[Bovensmann, H. et al, 2010c; Burrows, J.P. et al., 2010].

Methods

Leaks from carbon sequestration facilities will manifest as a point source increase in 

atmospheric CO2, which through a combination of atmospheric diffusion and wind velocity, will extend 

the zone of this CO2 in an outwardly expanding plume. Four-dimensional variations in plume geometry 

will occur as a result of wind variability with time and atmospheric elevation. The overall plume 

geometry is expected to result in an xCO2 signal that both decreases and widens with distance from 

source. The detection of a point-source emission or the resulting plume is dependent on (1) instrument 

sensitivity; (2) atmospheric affects; (3) topographic influence; (4) spatial and temporal resolution; and 

(5) data density. Beyond elevation effects related to density of the atmospheric column, topographic 

influence is poorly understood with respect to constraining atmospheric CO2 [Pillai, D., et. al., 2010].

Natural variability of the system and poor spatial and temporal coverage constrain the development of 

geospatial approaches to detect point-source emission on the Earth’s surface similar to a sequestration 

leak. We evaluated current feasibility of using data from existing space-borne assets, GOSAT and 

SCIAMACHY, and considered the potential application to data from the yet to be launched OCO-2 to 

detecting CO2 point source emissions on the Earth’s surface.

As proxy for a point-source sequestration leak, we targeted coal-fired electrical generation

plants, isolated from major urban areas. These were chosen to ensure a large CO2 signal and to limit the
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input of other anthropogenic sources. Targeting was also influenced by the temporal and spatial 

availability of data from GOSAT and SCIAMACHY orbital platforms. The Jim Bridger Power Plant in 

Wyoming meets these targeting criteria and was chosen for study. The objective was to evaluate the 

potential for leak detection, as well as to develop geospatial methods that could identify and locate 

point source emissions of CO2.

We considered a number of geospatial methods to identify and monitor leaks using space-borne 

assets. We used existing SCIAMACHY data from 2005 and earlier in testing geospatial approaches to 

detecting point-source emissions. These include:

1. Time series anomaly detection of target and immediately adjacent areas

2. Anomaly mapping

3. Plume detection using transects orthogonal to local wind directions 

Time Series Anomaly Detection

To test geospatial approaches capable of ongoing monitoring of potential point-source 

emissions we chose the Jim Bridger plant in southwestern Wyoming for its high emission (15.8 Mt of CO2

in 2006 [EIP, 2007]), isolated and undeveloped location, semi-arid environment, and availability of local 

SCIAMACHY data points over the summer 2005 (Figure 2). The high-emission CO2 point source of Jim 

Bridger and the relative lack of additional anthropogenic sources in the surrounding region provide a 

clear demonstration of how a local CO2 point source of this magnitude would register in a SCIAMACHY 

dataset. The core logic behind our geospatial methods for testing SCIAMACHY’s sensitivity to CO2 point 

sources (in this case, Jim Bridger) was comparison between measurements taken near the source and 

those located farther from its influence. These could be compared in time series or evaluated 

independently. Our methods were designed to be used with general coverage data from a space-borne 

instrument with sufficient sensitivity to detect local CO2 anomalies related to point source emissions and 

resultant plumes.

In analyzing the Jim Bridger region, our basic objective was to detect and qualify the carbon 

signal from the emission source, as it appears in SCIAMACHY data, of the surrounding area. Our first test 

of Jim Bridger’s local impact was a comparison of the CO2 readings of two sub-regions: the area within a 

20 mile radius of the plant, and a control region of the same size roughly 80 miles to the east (Figure 3). 

From these two zones we selected data for which a corresponding measurement had been taken on the
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other zone on the same date. In this way we plotted and compared concurrent readings near and away 

from the Jim Bridger plant over the season (Figure 4). We would expect a detected CO2 signal from Jim 

Bridger to appear as more-or-less consistently higher CO2 readings above the plant relative to the 

control zone.

To account for the possible influence of directionality and wind, we used the same method of 

gathering and comparing readings within circular zones of 20 -mile radius over time, using 5 circles: One 

centered on the plant, and four located adjacently in the cardinal directions. We plotted these readings 

(Figure 5) alongside the daily average wind direction over the summer, taken from the weather station 

at Point of Rocks, roughly five miles south of Jim Bridger. Where more than one reading from a given 

day was located within a circle, we plotted the higher reading looking for a signature of the source and 

associated plume.

