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Introduction
The purpose of this document is to suggest a strategy for constructing standard diagnostics of the 
diurnal cycle from both climate model and observational data products. The guiding philosophy is “keep 
it simple,” in the hope that a diagnostic software package can be readily constructed and widely used. 
Of course this means that the output of the package will form only the beginning of necessary examina-
tion of the diurnal cycle in models and in the real world.

The latest version of the Coupled Model Intercomparison Project, CMIP5, provides several fields at 3-
hourly time resolution near the surface: air and surface temperatures, pressure, humidity, soil moisture, 
horizontal wind, energy flux components, overhead cloudiness, evaporation, precipitation, convective 
precipitation, and snowfall. (See the “3hr” tab in the Standard Output spreadsheet at http://cmip-pcm-
di.llnl.gov/cmip5/data_description.html.) Meanwhile satellite observations provide at least equally fine 
time resolution and global coverage for some of these fields. This data makes possible an extensive 
study of the diurnal cycle near the surface.

Covey et al. (2011, 2014) have published analyses of CMIP 3-hourly surface pressure fields and shown 
them to be consistent with the conventional picture of “atmospheric tides.” Like their oceanic relatives, 
atmospheric tides are periodic in time and spatially simple at large scales. Thus the surface-pressure 
tides provide an easy starting point for study of the diurnal cycle. At the opposite end of the complexity 
scale, precipitation is very irregular in space and time. This document will use precipitation as an exam-
ple of the challenges to construction of standard diagnostics of the diurnal cycle.

Analysis of the diurnal cycle of a time series xHtL typically begins by forming a “composite” or average 
diurnal cycle spanning 0 < t < 24 hours. Then further processing such as Fourier analysis is applied to 
the composite. Two questions arise: (1) What further processing is most appropriate for simple standard 
diagnostics that can produce a few key “metric” numbers when climate models are compared with each 
other or with observations? (2) Is it necessary to form a composite in the first place? Below we argue 
that (1) straighforward Fourier analysis is the most appropriate procedure and (2) forming a diurnal 
cycle composite is not necessary because Fourier analysis of xHtL over its entire domain gives the same 
diurnal (24h), semidiurnal (12h) and higher harmonics of the diurnal cycle. Nevertheless, a composite 
may be useful because it can be inspected before succeeding steps are taken, without affecting the 
final result.

(1) Methods of Analysis



(1) Methods of Analysis
Dai et al. (2007) made a composite diurnal cycle of precipitation at each latitude / longitude grid point for 
December-January-February and June-July-August over several years. Then they least-squares fit 
diurnal and semidiurnal cycles to each grid point’s composite. The adjustable parameters in each fit are 
the amplitude and phase of the cycle. Finally they mapped the amplitude (as a percentage of daily 
mean precip) and the phase (as time of maximum) for both the diurnal and semidiurnal fits at both 
seasons: 8 maps in all. At this point the results can be used to produce standard metrics such as the 
numbers plotted in a Taylor diagram. An important caveat is that for time-of-maximum comparisons, 
one must use modular arithmetic: 24h = 0h for the diurnal harmonic, 12h = 0h for the semidiurnal 
harmonic, and so on.

This procedure is the most common one used for diurnal cycle analysis, but there are others. Kikuchi 
and Wang (2008) simply took a climatological mean of the difference between daily-maximum and daily-
minimum precipitation as a measure of diurnal cycle amplitude. For the phase, they produced Empirical 
Orthogonal Eigenfunctions from a composite diurnal cycle. With TRMM data they found that the first two 
EOFs represented the diurnal harmonic while the next two represented the semidiurnal harmonic. 
Finally they plotted time series of the corresponding EOF amplitudes (principal components) for DJF 
and JJA seasons and for the annual mean. These comprise only 6 line plots of precipitation rate span-
ning 0 < t < 24 hours (as opposed to the initial composites in this procedure, and Dai et al.’s, which 
amount to a line plot for each grid point). Here again the results can be used to produce standard 
metrics. Wang et al. (2011) propose diagnostic metrics based entirely on such EOFs. By definition, 
EOFs provide the most compact representation of the principal variations of space-time fields. They 
have been popular diagnostics since their introduction to meteorology and climatology by Lorenz (1956) 
and Kutzbach (1967). Compared with Fourier analysis, however, EOFs are not as simple conceptually 
and not as accessible computationally. Thus they seem inconsistent with a “keep it simple” philosophy 
for standard diagnostics.

