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1 Introduction

Numerical simulation of multiphase flow in large-scale heterogeneous reser
voirs is computationally demanding. To reduce the computational complex
ity of obtaining high-resolution solutions, several MultiScale (MS) methods 
have been developed [1, 2, 3, 4, 5, 6, 7, 8, 9]. In MS methods, the global 
discrete hne-scale problem is decomposed into local problems using a super
imposed coarse grid. Basis functions, which are numerical solutions of local 
problems, are used to construct accurate coarse-scale quantities. Once the 
coarse-scale system is solved, the solution is mapped onto the hue scale using 
the basis functions. Among the existing multiscale methods, the MultiScale 
Finite Volume (MSFV) [6] formulation provides locally mass-conservative 
solutions, which is a crucial property for solving coupled flow and transport 
problems, at a relatively small cost.

The MSFV m ethod employs locally computed basis functions to con
struct the coarse-scale system in a hnite-volume framework. To obtain a 
locally conservative velocity held at the hue scale, additional local Neumann 
problems are defined and solved for the primal-coarse control volumes. Re
cent MSFV developments include incorporating the effects of compressibility 
[10, 11], gravity and capillary [12], complex wells [13, 14], faults [15], fractures
[16], three-phase [17] and compositional displacements [18]. Furthermore, 
the efficiency of the m ethod has been enhanced by adaptive computation of 
the basis functions for time-dependent, multiphase displacement problems 
[19, 20, 21, 22],

For a wide range of heterogeneous problems, the MSFV results have been 
shown to be in good agreement with reference hne-scale solutions. However, 
the accuracy of MSFV m ethod suffers from the presence of extreme perme
ability contrasts (e.g., SPE 10 bottom  section [23]), or highly anisotropic 
problems (e.g., large grid aspect ratios) [24], To overcome these difficulties, 
the iterative MSFV (i-MSFV) m ethod was introduced [25], where the MSFV 
errors are reduced with the help of locally computed Correction Functions 
(CF). The convergence rate was improved signihcantly by using the MSFE 
operator (i-MSFE) [26]. The beneht of the MSFV operator is th a t a mass- 
conservative solution is obtained. Thus, the MSFV reconstruction step can 
be employed at the end of the iterative process to ensure th a t the approxi
m ate numerical solution is mass conservative.

Both the original (single-pass) and iterative multiscale methods can be 
formulated in an algebraic manner [11, 26]. The algebraic formulation re
duces the implementation complexity, especially for problems defined on 
unstructured grids, and it allows for easy integration of the m ethod into 
existing reservoir simulators. The Two-Stage Algebraic Multiscale Solver
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(TAMS) [26] consists of local and global stages. In the global stage, low 
frequency errors are resolved by a multiscale preconditioner. In the local 
stage, high frequency errors are resolved using Block ILU with zero fill-in 
(BILU) [27]. However, CF was not incorporated into TAMS, and the exact 
role of CF in the context of multi-stage preconditioning had not been ana
lyzed. In addition, the best choices among the variety of possible local and 
global stages have not been thoroughly investigated.

In this work, a general iterative Algebraic Multiscale Solver (AMS) is de
scribed. AMS allows for MSFV, or MSFE, as global operators with different 
types of local boundary conditions, and it allows for many local hne-scale 
solvers. We show th a t the Correction Functions (CF) can be seen as an 
independent local preconditioning stage aimed at resolving high-frequency 
errors. The effects of the CF local stage on the convergence rate and the over
all computational efficiency of AMS are analyzed for several heterogeneous 
problems. To obtain the best combination of m ethods/stages, we report on 
performance results considering different global (MSFV, MSFE) and local 
(BILU, CF, ILU) stages with different local boundary conditions. We then 
compare the computational efficiency of AMS with th a t of a state-of-the-art 
Algebraic M ultiGrid (AMG) solver [28].

2 A lgebraic M ultiscale Solver (A M S)

The pressure equation for incompressible fluid how in a heterogeneous reser
voir can be w ritten as

V • (A • Vp) =  V • (pgX • Vz) +  q, (1)

where A is the positive-dehnite mobility tensor, q represents source terms, 
g is the gravitational acceleration acting in the V z direction, and p is the 
density.

The MSFV m ethod employs two overlapping coarse grids referred to as 
primal- and dual-coarse grids, which are superimposed on the given hue
grid (Fig. 1). There are N c  primal-coarse cells (control volumes), Q f (i 6
{!, ••• , N c}) ,  and N D dual-coarse cells (local domains), Q f  (j 6 {! , •••  , N D})

Equation (1) discretized on the hue grid, can be w ritten as

Ap = q. (2)

For Two-Dimensional (2D) problems on structured grids, the dual-coarse 
grid divides the hue cells into three categories: interior (white), edge (blue), 
and vertex (red) cells, as illustrated in Fig. 2 [29, 30]. The vertices serve
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Figure 1: Primal (bold black) and dual (dashed blue) coarse cells. Fine cells 
belonging to a coarse cell (control volume) are shown in green. Fine cells 
th a t belong to a dual-coarse cell are shown in light orange. The red circles 
denote the coarse nodes (vertices).

as the coarse-grid nodes, and the edge cells denote the boundaries of the 
dual-coarse cells. For Three-Dimensional (3D) problems on structured grids, 
an additional category is ‘face’ cells. Finally, internal cells are those th a t lie 
inside dual-coarse cells.