Localized emissions and associated plumes of CO2 should be seen as anomalies compared to 

adjacent areas over time. Time series mapping of anomalies given low data density and temporal 

coverage may not be sufficient to recognize a point-source emission and/or resulting CO2 plume. The 

xCO2 measurements in the vicinity of the Jim Bridger power plant during the summer of 2005 indicate 

high intra-seasonal variability (see Figure 5).

Spatial Anomaly Detection

Low data density for any specific set of continuo usly obtained xCO2 measurements make direct 

anomaly mapping problematic. We have considered several methods to increase data density through 

geostatistical and data aggregation methods.

Geostatistical methods include analysis of interpolated data and grid-cell averaging, while data 

aggregation includes time-concurrent or parameter-selective multi-orbital combinations of observed 

xCO2. Given the high temporal variability of the xCO2, unrestricted multi-orbital aggregation seems 

problematic in application. We tested selective filters including time dependent (aggregating data 

within a two-week period) and wind dependent (aggregating data based on wind direction during 

observation) against the data as a prerequisite to aggregation.

One method considered “binned” data over summer 2005 depending on local wind patterns. In 

this method data over the season is aggregated into bins depending on wind direction. For example, a
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measurement located SE of the plant when the wind was blowing SE would be in the same bin as a 

measurement located NE of the plant when the wind was blowing NE. The initial analysis was done with 

5° bins for prevailing winds. A general comparison of data selection over the three month period based 

on wind directions can be seen in Figure 6 below. Wind bins of ever increasing angular windows were 

evaluated to consider trade-offs between increased data density, xCO2 resolution, and temporal 

variability.

Plume Detection

Temporal variability of xCO2 data is not a factor in using transects of data crossing the direction 

of prevailing winds if we only use data from a single scan. The objective of this method is to cross the 

plume generated from a point source and carried downwind. Presumably, higher levels of CO2 will be 

detected across the axis of a plume and a number of parallel transects could be used to characterize the 

orientation of the plume and its source. A number of transects, showing xCO2 concentrations against 

distance to the center point of the sampling region, were constructed roughly orthogonal to the 

prevailing winds. Examples of transects in the Jim Bridger area are shown in Figure 7. Ideally, data 

density would be high enough to use a number of parallel transects to map the plume from the point 

source outward in the direction of prevailing wind. This method uses only data collected from a single 

orbital pass and therefore eliminates potential temporal variability, but it may still be subject to larger-

scale natural variability in the atmospheric system.

To consider the larger-scale context and framework for our localized study around the Jim 

Bridger Power Plant, we examined patterns of SCIAMACHY data on the continental scale. We 

interpolated the 26,600 data points collected within the contiguous US over June-August 2005, using the 

Kriging method of spatial interpolation packaged in ArcMap’s Spatial Analyst extension (Figure 8). 

Kriging is a linear least squares reduction method that was designed for mapping trends in randomly 

sampled data through use of semivariogram modeling [Johnston, et. al., 2001]. As applied to our data, 

Kriging provides a clear look at some of the dominant spatial patterns of SCIAMACHY’s CO2 readings. The 

data was interpolated using Ordinary Kriging and a spherical Semivariogram, producing a raster with a 

0.1 degree cell size. Each cell value is based on the 32 nearest data points. The data interpolation 

allowed for a context to consider potential natural long-term spatial variability of expected values that 

may affect the application of localized methods to study point source emissions.



Page | 11

Calculation of theoretical CO2 sensitivity of GOSAT, SCIAMACHY and OCO-2

The methods proposed in this study are limited by the sensitivity of the instruments to observe 

CO2 sources and resultant plumes. To obtain a first-order estimate of how large a CO2 source must be 

to be detectable by GOSAT, SCIAMACHY, or OCO-2, we began by calculating the amount of excess CO2

mass that must be in the atmospheric footprint of each satellite to increase the CO2 concentration 

within that footprint by 1 ppm. Here, the atmospheric footprint refers to the entire volume of 

atmosphere within each instrument’s field of view, neglecting any motion of the atmosphere that occurs 

during the sub-second exposure times typically used during observations.

Because the overall density of the atmosphere decreases as elevation increases, less additional 

CO2 mass will be needed to raise the concentration of CO2 by 1 ppm at higher elevations. For heights up 

to 80 km, atmospheric density can be approximated as an exponential decay:

ρair = ρ0 × 10-τ×z. (1)

Here, ρair is the density of the atmosphere as a function of elevation, z, in m, atmospheric density at sea 

level, ρ0, in kg m-3, and a decay constant, τ, in m-1. Beyond 80 km elevation, atmospheric density is 

negligible, and we ignored it in our calculation.

