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Impact of ocean acidification on the structure of
future phytoplankton communities
Stephanie Dutkiewicz1,2*, J. Je�rey Morris3,4†, Michael J. Follows2, Je�ery Scott1,2, Orly Levitan5,
Sonya T. Dyhrman6 and Ilana Berman-Frank7

Phytoplankton form the foundation of the marine food web
and regulate key biogeochemical processes. These organisms
face multiple environmental changes1, including the decline in
ocean pH (ocean acidification) caused by rising atmospheric
pCO2

(ref. 2). A meta-analysis of published experimental data
assessing growth rates of di�erent phytoplankton taxa under
both ambient and elevated pCO2

conditions revealed a signif-
icant range of responses. This e�ect of ocean acidification
was incorporated into a global marine ecosystem model
to explore how marine phytoplankton communities might
be impacted over the course of a hypothetical twenty-first
century. Results emphasized that the di�ering responses
to elevated pCO2

caused su�cient changes in competitive
fitness between phytoplankton types to significantly alter
community structure. At the level of ecological function of the
phytoplankton community, acidification had a greater impact
thanwarmingor reducednutrient supply. Themodel suggested
that longer timescales of competition- and transport-mediated
adjustments are essential for predicting changes to phyto-
plankton community structure.

The world’s oceans have absorbed about 30% of anthropogenic
carbon emissions, causing a significant decrease in surface ocean pH
(ref. 2). Concerns over the impacts of ocean acidification (OA) on
marine life have led to a number of laboratory and field experiments
examining the response of marine biota to acidification.

OA is not the only driver that is affecting marine ecosystems1,3.
The oceans are warming, and nutrient and light environments
are changing. Numerical models (for example, refs 4–6) have ex-
plored how these other drivers impact primary productivity, al-
though less emphasis has been placed on changes in community
structure. Phytoplankton types are not physiologically interchange-
able, and the specific taxa in a community can impact the cy-
cling of elements and the flow of nutrients and energy through
the marine food web. In this study we employed a meta-analysis
of OA experiments as input for a numerical model to explore
how OA, relative to other drivers, may change phytoplankton
community composition.

We compiled data from 49 papers (Methods and Supplementary
Table 1) in which direct comparisons were made between the
growth rates of marine phytoplankton cultures exposed to ambient
pCO2 (∼380 µatm) versus elevated pCO2 within the range predicted
by 2100 (refs 2,7; ∼700–1,000 µatm). The tested organisms were
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Figure 1 | Meta-analysis of GRR of phytoplankton in pCO2 manipulation
experiments. Circles represent observations comparing laboratory cultures
at high and ambient pCO2 ; triangles indicate long-term experiments;
squares represent data from mixed community field incubations. Grey
boxes span the 25th–75th percentiles; central lines indicate median values;
whiskers extend from the 10th to the 90th percentiles. Significance values
are based on Wilcoxon signed-rank tests against the value of 1. ∗,p<0.05;
∗∗,p<0.01; ∗∗∗,p<0.001.

split into six groups: two picocyanobacteria (Prochlorococcus and
Synechococcus); nitrogen-fixing cyanobacteria (diazotrophs); and
three larger eukaryotic groups (diatoms, coccolithophores, and
other large taxa such as dinoflagellates). Given the different roles
these groups play in nutrient cycling we refer to them as ‘functional
groups’. For example, diatoms require silica, diazotrophs add
fixed nitrogen to the environment, and picophytoplankton harvest
nutrients more efficiently than other groups.
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Table 1 | Summary of GRR to elevated pCO2
for six phytoplankton functional groups.