I I I n t e r io r  H  E dge  H  V e r te x

Figure 2: Ordering of the hue cells based on the imposed dual-coarse grid. 
Also shown with bold solid lines is the primal coarse grid.
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A wirebasket reordered fine-scale system [30] can be expressed as

A n  A /e 0 Pi qi
A e i  A ee  A ev Pe = qE

0 A ve  A y v Pv_ qv_
(3)

where a local m atrix Ay represents the contribution of cell j  to the discrete 
mass-conservation equation of cell i.

The multiscale (approximate) solution can be expressed algebraically as 
follows:

p' = 'P'Pv +  Cq, (4)
where V  and C are referred to as ‘prolongation’ and ‘correction’ operators [31, 
32], To compute p'v , the following coarse-scale system is constructed and 
solved

AcPv  =  Rc- (5)
Here,

Ac =  n A V ,  (6)

and
R c  = n q -  IZACq. (7)

The restriction operator, 7Z, is N c  x Np, where Np  is the number of hne-scale 
cells, and can be based on finite-volume, or hnite-element, schemes. For the 
standard hnite-volume operator, the hne-scale equations in a coarse cell are 
simply summed up, so th a t 7Z can be w ritten as:

1 if Q f  C Q f  
0 otherwiseR{hj)

The condition Vl - C flq true, if the hue cell j  (flj1) belongs to the coarse 
control volume i (Hf).  The hnite-element based restriction operator is the 
transpose of the prolongation operator, i.e.,

n  = v T (9)
W ith the prolongation and restriction operators fully specihed, one can solve 
the coarse-scale system (MSFV, or MSFE) for p'v . Then, Eq. (4) is used to 
prolong the coarse-scale solution onto the hue scale, i.e.,

p  ~  p V{1ZAV)~ 1Z{I -  AC) +  C ( 10)

Finally, one can dehne the multiscale (MS) preconditioner with CF (which 
is referred to as MSWC) as

M.- l V(TZAV)~ TZ(I -  AC) +  C. ( 11)

4



Equation (11) can be rewritten as

M~lwc = V{TZAV)-ln  + C -  V{TZAV)-lnAC  
= M - l + C - M ~ l A C .

( 12)

In other words, the iterative procedure

PU+l = P V + M ^ wc(q -  Apv) (13)

is equivalent to the following two-stage iterative scheme

p v+1/2 = p v + C{q -  Apv) (14)

Pv+l = Pv+l' 2 +  M ~ ls (q -  Apv+l/2). (15)

The two steps are: (1) update the solution with the CF operator; (2) up
date with the multiscale preconditioner =  V(1ZAV)~l1Z, which does 
not involve CF. Therefore, the operator C is a totally independent stage. 
This helps to quantify the impact of CF on the iterative multiscale solution 
strategy. Thus, a general way of writing the AMS-based multi-stage strategy 
is:

p"+l/2= p "  + M r J J q - A p " )  (16)

p"+i =  p“+V2 + -  Ap"+1/2). (17)

where M ^ al is any local-stage preconditioner, such as ILU, BILU, and CF, 
and is the MS preconditioner used for the global stage. For the MS step, 
different restriction schemes (e.g., Finite Volume (FV), or Finite Element 
(FE)) may be used, as will as different local boundary conditions (reduced, 
or linear, boundary conditions) to construct the MS operator. Next, we study 
the behaviors of various AMS linear-solver strategies, and we report on the 
best overall combination.

3 N um erical R esu lts
In this section, systematic tests are performed to find the best combina
tion of local and global stages. For the following experiments, five sets of 
log-normally distributed permeability fields with spherical variograms are 
generated using sequential Gaussian simulations [33]. For all the test cases, 
the variance and mean of ln(k) are 4 and -1, respectively. The fine-scale grid 
size and dimensionless correlation lengths in the x, y, and z direction (i.e., rtpXl 
Vv and Viz) are shown in Table 1. Each set has 20 equiprobable realizations. 
For sets 1 and 2, 20 realizations with different orientation angles (Fig. 3) of
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0, 15, 30, and 45 degrees are considered. For sets 3 ,4 and 5, 20 realizations 
of patchy domains are used (Fig. 4). The pressure is fixed on the left and 
right faces with dimensionless values of 1 and 0, respectively. GMRES pre
conditioned by the AMS is employed, and iterations are performed until a 
reduction of five orders of magnitude in the relative I2 norm of the residual 
(i.e., ||rfc||2 / ||ro ||2<  10-5 ) is achieved.