We numerically integrated the volume of each instrument footprint as a series of thin cylinders 

(GOSAT) or rectangular prisms (SCIAMACHY, OCO-2). That is, volume of a given slice, Vz, is given by:

Vz = (1/2 × FOV × (Asat – z))2 × π × Δz, (2)

for GOSAT, and:

Vz = (FOV × (Asat – z))2 × Δz, (3)

for SCIAMACHY and OCO-2. In these equations, FOV is the angular field of view of the instrument, in 

radians. Note that Equation 3 assumes that the across-track and along-track fields of view are the same 

for SCIAMACHY and OCO-2. This assumption is wrong, but the difference should be negligible for our 

purposes. Additionally, Asat is the average orbital altitude of the satellite, in m, and Δz is the elevation 

increment used for numerical integration, in m. Each volume increment was then multiplied by the 
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density of the atmosphere at that elevation to obtain a mass increment, Mz, and the mass increments 

were added together for the atmosphere in between the satellite and the surface of the Earth f or some 

surface elevation, H, to get the total atmospheric mass within the instrument footprint, Mtotal. That is,

Mz = ρair× Vz, (4)

and,
Mtotal(H) = ∑z=H Mz. (5)

Here, the summation occurs over elevations ranging from the surface elevation to 80 km. Repeating this 

calculation for a range of surface elevations provided Mtotal as a function of surface elevation. We then 

divided this total mass by 106 and multiplied by the ratio of CO2 molar weight to dry air molar weight, μ, 

to obtain the excess mass of CO2 needed to raise the concentration of CO2 in the atmospheric footprint 

of the instrument by 1 ppm. That is, the mass of CO2, in kg, needed to increase the concentration within 

the atmosphere contained by the footprint of the instrument by 1 ppm, C, as a function of surface 

elevation, H, is given by

C(H) = μ × 10-6 × Mtotal(H). (6)

For all calculations we used

ρ0 = 1.2 kg m-3,

μ = 1.5,

τ = 5.81 × 10-5 m-1,

Δz = 100 m.

The results of this calculation for GOSAT, SCIAMACHY and OCO-2 are shown in Figure 9. For 

GOSAT, we used FOV = 0.0158 radians, and Asat = 667,000 m. Similarly, for SCIAMACHY we used FOV = 

0.0314 radians, and Asat = 800,000 m. For OCO-2, we used FOV = 0.0016 radians, and Asat = 705,000 m. 

Knowing the amount of CO2 needed to increase the atmospheric footprint by 1 ppm, we can 

compare this number to the amount of CO 2 we expect to be found within the same footp rint due to 

sources of various size. For example, Jim Bridger Power Station produces ∼43 kt CO2 per day during 

normal operation. This is equivalent to ∼500 kg s-1. Jim Bridger Power Station is located in Wyoming, 

which is a windy place. For this calculation, we assume average wind speed is 5 m s-1 (about 10 mph). 

Thus, over 1 s, 500 kg CO2 will be spread over 5 m in the direction of the wind, creating a plume with CO2
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linear mass density of 100 kg m-1.

The nominal footprint size on the Earth’s surface is 10 km for GOSAT, 30 km for SCIAMACHY, 

and 1.6 km for OCO-2. If the plant is located in the center of an instrument footprint, then we can 

expect 5 × 105 kg excess CO2 in a GOSAT footprint due to the power plant, 1.5 × 106 kg in a SCIAMACHY 

footprint, and 8 × 104 kg in an OCO-2 footprint.

The surface elevation at Jim Bridger Power Station is about 2 km. Examining Figure 9, we find 

that 9 × 105 kg CO2 are needed to raise the concentration in a GOSAT footprint by 1 ppm. Thus, we can 

expect Jim Bridger Power Station to result in a 0.56 ppm “signal” for GOSAT, ignoring instrument 

precision. Similarly, SCIAMACHY needs 6.5 × 106 kg and OCO-2 needs 1.3 × 104 kg for a 1 ppm increase. 

Thus, we expect the plant to produce a 0.23 ppm “signal” for SCIAMACHY and a 6.2 ppm “signal” for 

OCO-2. The precision of SCIAMACHY measurements, however, is ∼2.5 ppm [Reuter et al., 2011], or 10 

times greater than the expected signal from Jim Bridger Power Station.

