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Large rainfall changes consistently projected over
substantial areas of tropical land
Robin Chadwick*, Peter Good, Gill Martin and David P. Rowell

Many tropical countries are exceptionally vulnerable to
changes in rainfall patterns, with floods or droughts often
severely a�ecting human life and health, food and water
supplies, ecosystems and infrastructure1. There is widespread
disagreement among climate model projections of how
and where rainfall will change over tropical land at the
regional scales relevant to impacts2–4, with di�erent models
predicting the position of current tropical wet and dry regions
to shift in di�erent ways5,6. Here we show that despite
uncertainty in the location of future rainfall shifts, climate
models consistently project that large rainfall changes will
occur for a considerable proportion of tropical land over the
twenty-first century. The area of semi-arid land a�ected by
large changes under a higher emissions scenario is likely
to be greater than during even the most extreme regional
wet or dry periods of the twentieth century, such as the
Sahel drought of the late 1960s to 1990s. Substantial
changes are projected to occur by mid-century—earlier than
previously expected2,7—and to intensify in line with global
temperature rise. Therefore, current climate projections
contain quantitative, decision-relevant information on future
regional rainfall changes, particularly with regard to climate
change mitigation policy.

Climate change is expected to drive changes in tropical rainfall by
affecting both atmospheric moisture and circulation8–11. In the ab-
sence of circulation change, the enhanced capacity of warmer air to
containmoisturewould lead to increasedP−E (precipitationminus
evaporation) in alreadywet regions and decreases in dry regions; the
so-called ‘wet-get-wetter, dry-get-drier’ hypothesis8,9,11. This mode
of change is present in both climate model simulations9,11–13 and
observed trends13,14, and hence is an important validation of model
fidelity, but is seen only when very large area averages are used5,6.
At the regional scales more relevant to climate change impacts,
the wet-get-wetter, dry-get-drier paradigm is not a good predic-
tor of rainfall change in projections5,6,15 or observations16,17, and
projections of future regional rainfall change vary widely across
climate models2,3,18,19.

Instead, the dominant driver of regional rainfall change in the
tropics is the occurrence of shifts in the position of wet regions5,6.
These spatial shifts can cause both increases and decreases in rain-
fall, and are illustrated here with two very different climate model
projections of future precipitation (Fig. 1a,b). Large shifts occur
in both models, and in each model are generally coherent in sign
over areas large enough to affect whole countries or regions, but
the locations of shifts differ greatly between the two. Uncertainty
over which regions will experience these shifts, and to what extent,
is the main cause of spread in regional rainfall projections5,6, with
even the sign of change uncertain in some regions2,3. This uncer-
tainty impedes planning for adaptation to climate change. For global
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Figure 1 | Tropical land precipitation changes in two climate models, and
observations of Sahel drought. a,b, Precipitation change for 2071–2100
minus 1971–2000, under the RCP8.5 emissions scenario for GFDL-ESM2M
(a) and HadGEM2-ES (b). c, CRU observed rainfall change (%) for
1968–1997 minus 1938–1967. Desert and sea regions are masked in white.
Outlined areas in c indicate Sahel and northwest Australia regions, and the
black line contour indicates the upper rainfall threshold for semi-arid
regions (2.2 mm d−1).

climate change mitigation policy, however, the precise location of
large rainfall changes may be less important than whether or not
they will occur, combined with an estimate of their magnitude and
areal coverage.

There are good physical reasons to expect rainfall shifts to occur
(see later for a discussion of this), even though their position and
magnitude are less certain. This implies that there may be useful
information contained within future rainfall projections, which is
lost by the commonly used approaches of either taking the ensemble

Met O�ce Hadley Centre, FitzRoy Road, Exeter EX1 3PB, UK. *e-mail: robin.chadwick@meto�ce.gov.uk

NATURE CLIMATE CHANGE | VOL 6 | FEBRUARY 2016 | www.nature.com/natureclimatechange 177

© 2016 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nclimate2805
mailto:robin.chadwick@metoffice.gov.uk
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2805

Rainfall change (%)