Permeability set 1 2 3 4 5
Fine-scale grid 1283 643 1283 643 323

4'x 0.5 0.5 0.125 0.125 0.125
4'y 0.03 0.03 0.125 0.125 0.125
4’z 0.06 0.01 0.125 0.125 0.125

Angle between 4’x and y direction 0°, 15 C
O o °o patchy

Variance 4
Mean -1

Table 1: Five permeability sets (each with 20 equiprobable realizations) are 
used for the numerical experiments. Layered fields, i.e., sets 1 and 2, are gen
erated for four different inclination angles, each of which has 20 equiprobable 
realizations.

- 5  0  5

Figure 3: N atural logarithm of one realization of permeability set 1 with 
angles of 0°, 15°, 30° and 45° from left to right. For each angle, 20 realizations 
are considered.

3.1 A M S G lobal Stage: M S F V  versus M SF E

The performance of the two different restriction schemes, namely MSFV and 
MSFE, is investigated using permeability sets 1 and 3. The hue and coarse
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I

j
Figure 4: N atural logarithm of one (out of 20 statistically-the-same) realiza
tion of the permeability set 3.

grids contain 128 x 128 x 128 and 16 x 16 x 16 cells, respectively. ILU is 
employed as the sole local preconditioner. As Fig. 5 shows, the FE coarse- 
scale operator outperforms the FV one for both permeability sets.

ro 30

%-T. - - -

Patchy Layered 0° Layered 15° Layered 30° Layered 45c

ro 20

Patchy Layered 0° Layered 15° Layered 30° Layered 45c

(a) (b)

Figure 5: Comparison of (a) to tal simulation time and (b) iteration steps for 
FE and FV global solvers (i.e., restriction operator) on layered and patchy 
permeability fields over 20 different realizations. Also shown in error bars 
are the standard deviations. Clearly, FE restriction operator outperforms 
the FV one.

3.2 A M S G lobal Stage: Local B ou n d ary  C ond ition s

The effects of different local boundary conditions (BC), i.e., reduced BC 
and linear BC, are studied here. Permeability sets 2 and 4 are used for
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this purpose. The coarse-grid size is 8 x 8 x 8, and ILU is employed as the 
local preconditioner. Fig. 6 shows tha t for ‘patchy’ domains, the reduced and 
linear BC have similar performance. For layered permeability fields, however, 
the linear BC improves the computational efficiency of MSFV. Nevertheless, 
MSFV with linear BC is still not competitive with MSFE.

3.5

Hr 2.5

I  1.5

0.5

Figure 6: Solution phase time (i.e. excluding setup time) averaged over 
20 equiprobable realizations for MSFV and MSFE restriction schemes with 
linear and reduced boundary conditions.

3.3 A M S Local S tage

Overall, MSFE with the reduced-boundary condition is found to be the most 
efficient global-stage solver. Next, we investigate which local stage precon
ditioner is the best overall choice. BILU is used as the second stage precon
ditioner in TAMS [26]. Here, ILU is employed as the local preconditioner. 
Based on our experiments, the solution time of BILU and ILU are compa
rable; however, ILU has minimal setup time compared with BILU. Hence, 
overall, ILU outperforms BILU in terms of computational time. A compari
son between ILU and BILU is performed for permeability sets 1 and 3. The 
sizes of the coarse grid and the BILU blocks are 16 x 16 x 16 and 4 x 4 x 4 ,  
respectively. Fig. 7 shows the although ILU requires large numbers of itera
tions to converge, its to tal computational time is less than  th a t of BILU for 
all the cases we have studied.

To compare the efficiency of the iterative procedure including CF and the

M SFE -R educedB C
I I M SFE-LinearBC
I I M SFV -R educedBC

M SFV-LinearBC

Patchy Layered 0° Layered 15° Layered 30° Layered 45°
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Patchy Layered 0° Layered 15° Layered 30° Layered 45° Patchy Layered 0° Layered 15° Layered 30° Layered 45°

(a) (b)

Figure 7: The average and error bar plots of (a) to tal simulation time and 
(b) iteration steps for BILU and ILU comparison on layered and patchy 
permeability fields.

proposed modified CF (MCF) with ILU, permeability set 4 is considered. The 
hue and coarse grids contain 64 x 64 x 64 and 8 x 8 x 8  cells, respectively. 
Fig. 8 shows th a t MSFV-ILU is the best overall performedr;therefore, ILU is 
the most efficient local solver based on these findings.

| iteration stepsiteration steps

(a) (b)

Figure 8: Iteration steps and to tal simulation time (sec) for GMRES precon
ditioned by the MSFV (a) and MSFE (b) with CF, MCF, and ILU. Results 
are averaged over 20 realizations of patchy permeability held of set 4.