In general, for a given source flux, F, in kg s-1, a wind speed, W, in m s-1, a linear pixel size, Δs, in 

m, and C(H), given by Equation 6, we can calculate a detection ratio, D, at a given surface elevation, H, 

given by

D = (F × Δs ) ÷ (W × C(H)), (7)

where

Δs = FOV × (Asat – H), (8)

and D = 1 corresponds to a 1 ppm increase. Here we assume that the source is located at the edge of a 

pixel, with the plume passing through the entire footprint. Rearranging Equation 7, we can assign a 

detection threshold, e.g. D = 3 ppm, in order to estimate the minimum flux detectable by an instrument 

as a function of wind speed and surface elevation:

F = (D × C(H) × W) ÷ Δs. (9)

Note that C ∼ (Δs)2, thus F ∼ Δs. The results of Equation 9 for OCO-2 are shown in Figure 10. We 

neglected atmospheric diffusion processes, but for this reason we did not calculate F for wind speeds 

below 1 m s-1.
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Analysis

Our study of the coal-fired Jim Bridger Power Station in Wyoming illustrates the challenges of 

detecting CO2 point-source emissions from orbital platforms. Existing assets considered in this study 

(GOSAT and SCIAMACHY) apparently lack the sensitivity to pick up even the relatively large point-source 

emissions generated at this facility (∼43 kt CO2 per day [EIA, 2005]). Additionally, GOSAT spatial 

coverage does not allow for the data density required to practically apply the detection methods tested 

in this project. SCIAMACHY data allows for application of various geospatial and aggregation methods to 

look for point-source emissions of CO2 and their resultant plumes, but lacks the sensitivity and

resolution to detect the signal of even a large coal-fired power plant. The inability to consistently see 

higher xCO2 concentrations in and around the Jim Bridger Power Plant (Figures 4 and 5) is apparently 

related to the low signal response.

Figure 4 compares the xCO2 of the two sub regions over time, between 6/19/2005 and 

8/28/2005. During that time period there are four dates (6/22, 7/23, 7/30, and 8/27) with significantly 

higher on-plant XCO2 readings versus those to the east. However, there is not a consistent pattern of 

higher values occurring on the plant, and there are dates when the control zone registers as higher, 

albeit not to the same degree of the four spikes observed in the region on the plant on other days. We 

would expect a CO2 signal from Jim Bridger to appear as higher CO2 readings above the plant relative to 

the control zone.

To account for interference from atmospheric flow in the near surface, we compared five 

subareas, each with a 20-mile radius, with one centered on the plant and the other four in cardinal 

directions. A plot of the xCO2 values over time and a plot of average wind direction over the same time 

period show no consistent signal over the plant (Figure 5). Southwesterly winds are dominant for a 

large majority of the season. However, no directional zone is consistently higher than the others. The 

spikes in on-plant CO2 versus those to the east are still evident, but the noisiness of this greater dataset

suggests against a consistent signal from the plant source. It may be worth noting that the western zone 

(which should theoretically have less CO2 input from the plant, relative to other zones) contains the 

lowest reading for all but two dates. However, 7/30 contains a spike in the western zone far exceeding 

the day’s values for the plant zone and the eastern zone, despite a consistently westerly wind for the 

local time frame. The variability of these results suggests factors beyond pure wind effect, possibly 

topographic variances within each circular zone.
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We also plotted each xCO2 value centered within 100 miles of the Jim Bridger plant (Figure 2) as 

xCO2 by distance over time (Figure 11). This plot shows no correlation between proximity to the plant 

and CO2 level, and shows that CO2 values are more correlated with time than they are with location 

relative to Jim Bridger. To check for wind bias, we also plotted this data as distance vs. azimuth from the 

plant (Figure 12), which shows no correlation. This lack of correlation between CO2 and distance or 

direction suggests that the point source, Jim Bridger, does not have a significant impact on xCO2

observable with SCIAMACHY relative to daily weather conditions. Though some differences seem to 

persist, for a point source with an expanding plume in a steady-state high xCO2 concentrations should be 

discernible in a direction downwind. Detection of a plume related to a point source is more likely with 

tightly constrained binning of data with respect to wind directions.

A general comparison of data selection based on wind directions can be seen in Figure 6. 