0

10

20

30

40a

Pe
rc

en
ta

ge
 o

f t
ro

pi
ca

l l
an

d

<−50 <−40 <−30 <−20 <−10 >10 >20 >30 >40 >50 −10 < % < 10

RCP8.5
RCP6.0
RCP4.5
RCP2.6
Natural variability

End of twenty-first century

0

20

40

60

80

100

Rainfall change (%)

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f t
ro

pi
ca

l s
em

i-a
rid

 la
nd

<−50 <−40 <−30 <−20 <−10 >10 >20 >30 >40 >50

Rainfall change (%)
<−50 <−40 <−30 <−20 <−10 >10 >20 >30 >40 >50

Rainfall change (%)
<−50 <−40 <−30 <−20 <−10 >10 >20 >30 >40 >50

Rainfall change (%)
<−50 <−40 <−30 <−20 <−10 >10 >20 >30 >40 >50

End of twenty-first century

Semi-arid land

0

10

20

30

40

Pe
rc

en
ta

ge
 o

f t
ro

pi
ca

l r
ai

nf
or

es
t

End of twenty-first century
Rainforest

0

10

20

30

40

50

Pe
rc

en
ta

ge
 o

f t
ro

pi
ca

l s
em

i-a
rid

 la
nd

All semi-arid
Sahel
NW Aus

Observations of twentieth century Sahel drought

0

5

10

15

20

Pe
rc

en
ta

ge
 o

f t
ro

pi
ca

l l
an

d

Mid twenty-first century

b c

d e

Figure 2 | Tropical land precipitation change. a–d, Bar charts showing the mean (across CMIP5 models) area of tropical land with precipitation changes at
a number of thresholds. Four emissions scenarios and an estimate of natural variability are shown. Box–whisker plots indicate the median, inter-quartile
range and 9th, 91st percentiles of the model spread for each scenario (a), or only RCP8.5 and natural variability (b,c,e). a–c show 2071–2100 minus
1971–2000, b shows tropical semi-arid regions, and c shows tropical rainforest regions. d, CRU observations over tropical semi-arid land for 1968–1997
minus 1938–1967. e shows mid-century projections, 2031–2060 minus 1971–2000. In a the −10<%<10 bin uses a separate y axis
(right-hand side).

mean pattern of change across models, or analysing the spread of
model projections on a region-by-region basis. Previous work has
provided evidence of this by showing that when tropical regions
(both land and sea) with future drying trends are determined on a
model-by-model basis (without requiring different climate models
to agree on the position of these regions), the magnitude of the
mean drying trend across these regions is quite consistent across
climate models4. Here, we consider whether models provide any
consistent information about the magnitude and areal coverage
of large, impact-relevant changes in rainfall across tropical
land regions.

Therefore, we assess projections from 44 state-of-the-art CMIP5
(Coupled Model Intercomparison Project Phase 5) climate models
by considering the total area of tropical land in each model where
the magnitude of rainfall change exceeds a number of specified
thresholds. That is, we examine the proportion of tropical land
projected to undergo large rainfall changes in eachmodel. Although
the position of rainfall shifts varies across models, substantial
changes are in fact present across all models and emissions
scenarios (Fig. 2a).

By the end of the twenty-first century, large long-term
rainfall changes (increases and decreases) of more than 20% are
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present across all models in RCP (Representative Concentration
Pathway) 8.5 (Fig. 2a)—a higher emissions scenario with no explicit
climate mitigation policy. Model estimates of the proportion of
tropical land affected vary from 9.7% to 45.4%, with a mean of
25.3% (this analysis excludes desert areas—see Methods). Very
large increases and decreases of more than 30% are present for
greater than 90% of models, with mean area coverage of 12.1%. For
comparison, Brazil, the largest tropical country, makes up about
13% of tropical land area, and a more average-sized country such
as Kenya is around 1% of land area. The mean of model estimates
for RCP8.5 suggests that more than half of all tropical land will
experience substantial rainfall increases or decreases of greater than
10% (Fig. 2a).

Both large increases and reductions in regional rainfall are
expected in semi-arid areas (Fig. 2b), which may be especially
vulnerable to an increased likelihood of droughts or floods1—
although rainfall increases could also bring positive impacts for
some semi-arid regions. The proportion of semi-arid land with
large changes is greater than for tropical land as a whole. Rainforest
regions also show both increases and reductions (Fig. 2c), but the
distribution is more skewed towards increases (although this is not
true when only South America is considered—not shown).