Functional group GRR Minimum Maximum Nobs Nspp Nstrains

Coccolithophores 1.001±0.155 0.648 1.269 45 4 17
Diatoms 1.042±0.150 0.333 1.600 68 22 22
Other large 1.093±0.172 0.818 1.5 20 12 12
Diazotrophs 1.248±0.269 1.000 2.102 17 3 4
Synechococcus 1.179±0.101 0.944 1.029 2 1 1
Prochlorococcus 0.987±0.059 1.108 1.250 2 1 1

GRR values are means± s.d. Nobs , Nspp and Nstrains are the numbers of total observations, di�erent species and di�erent strains, respectively.
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Figure 2 | Model parameterization of GRR to elevated pCO2 . a, Solid bars indicates mean± 1 s.d. of normalized GRR to elevated pCO2 from the single
species meta-analysis (Table 1). Circles indicate stochastically chosen GRR for 16 types within each functional group (for one ensemble member). GRR of
1.2=20% increase in growth rate. b, Model parameterization of growth function with increasing pCO2 ; colours indicate the functional groups as shown in a.
The function is unitless: actual growth rates depended also on the maximum growth rate specific for each functional group, as well as nutrient, light
and temperature.

We calculated the growth rate response (GRR) of each of the
154 observations in our meta-analysis as the ratio of growth rates
under elevated versus ambient pCO2 (Table 1). Values greater than
one indicate faster growth at higher pCO2 . There was a wide range
of responses between taxa, within functional groups (Fig. 1), and
even differing responses between strains of the same species8,9.
The median GRRs of diazotrophs as well as all eukaryotes (except
coccolithophores) were statistically greater than one (Wilcoxon
signed-rank tests, p< 0.05). There were too few observations of
picocyanobacteria for statistical analysis, but the two Synechococcus
data points fell within the range of the diazotrophic cyanobacteria,
whereas Prochlorococcus appeared to be nearly unaffected by
elevated pCO2 (ref. 10). For some eukaryotic phytoplankton11–14

GRRs could also be computed both before and after long-
term cultivation at elevated pCO2 (for example, long enough for
evolutionary changes). Although changes in culture growth rates
were observed in these experiments, GRRs remained within the
range shown by other culture studies (Fig. 1, triangles). GRRs from
our re-analysis of a set of shipboard incubation experiments15 are
also included (Fig. 1, squares and Supplementary Table 2).

Not only was there a wide range within functional groups, but
GRRs also differed significantly between the functional groups
(Kruskal–Wallis test, df = 5, χ 2

= 21.8, p< 0.001), suggesting that
changes in pCO2 may impact competition both within and between
groups. To test this possibility we employed a marine ecosystem
model5 that incorporated the six functional groups embedded in
the ocean component of an earth system model16. Within each
functional group 16 ‘types’ with differing temperature ranges and
growth optima17–19 were resolved (Supplementary Fig. 1a). Each of

the 96 types was also assigned a random pCO2 GRR within the range
(mean ± 1 s.d.) suggested by the meta-analysis for each functional
group (Fig. 2).

We simulated the perturbation of the model marine ecosystem
from pre-industrial conditions through 2100 under a ‘business as
usual’ scenario16 similar to IPCC Representative Concentration
Pathway (RCP)8.5 (ref. 7). The biogeochemistry, productivity
and community structure in the simulated present-day ocean
(Supplementary Figs 3–5) were consistent with observations, with
oligotrophic waters dominated by picophytoplankton and regions of
higher nutrient supply dominated by eukaryotes. We note that the
modelled range of Synechococcus included that observed for pico-
eukaryotes that are not resolved in this model.