Aggregating data over the season for prevailing wind, by combining observations from days in which 

wind directions were similar, allowed for an increase in the density of the data relative to the source. If 

winds have significant impact on plume location and geometry, then aggregating data by this method 

may help determine the location of an original point source. This wind binning method was tested with 

varying results depending on initial data density. Bin sizes vary from 5° to 50° and temporal aggregation 

of one to three months were tested. Figure 13 shows an example of a map generated through wind 

binning, aggregating xCO2 data sampled for winds varying from 260° to 265° during the summer of 2005. 

This map generally shows higher xCO2 values in the vicinity of Jim Bridger and dropping slightly to the 

east away from the prevailing winds. Values west of Jim Bridger on the Westside of the ridgeline in the 

area of North Rock Springs are significantly lower. Given the low data density it is not clear whether 

this represents a signal from the Jim Bridger Power Plant. Lowering the bin sizes significantly reduces 

the enhancement of data density, while increasing the number of distinct time periods over which data 

was collected. Aggregation still seems to be problematic given the high temporal variability in collected 

data. Wind binning as a method for aggregating data seems a viable approach given sufficient 

instrument sensitivity. This method also aggregates the signals from associated plumes, widening their 

footprint with increasing bin size.

To detect plumes directly from data a series of parallel transects were constructed from xCO2

data roughly perpendicular to the average wind direction (Figure 7).The two parallel transects intersect 

a localized xCO2 high that is sub parallel to the direction of the prevailing wind. The source of the high is
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most likely independent of the Bridger plant, but it demonstrates the strength of the approach. A series 

of roughly parallel transects,, given initial data density, could be used to roughly define the geometry 

and limits of a CO2 plume. This method, like the others discussed above, could be used with data 

density similar to the current SCIAMACHY data set but would require greater sensitivities to look at the 

CO2 anomalies potentially encountered by a sequestration leak.

In the analysis of localized data sets around the Jim Bridger Power Plant, the absence of a strong 

anthropogenic signal has brought into focus the high natural variability of CO2 regionally. We examined 

spatial variability of xCO2 from SCIAMACHY data available for the continental United States. Using a 

standard Kriging method to interpolate the data we examined spatial variability of CO2 for the same 

summer months of 2005 (Figure 8). The interpolated map does not show influence from coal plants or 

any other anthropogenic source. However, it does show some strong relationships between CO2 and 

topography, of which we have not found a clear cause. Most prominent is the tendency for fields of 

high CO2 to be found on the east flanks of mountain ranges, especially in the western mountainous 

regions. This effect can be observed throughout the western U.S. Some notable examples have been 

circled in Figure 14, including the Klamath and Sierra Nevada ranges, the Sierra Madre, and several 

fronts of the Rocky Mountains. Figure 15 also shows examples of the tendency for basins to maintain 

low CO2 readings. This tendency is especially noteworthy in the case of California’s Central Valley, which 

has consistently very low values despite its high population and transportation sector. The strong 

contrast seen on both flanks of the Sierra Nevada seems to suggest a relationship between these two 

trends, though the Snake River and Columbia basins also show the low pattern without a clear 

association with a mountain range high.

Transects along mountain ranges in the western U.S. show the same correlations across the 

crest of the Sierra Nevada (Figures 16 and 17). Comparison  of the data along the transect shows that 

xCO2 highs exist just east of the crest of the Sierras along the leeward slopes and corresponding lows 

are offset from the basin axis of the Central Valley along the western windward slopes. A similar 

phenomena was measured by the NASA Ames Research Center Alpha Jet while flying a transect 

from Moffett Field, California to Railroad Valley, Nevada on June 26, 2011. CO2 , CH4 and H20 were 

measured with a cavity ring-down spectrometer [Olson, et. al., 2011]. The measurements showed a 

peak in CO2 concentrations along the eastern slope of the Sierras at longitude 118 degrees west. 
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This pattern is repeated across the Klamaths, Cascades, and parts of the Coast Ranges. The analysis of 

this data suggest atmospheric topographic interactions that are poorly understood and may impact 

future, more localized or regional investigations of anthropogenic point-source emissions of CO2.

Discussion and Conclusions

We have developed a method to determine the limits of sensor resolution. Using this method, 

we estimated that the minimum observable point source for OCO-2 under reasonable wind conditions 

(2.5 m s-1) will be ∼8 kt/day. Thus, OCO-2 may be able to detect point source leaks from sequestration 

sites, provided the leak rates are large, similar in output to a small coal-fired power plant. Using the 

sensor in targeted mode, which should provide greater sensitivity (precision), will allow it to detect 

smaller leaks than this. The above calculation, for instance, assumes sensor precision of 3 ppm. Since 

our estimate considers sensor precision as a linear factor, improving precision to 1 ppm implies OCO-2 

may be able to detect a point source ∼2.3 kt/day. In order to detect a leak on the order of 1 kt/day, a 

sensor with 1 ppm resolution would need ∼800 m resolution.