To give context to our results, and to relate them to potential
human impacts, we now examine perhaps the most severe long-
term tropical drought of the twentieth century, the Sahel drought of
the late 1960s to 1990s—which may itself have been at least partly
anthropogenically forced by aerosol emissions20. Taking the 30 year
mean observed change between the dry period of 1968–1997 and the
preceding wet period of 1938–1967 (Figs 1c and 2d), the magnitude
of drying was generally between 10% and 30% over semi-arid land
in the Sahel. This is comparable to (or in fact smaller than) the
magnitude of decreases consistently projected in semi-arid regions
for 2071–2100 in RCP8.5 (Fig. 2b), and a larger area than during
the Sahel drought is projected to be affected in the future by most
models. Increased precipitation over semi-arid land in northwest
Australia is also observed between these periods, again of similar or
lesser magnitude and smaller land coverage than expected for end
of twenty-first century RCP8.5 projections, and also perhaps linked
to aerosol forcing21.

Lower emissions scenarios have smaller rainfall changes than
higher emissions scenarios—for the lowest emission scenario
RCP2.6, between 0.4 and 15.5% of land experiences rainfall changes
larger than 20%, with mean land coverage of 5.1% (Fig. 2a).
However, substantial rainfall changes of greater than 10% are
present even in RCP2.6, covering between 6.0% and 41.9% of
land, with a mean coverage of 22.4%. The proportion of land
projected to experience large regional rainfall change seems to
be linearly related to change in global mean surface temperature
(Fig. 3), which is itself linearly related to cumulative greenhouse
gas emissions2. A similar linear relationship is found between global
mean precipitation change and global mean temperature change2,
but it should be noted that the mechanisms are quite different—
global mean precipitation change is governed by changes in the
globalmean energy balance17,22, whereas regional changes are largely
due to shifts in the position of wet and dry regions5,6.

Changes larger than natural climate variability are already
present in all emissions scenarios by mid-century (Fig. 2e), with
RCP8.5 having rainfall increases and decreases of greater than 10%
for all models, and greater than 20% for more than 90% of models.
Model agreement on the occurrence of large regional rainfall change
by mid-century is much sooner than suggested by previous work
that estimated emergence time on a region-by-region basis2,7, but
is consistent with a previous estimate of emergence time for some
precipitation ‘hotspot’ regions23. At mid-century, the differences
between rainfall changes in the three lower emissions scenarios are
relatively small (Fig. 2e).
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Figure 3 | Relationship between area of tropical land with large
precipitation change and global mean temperature change. Area of
tropical land with absolute precipitation changes (increases or decreases)
of >20%, plotted against global mean surface temperature change for
CMIP5 models in four emissions scenarios. Three time periods of
2011–2040 (diamonds), 2041–2070 (triangles), and 2071–2100 (squares)
are shown, each with a baseline of 1971–2000. Grey line shows the linear
least-squares fit to the data.

Although the position of rainfall shifts varies across models,
the regions most likely to experience large rainfall increases and
decreases can be identified by calculating the proportion of models
that agree on a particular threshold of change (for example, >20%)
at each grid point4 (Fig. 4). Regions at greatest risk of large rainfall
changes include southern and East Africa, Central America and
India, although model agreement in each grid square is still only
moderate even in these regions. In general, the regions with the
greatest chance of large increases are distinct from those most likely
to have large decreases. If a country is projected to be at risk from
either a large increase or a large decrease, but not both, this may
be useful for its adaptation planning—as the actions needed to
prepare for large increases or decreases in rainfall are very different.
However, there are a few regions (for example, parts of South
and Central America and Australia) where both large increases
and decreases are present across models. The regions where large
changes are most likely (Fig. 4c,d) are generally consistent with the
pattern of ensemble meanmodel rainfall change (Fig. 4a). Similarly,
regions where the ensemblemean is small are themost likely to have
no changes greater than 10% (Fig. 4b).