On the basis of our detailed investigation, we have found tha t MSFE with 
ILU leads to the best overall combination for solving the pressure equation 
of highly heterogenous systems. Next, our AMS m ethod is compared with 
SAMG [28].



3 .4  A M S vs. A M G

To investigate the efficiency of AMS compared with SAMG, which is widely 
used in the community, permeability set 5 (patchy held) is used. As shown 
in Table 1, this problem set consists of 323 hue cells. To increase the size 
of the domain, while keeping the same permeability statistics, a refinement 
procedure is employed, such th a t each grid cell is divided into 8 cells in each 
refinement step (split into two in each direction). Employing this refinement 
procedure, four grid sets are generated with 32s, 643, 1283 and 2563 hue 
cells. For all the problem sizes, the coarsening factor is kept constant ( 
8 x 8 x 8  ). The MSFE (with reduced boundary condition) and ILU are 
used as global and local solvers for AMS. The SAMG library is obtained 
from Fraunhofer Institu te SCA1 [28]. The scalability of AMS is illustrated 
in Fig. 9(a), where the computational times for different problem sizes are 
normalized with respect to the 323 case. The results are shown for both 
the setup and solution phases. Note tha t Fig. 9(b) shows th a t SAMG is 
slightly above the ideal line for the setup phase, which reflects its advanced 
coarsening algorithms.

■ Local linear system s 
•  Multiscale operators 

—a — Setup phase 
t  Solution phase 
4— Linear reference

■ S etup phase 
•  Solution phase 
a  Total simulation 
t  Linear reference

1 8 64 512

Normalized problem size

(b) SAMG

1 8 64 512

Normalized oroblem size

(a) AMS

Figure 9: Scalability analysis of AMS and SAMG.

The performance of both AMS and SAMG is also tested and compared for 
permeability sets 1 and 3. The coarse grid consists of 16 x 16 x 16 cells, and 
the same strategy for AMS, i.e., MSFE with reduced BC as global and ILU 
as local stages, is employed. Note th a t the permeability set 1 is a layered 
held, for which the Cartesian coarse grid is still used in the AMS coarse- 
scale solver, ft is clear from Fig. 10 th a t SAMG outperforms AMS. The 
difference between the two is more pronounced for the layered held, which 
demonstrates th a t the coarsening strategy of AMS needs to be improved.
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Also, Fig. 10 indicates th a t AMS and SAMG are comparable for large-scale 
systems. Having an AMS solver th a t is competitive with SAMG is im portant 
for the following reasons. First, it is clear th a t both AMS and SAMG have 
considerable setup times. For time-dependent problems, AMS is expected 
to benefit quite substantially from adaptive updating of the basis functions. 
Second, AMS is a mass-conservative iterative solver when the MSFV operator 
is employed the last step, and this is a critical requirement for solving time- 
dependent transport problems.

|  AMS setup  p h a se  time 
HAMS solution p h a se  time 
3  SAMG setup ph ase  time 
I  SAMG solution phase time

I If
Patchy Layered 0° Layered 15° Layered 30° Layered 45°

(a) Fine-scale grid is 128 x 128 x 128

|  AMS setup ph ase  time 
3 AMS solution ph ase  time 
3  SAMG setup  ph ase  time 
I  SAMG solution phase time

D i  i I  I  I
Patchy Layered 0° Layered 15° Layered 30° Layered 45°

(b) Fine-scale size is 256 x 256 x 256

Figure 10: Total, setup, and simulation times (sec) of AMS and SAMG as 
linear solvers for permeability sets 1 and 3. Results are averaged over 20 
statistically-the-same realizations for each case.

4 C onclusions
In this work, a general Algebraic Multiscale Solver (AMS) for the pressure 
equation was developed. We analyzed the role of the Correction Function 
(CF) in the context of AMS, and we showed th a t the CF can be seen as an 
independent local stage. As a local preconditioner, CF helps to capture some 
of the high-frequency errors, especially in the source terms, and accelerates 
the overall convergence rate. However, - on average - the gain in convergence 
rate of using CF does not compensate for the additional computational cost. 
Simple preconditioners, such as ILU, are found to be more efficient than  CF. 
Note th a t AMS with any combination of local- and global-stage solvers al
lows for the reconstruction of a conservative velocity held, if an MSFV stage 
is applied as the last step. Overall, the best AMS strategy is MSFE with 
reduced boundary conditions along with ILU. Our results indicate th a t the
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performance of AMS is comparable to advanced algebraic multigrid solvers. 
Our results show th a t AMS is quite efficient, especially if it is used as a mul
tiscale approximate (but conservative) solver for time-dependent subsurface 
flow problems.
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