From a monitoring perspective, leaks from sequestration sites will likely be easier to detect 

when the sites are located between 15° and 30° latitude (Figure 1) at high elevation and with low 

average wind speeds, although wind speed is a much more important factor. Additionally, xCO2 values 

appear to be lower, on average, in basins such as California’s Central Valley (Figure 15), which would 

suggest these locations will have lower background noise levels.

The point-source and resulting plume may be detected and monitored over time using various 

geospatial approaches. Data from GOSAT and SCIAMACHY instruments were evaluated relative to these 

approaches and found to have serious limitations in practice due to low sensitivity and temporal and 

geospatial data density. Instrument sensitivity with respect to atmospheric column measurements of 

xCO2 is the more problematic consideration and could not be overcome by geostatistical methods. 

Instrument specifications for the future orbital sensors OCO -2 and CarbonSat, however, indicate that 

atmospheric column data of xCO2 may allow for the application of these methods and approaches.

The simplest approach to detection of a point-source emission anomaly is comparison of data 

gathered in and around a target site in time series. Currently available data from GOSAT and 
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SCIAMACHY does not have the coverage to allow for this direct approach. Targeting operations of a 

satellite instrument, with sufficient sensitivity, over a site on repeated days could detect the presence of 

an emission. This would require deliberate targeting of a suspected site, but is inefficient for the 

ongoing monitoring of multiple sites across large regions.
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Figure 1: Number of SCIAMACHY CO2 measurements flagged as “good” for 2003-2005 as a function of 
latitude.

Figure 2: SCIAMACHY data within a 100-mile radius of Jim Bridger power plant from the summer of 
2005. Red data points represent high xCO2 values, green points represent low xCO2 values.
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Figure 3: SCIAMACHY data within 20 miles of Jim Bridger and control region 80 miles east. Red data 
points represent high xCO2 values, green points represent low xCO2 values.

Figure 4: Time-series for Jim Bridger and control region 80 miles east. Lines between points are not 
interpolations.
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Figure 5: Time-series of xCO2 near Jim Bridger and 4 adjacent regions, with daily average wind direction.
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Figure 6: Maps of total xCO2 readings near Jim Bridger over summer 2005, by general wind orientation. 
(a) shows points collected on days with average wind directions of 200° to 320° (westerly winds), (b) 
shows points collected on days with average wind directions of 10° - 170° (easterly winds).
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Figure 7: Map of xCO2 readings near Jim 
Bridger for days in Summer 2005 in which 
prevailing wind direction was 241°, with plots 
along transect A-A’ (upper) and transect B-B’ 
(lower). Both are nearly orthogonal to wind 
direction, 241°. B-B is approximately 40 km 
NW of A-A’.
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Figure 8: Kriged xCO2 map of the contiguous US in summer 2005, with high-CO2-emission electric plants 
marked.
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Figure 9: Excess mass needed to raise xCO2 in the atmosphere of a footprint of GOSAT, SCIAMACHY, 
and OCO-2 by 1 ppm, as a function of elevation.
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Figure 10: Estimated minimum detectable source flux for OCO-2 as function of elevation for OCO-2, 
GOSAT, and SCIAMACHY. These values will increase linearly with wind speed. 
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Figure 11: Time series of xCO2 v. distance from Jim Bridger. xCO2 is expressed as a color ramp from 
green (low) to high (red).
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Figure 12: Time series of xCO2 v. distance and azimuth from Jim Bridger. xCO2 is expressed as a color 
ramp from blue (low) to high (red)
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Figure 13: Map of xCO2 readings binned by wind direction (260°-265°) over summer 2005.



Page | 32

Figure 14: Kriged map of the western US, with some examples of the range-side high pattern circled.
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Figure 15: Kriged map of the western US, with some examples of the basin low pattern circled.
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Figure 16: Correlation of topography (upper grey-scale image) with CO2 concentration from Kriged 
SCIAMACHY data over the US. The SW-NE line shows the transect used to compare topography and CO2 

(see Figure 17).
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Figure 17: Comparison of CO2 concentrations and topography along a SW-NE transect across California’s 
Central Valley and Sierra Nevada.