As climate models disagree on the location of rainfall shifts,
should we trust the projection that such shifts will occur at all?
Uncertainty in the pattern of shifts across models is likely to be due
to a combination of two factors.

First, the number of processes with the potential to cause land
rainfall shifts under global warming is large. The pattern of future
sea surface temperature warming is crucial for rainfall pattern
formation over the oceans15, with rainfall tending to occur over the
warmest regions, and this is also likely to influence rainfall over land.
The enhanced land–sea temperature contrast in a warmer climate
is expected to lead to rainfall shifts24, with local land warming
enhancing rainfall over land and remote sea surface temperature
warming suppressing it25. A general increase in moisture transport
may inherently drive dynamical feedbacks leading to shifts in wet
and dry regions, the nature of which could be flow-dependent8.
Rainfall in the margins of some convective regions may be reduced
owing to the moisture flow into these regions not increasing
sufficiently tomeet the greater threshold for convection in a warmer
atmosphere8,11. Reductions in near-surface relative humidity over
some land regions could lead to rainfall shifts by affecting the

NATURE CLIMATE CHANGE | VOL 6 | FEBRUARY 2016 | www.nature.com/natureclimatechange

© 2016 Macmillan Publishers Limited. All rights reserved

179

http://dx.doi.org/10.1038/nclimate2805
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2805

30° S

15° S

La
tit

ud
e

La
tit

ud
e

0°

15° N

30° N
a Ensemble mean rainfall change (%)

−5 5 15 25 35 45 55−15−25−35−45−55

Model agreement (%) on −10% < change < 10%

0 40 50 60 70 80

90° W 0° 90° E
30° S

15° S

0°

15° N

30° N

30° S

15° S

La
tit

ud
e

La
tit

ud
e

0°

15° N

30° N

30° S

15° S

0°

15° N

30° N
Model agreement (%) on decrease >20%

0 10 20 30 40 50

90° W 0° 90° E

90° W 0°
Longitude Longitude

Longitude Longitude

90° E 90° W 0° 90° E

Model agreement (%) on increase >20%

0 10 20 30 40 50

b

c d

Figure 4 | Regions most likely to experience large precipitation changes. a, CMIP5 ensemble mean precipitation change, for 2071–2100 minus 1971–2000,
under the RCP8.5 emissions scenario. Areas where 1971–2000 precipitation is <200 mm yr−1 are masked in white. b–d, Model agreement on precipitation
changes at a number of thresholds, for 2071–2100 minus 1971–2000, under the RCP8.5 emissions scenario. Areas where <20 models have 1971–2000
precipitation of >200 mm yr−1 are masked in white.

height at which clouds can form26. The north–south position of
wet regions in the tropics has been linked to the inter-hemispheric
energy balance27, and so any future change in this balance could lead
to large-scale northward or southward rainfall shifts. One possible
cause of such a change in energy balance is future changes in
aerosol concentrations28, which could also lead to more regional
rainfall shifts21. Plant stomata also react directly to increases in
CO2 concentrations, reducing evapo-transpiration and potentially
leading to feedbacks on the atmospheric circulation and rainfall29.
Differences in the balance of these processes across models could
lead to very different overall patterns of change.

Second, models are imperfect, with processes such as convection
unable to be resolved at current grid resolutions and therefore
parameterized, and they exhibit large present-day biases in their
simulation of tropical rainfall (Supplementary Fig. 1). Biases vary
betweenmodels, but commonproblems include a dry bias over parts
of India, and a wet bias over much of southern Africa. The effect
of climate change processes in a climate model may depend on the
model’s present-day biases30.

Despite uncertainty about the location of rainfall shifts, there
are good reasons to think that projections of the occurrence of
shifts over tropical land are credible: rainfall shifts do occur in all
models, and the locations of shifts in each model do not generally
coincidewith the locations of its biases (mean correlation coefficient
of 0.24 for RCP8.5); several of the proposed mechanisms for future
change15,24,25 are also observed in present-day seasonal and inter-
annual rainfall variability, and are reasonably well represented by
models, for example, monsoon rainfall in response to increased
land–sea temperature gradients, and land rainfall anomalies in
response to sea-surface temperature change during El Niño events;
model biases usually involve errors in the position or magnitude
of rainfall regions, not their existence (Supplementary Fig. 1),
and so may compromise only the position and magnitude of the
response to forcing, not the existence of that response; tropical

land rainfall shifts have been observed over the twentieth century16,
although only formally attributed to anthropogenic forcing in
some cases28; large forced shifts in regional rainfall exist in the
palaeoclimate record, with some of the same proposed mechanisms
as for future change31.