It should be noted that none of the above procedures address the “frequency versus intensity” issue of 
the diurnal cycle of precipitation. For example, the upper left panel of Figure 4 in Dai et al. shows a 
composite diurnal cycle for the Southeastern USA. This time series has a smooth once-a-day maximum 
at a well defined time. But the series is an average over many different days. Does the steady increase 
and then decrease of precipitation rate exhibited by the composite arise from corresponding steady 
increases and decreases during most days? Or does it arise from different days’ precipitation coming at 
different times (or not at all) but always at the same rate? Dai et al. argue that the latter explanation is 
closer to the truth. To make their case, they must reprocess the high-time-frequency raw data in ways 
that avoid a composite diurnal cycle. This too seems inconsistent with a “keep it simple” philosophy for 
standard diagnostics.

(2) Are Composites Necessary?
To analyze 3-hourly surface pressure output from climate models, Covey et al. did not form a diurnal 
cycle composite. They simply applied a Fast Fourier Transform at each grid point to a 32-day detrended 
time series of anomalies, i.e. values obtained during each day by subtracting that day’s mean value. 
The Fourier analysis produces harmonic components with periods of 32 days, 16 days, and so on down 
to the Nyquist limit of 2Dt = 6 hours, but only the 24h and 12h harmonics were studied.

Procedural details probably make little difference to studying pheonomena as regular as the tides. 
Indeed, Covey et al. showed that their model analysis agrees well with observational analysis of the 
tides by Dai and coworkers using the composite technique. But one might worry that the details make a 
great deal of difference for the diurnal cycle of precipitation.
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Procedural details probably make little difference to studying pheonomena as regular as the tides. 
Indeed, Covey et al. showed that their model analysis agrees well with observational analysis of the 
tides by Dai and coworkers using the composite technique. But one might worry that the details make a 
great deal of difference for the diurnal cycle of precipitation.

At first sight a straight-out Fourier analysis seems rather different from the procedure of Dai et al. 
described above. But the differences are more apparent than real. Although Dai et al. used a least-
squares fit of the diurnal and semidiurnal cycles to their composite, it is well known that when a periodic 
function is approximated by a trigonometric series via least squares, the resulting coefficients are 
identical to those obtained by Fourier analysis (e.g. Elmore and Heald 1969). So the question “Are the 
two procedures equivalent?” becomes “Does it matter whether or not a composite is formed before 
doing the Fourier analysis?” In fact it does not matter, because time-averaging (which forms the compos-
ite) and Fourier-transforming are basically linear integral operations that commute. This is shown below, 
first assuming for simplicity that time is a continuous variable, then for the more pertinent case in which 
time is measured in discrete steps. 

Continuous Time

Taking the units of local solar time t in days, and considering the time period 0 < t < N days, the Fourier 
series for a function over this domain is  

xHtL =⁄m=-¶
¶ am ‰2 p Âm t êN ; am = a–m

*  for real x. (1)

Note that Eq. (1) always forces xHNL = xH0L so that outside the domain 0 < t < N, xHtL repeats with time 
period N. Thus a trend in x over its nominal domain implies a repeating saw-tooth pattern that can be 
problematic in Fourier analysis. For this reason it is customary to first de-trend the data.

From the orthogonality of trigonometric functions it follows that

am = N-1
Ÿ0
NxHtL ‰-2 p Âm t êN „ t. (2)

As with any continuous-time Fourier series, a0 gives the (constant) average of x over the domain, the 
a±1 give amplitude and phase for the longest allowed period (N days), the a±2 give amplitude and phase 
for half this period (N ê2 days), the a±3 give amplitude and phase for a third this period (N ê3 days), and 
so on ad infinitum. But for the diurnal cycle, the only relevant coefficients are a±N for the diurnal har-
monic, a±2N for the semidiurnal harmonic, a±3N for the terdiurnal harmonic, and so on. For comparison 
with the composite diurnal cycle, it is convenient to write these coefficients as

anN = N-1
Ÿ0
NxHtL ‰-2 p Â n t „ t = N-1⁄k=1

N
Ÿk-1
k xHtL ‰-2 p Â n t „ t. (3)

The composite itself is formed by averaging over the time of each day:

xHtL = N-1⁄k=1
N xHt + k - 1L ; 0 < t < 1, (4)

e.g. the composite 0800h LST value is xJ 1
3
N = BxJ 1

3
N + xJ1 + 1

3
N + xJ2 + 1

3
N + ... + xJN - 2

3
NFíN in our units. 

A Fourier series for xHtL is just a special case of Eqs. (1)-(2) with N = 1:

xHtL =⁄m=-¶
¶ am ‰2 p Âm t  ; am = a–m

*  for real x ; (5)

am = Ÿ0
1xHtL ‰-2 p Âm t „ t = N-1

Ÿ0
1
⁄k=1
N xHt + k - 1L ‰-2 p Âm t „ t. (6)

In this case all of the coefficients that emerge from the procedure are relevant to the diurnal cycle. The 
a±1 give amplitude and phase of the diurnal harmonic, the a±2 give amplitude and phase of the semidiur-
nal harmonic, the a±3 give amplitude and phase of the terdiurnal harmonic, and so on ad infinitum. 