Reducing model uncertainty in regional climate projections
remains a research priority. In particular, very high spatial
resolution climate simulations may be necessary to better represent
tropical rainfall processes, and so give greater confidence in future
projections. However, our findings that climate models consistently
project that large rainfall changes will occur over the twenty-first
century for a considerable proportion of tropical land are likely to be
relevant for a range of climate impacts studies as well as informing
mitigation and adaptation policy.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Data. CMIP5 climate model data (see List of Climate Models, below) for the four
RCP scenarios (2006–2100), historical (1860–2005) and pre-industrial control
experiments were regridded to a 2.5◦ grid. The domain was restricted to
30◦ N–30◦ S, and a sea mask applied. A sea mask from the HadGEM2-ES model
was used, with areas with 100% sea fraction set to 0 and other areas set to 1. This
was regridded to 2.5◦ resolution, and any areas with a regridded mask value of <0.5
were taken as sea points and masked for all models (see Fig. 1). This choice of mask
retains a large number of coastal points in the data set, but the results of this study
are not sensitive to this, and were very similar when a much stricter sea mask was
applied as a test. This is because rainfall change over coastal grid points does not
seem to behave in a systematically different way from inland grid points. Only one
ensemble member was used for each RCP model run, although the effect of this
was tested (see Estimation of internal climate variability, below).

CRU TS (Climate Research Unit Time Series) 3.21 observed rainfall data32
were regridded to 2.5◦ and restricted to 30◦ N–30◦ S. For the calculation of
biases shown in Supplementary Fig. 1, GPCP (Global Precipitation Climatology
Project) version 2 data33 were also used for comparison, but this made little
difference and so is not shown. For the Sahel drought analysis the regions used
were: Sahel (10◦ N–18◦ N, 20◦ W–35◦ E) and northwest Australian (25◦ S–11◦ S,
112◦ E–142◦ E)—see Fig. 1c.

As large percentage rainfall anomalies are commonly projected in desert
regions, but correspond only to small absolute changes that are unlikely to have
much impact in these largely uninhabited areas, a desert mask was used to remove
these regions from the analysis, with a threshold of 200mmyr−1 (0.55mmd−1). To
identify semi-arid and rainforest regions, values of respectively 200–800mmyr−1

(0.55–2.2mmd−1) and >1,640mmyr−1 (4.5mmd−1) were used34,35. Results were
found to be insensitive to the value of these thresholds (values of 100mmyr−1 each
side of each threshold were tested). Thresholds were applied to each model or
observational data set based on their own rainfall climatologies, and the
multi-model mean thresholds are shown in Supplementary Fig. 1. As a result of
model biases, the semi-arid and rainforest rainfall regimes defined here for each
model may not always be located in exactly the same regions as those in
observations, but are nevertheless useful for indicating how rainfall changes in each
model within each type of rainfall regime. An alternative method of applying
thresholds based on the observed CRU climatology was also tested, and the results
of this study were not found to be sensitive to this choice.

Annual mean totals were used instead of seasonal totals because annual mean
percentage changes provide a more robust measure of large rainfall changes than
seasonal percentage changes. The tropics-wide distribution of seasonal percentage
change can be dominated by large dry-season percentage changes that correspond
to only small absolute changes, and are unlikely to have major impacts. Seasonal
changes can also correspond to changes in the timing of rainy seasons which,
although important, do not necessarily mean that total rainfall amount has
changed. Annual mean percentage changes are not affected by either of these issues.

Results are sensitive to the choice of grid-box size: models with
higher-resolution native grids have greater percentage area coverage of large
rainfall change when the data are analysed at this higher resolution, than after
averaging to 2.5◦. This is expected, as large rainfall changes are more common at
higher spatial resolution owing to the smoothing effects of averaging. The choice of
2.5◦ used here seems to be sensible, as it is at the coarse end of CMIP5 simulations,
and so allows them to be compared at the same scale without any unphysical
regridding of coarse simulations to a higher resolution.

Estimation of internal climate variability. The distribution of rainfall changes
expected between two 30 year means from internal climate variability was
estimated using long climate model control runs under pre-industrial greenhouse
gas forcing. Two hundred and forty years were used from each model control run,
each containing 8 consecutive 30 year periods. Mean variability was estimated for
each model by taking the difference between each pair of non-consecutive 30 year
periods, separating the resulting anomaly grid points into rainfall threshold bins
(for example, >10% increase) and then finally dividing the number in each bin by

the number of pairs of time periods. Only non-consecutive periods were used in
case consecutive periods were more highly correlated with one another than
non-consecutive ones.

Thismethodmakes the assumption that 30 yearmean internal rainfall variability
remains the same under forcing. To test this, an alternative method was also used,
wheremodels with at least two ensemblemembers of RCP4.5 were used. In this case,
natural variability for each model was estimated by taking the difference between
30 year means of the projected future rainfall change of the two ensemble members.
The resulting distribution of model estimates was very similar to that obtained using
control runs, although with slightly wider uncertainty ranges—probably due to only
two ensemble members being used as compared with eight different time periods
in the control run method . Therefore, we consider that the control run method
of variability estimation is robust. The relatively low tropical rainfall variability
found here on 30 year timescales is also consistent with a previous estimate6.

Reliability of model estimates of multi-decadal variability.Multi-decadal
internal climate variability has been estimated here from climate models. To try to
assess how valid these model estimates are, 30 year CMIP5 variability over the
twentieth century was compared with corresponding variability in observed CRU
data across tropical land. This exercise is hindered by the fact that both
anthropogenic and natural forcing are present in both reality and historical model
runs, and so the comparison measures the response to forcing as well as the range
of natural variability. Observational error may also be substantial, particularly in
the early part of the century where observations in the tropics are sparse.

Three consecutive 30 year means (1916–1945, 1946–1975, 1976–2005) were
used from both observations and historical model simulations. Combined forced
and internal variability was estimated by taking the difference at each grid point
between each pair of time periods, separating into threshold bins, and then
dividing the number in each bin by the number of time-period pairs
(Supplementary Fig. 2). CRU variability is outside (above) the range of model
estimates for changes >10%, and just inside the range for changes >20%. It is
unclear what proportion of this discrepancy is due to the response to forcing,
natural variability or observational uncertainty.

If models do systematically underestimate either variability or the historical
response to forcing, then this could also have implications for the reliability of their
future response to forcing. One possibility is that some future 30 year mean rainfall
changes could be larger than projected at present.

List of climate models. ACCESS1-0, ACCESS1-3, BCC-CSM1-1,
BCC-CSM1-1-M, BNU-ESM, CanESM2, CCSM4, CESM1-BGC, CESM1-CAM5,
CMCC-ESM, CMCC-CM, CMCC-CMS, CNRM-CM5, CSIRO-Mk3-6-0,
EC-EARTH, FGOALS-G2, FIO-ESM, GFDL-CM3, GFDL-ESM2G,
GFDL-ESM2M, GISS-E2-H_p1, GISS-E2-H_p2, GISS-E2-H_p3, GISS-E2-H-CC,
GISS-E2-R_p1, GISS-E2-R_p2, GISS-E2-R_p3, GISS-E2-R-CC, HadGEM2-AO,
HadGEM2-CC, HadGEM2-ES, INM-CM4, IPSL-CM5A-LR, IPSL-CM5A-MR,
IPSL-CM5B-LR, MIROC5, MIROC-ESM, MIROC-ESM-CHEM, MPI-ESM-LR,
MPI-ESM-MR, MPI-ESM-P, MRI-CGCM3, NorESM1-M, NorESM1-ME.

Of these 44 models, 39 had output for RCP8.5, 25 for RCP6.0, 42 for RCP4.5,
and 32 for RCP2.6. Control run data were available for 39 of the models.
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