The relationship between the coefficients in Eqs. (3) and (6) is revealed by interchanging the order of 
summation and integration in (6) and then substituting t ê ª t + k - 1 in each of the integrals. Since the 
limits t = 0 and t = 1 become t ê = k - 1 and t ê = k, we have

composite_vs_straightout_fourier.nb     3



The relationship between the coefficients in Eqs. (3) and (6) is revealed by interchanging the order of 
summation and integration in (6) and then substituting t ê ª t + k - 1 in each of the integrals. Since the 
limits t = 0 and t = 1 become t ê = k - 1 and t ê = k, we have

am = N-1⁄k=1
N

Ÿk-1
k xHt êL ‰-2 p Âm Ht ê-k+1L „ t ê. (7)

After substituting m Ø n, dropping the prime on the dummy integration variable t ê, and recognizing that 
‰-2 p Â n Ht-k+1L = ‰-2 p Â n t, comparison with Eq. (3) shows that an =anN, QED.

Discrete Time

Continuing to measure time in days, suppose each day is divided into S time-segments (e.g. S = 8 in for 
3-hourly data) and the continuous function xHtL is replaced by the sequence x0, x1, x2, ..., xSN at the 
segment boundaries over 0 < t < N. Since x repeats with time period N (q.v.) xSN = x0, so there are 
exactly SµN independent time points x0, x1, x2, ..., xSN -1. The correspondence between xHtL and the x j 
is given by xHtL = xH j êSL ª x j. Therefore integrals in the equations above are replaced by sums according 
to

Ÿa
bf HtL „ t Ø S-1⁄j=S a

S b f H j êSL. (8)

Also, because the interval between time points Dt (=S-1days) is finite, a Nyquist limit applies to the 
highest frequency that can be resolved by Fourier analysis. The equation analogous to (1) is thus

x j =⁄m=-SN ê 2
+SN ê 2 am ‰2 p Âm j êSN ; j = 0, 1, 2, ..., S N - 1. (1 ê)

At the Nyquist frequency limits m = ±S N ê2 the period is twice the interval between time points (2Dt = 6 
hours for 3-hourly data: a quadradiurnal harmonic). “2Dt waves” are the highest frequency that discrete 
Fourier analysis can resolve.

Eq. (1 ê) represents exactly S N equations in the S N unknowns a0, a±1, a±2, ..., a ˝SN ê 2 ˝. (The coeffi-
cients a-SN ê 2 and a+SN ê 2 represent a single Fourier term because m = ±S N ê2 gives the same exponen-

tial factor ‰±Â p j = H-1L j.) These equations can be solved to give

am = HS NL-1⁄j=0
SN -1x j ‰-2 p Âm j êSN (2 ê)

by using the identity ⁄ j=0
M-1‰2 p Â n j êM = M dnM, the discrete version of orthogonality for trigonometric 

functions (or one may simply apply the transformation (8) to Eq. (2)).

Continuing with this procedure, the analysis of Eqs. (1)-(7) can be repeated to reach the same conclu-
sion. Instead of interchanging the order of summation and integration in going from Eq. (6) to Eq. (7), 
one interchanges the order of summation in a double sum. In both cases the operations commute, and 
the diurnal and higher harmonics are identical whether or not one first forms a composite diurnal cycle. 

Practical Implementation
The equations above are perfectly valid but do not represent the best algorithm for Fourier analysis. The 
Fast Fourier Transform speeds up the procedure by several orders of magnitude (Press et al. 2007). 
Standard software packages employ FFTs ubiquitously. For example, Covey et al. wrote scripts in a 
Python-based climate data analysis language (Williams et al. 2013) that in turn invokes the Numerical 
Python module fft for discrete Fourier transforms (http://www.numpy.org). This module is consistent 
with Eqs. (1 ê) and (2 ê) above, or equivalently Eqs. (12.1.7) and (12.1.9) in Press et al. 2007.
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