The model ocean changes through the twenty-first century
included warming waters, decreased macronutrient supply, altered
light environments, increased pCO2 and lower pH (Supplementary
Fig. 6). By 2100, temperatures and nutrient conditions were
shifted latitudinally relative to 2000, but pCO2 was substantially
altered everywhere in the open ocean (Supplementary Fig. 7,
although in the real ocean localized coastal regions can at present
reach such higher values20). We focused on global changes to
phytoplankton community structure and biogeography as a result of
these physicochemical alterations (Figs 3 and 4 and Supplementary
Figs 4b and 8). In general, types with GRR< 1 had reduced biomass
by the end of the century (Fig. 3a). However, the ‘losers’ in the future
world were not only the types with GRR < 1; many types that had
enhanced growth with higher pCO2 were nevertheless outcompeted.
The largest gains in biomass (relative to present day)were from types
with the highest GRR, typically Synechococcus and diazotrophs, yet
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Figure 3 | Biomass change between 2000 and 2100. a–c, Fraction of globally integrated biomass of each of the 96 phytoplankton types at 2100 relative to
2000 as a function of GRR for experiments ALL, with all drivers (a); ALL-OTHER (other drivers, but no pCO2 changes) (b); pCO2 -ONLY (c). Colours indicate
the di�erent functional groups (see Fig. 2) and di�erent symbols represent each of the four ensemble members. Symbols to left of vertical line (biomass
fraction= 1) indicates reduction in biomass relative to present day. Also indicated is GRR= 1; for a,c, symbols above this line indicate types that had a
higher growth rate with enhanced pCO2 . In b, pCO2 does not change, but types are plotted in the same way for illustrative purposes.

even some types in these two functional groups had substantial
decreases in biomass.

As a metric of community structure we define the ‘functional
diversity’ as the local assemblage of the summed members of the
six functional groups. We quantified this metric as the proportion
of the pre-industrial community that remained at any location5

(see Methods). A value <1 indicates a change in community,
although not necessarily with decreased biomass or diversity, as
a new community could have invaded (Supplementary Fig. 9), as
has been observed in the real ocean21. Changes were calculated at
each location and averaged globally. Global functional diversity
was altered by ∼50% (Fig. 4a), with broad-scale changes in
dominant functional groups relative to pre-industrial conditions
(Supplementary Fig. 4b). The mean range of the 96 phytoplankton
types shifted polewards by almost 600 km by year 2100 (Fig. 4b).
Although there was little change in globally integrated primary
production (Fig. 4c), there were substantial regional changes
(Supplementary Fig. 10), depending on whether light/temperature
or nutrients was limiting growth5,6. Model results appeared robust
across an ensemble of four replicate simulations, each with a
different array of randomized GRRs.

To explore how acidification relative to other global change
drivers contributed to these responses, two additional simulations
were conducted (details inMethods). In one simulation, experiment
pCO2 -ONLY, pCO2 was allowed to rise while all other fields
remained as for pre-industrial conditions. In the other, experiment
ALL-OTHERS, pCO2 was held at pre-industrial conditions while all
other fields impacting growth were allowed to change.

In ALL-OTHERS, which captures the drivers that previous mod-
els4–6 have included, phytoplankton biomass was not influenced by
GRR (Fig. 3b), but instead was determined by alterations in temper-
ature, nutrient availability (Supplementary Fig. 7a,b) and irradiance.
Habitat ranges of phytoplankton typesmoved polewards at the same
rate as the temperature fields (Fig. 4b) with some polar species
becoming extinct5. The increasingly oligotrophic conditions5,22
favoured picophytoplankton, leading to a modest change in func-
tional diversity (Fig. 4a). However, the dominant functional groups
in most regions remained largely reminiscent of pre-industrial con-
ditions (Supplementary Fig. 4c), although these groups were com-
posed of types with different (warmer) temperature optima which
significantly altered the genetic profile in 2100 (ref. 5) (Fig. 3b
and Supplementary Fig. 11b). Reduced nutrient supply led to a 5%
decrease in globally integrated primary production4,5,22 (Fig. 4c).

In the model experiment pCO2 -ONLY there was instead an
increase in globally integrated primary production (Fig. 4c) due to
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Figure 4 | Modelled global changes over the twenty-first century. a, Global
mean fraction of functional group community (functional diversity)
remaining at each location. b, Mean latitudinal poleward shift of leading
edge of the 96 phytoplankton types’ habitats. c, Fractional change in
globally integrated primary production. Purple indicates experiment
ALL-OTHER; blue indicates pCO2 -ONLY; black indicates ALL. For ALL
and pCO2 -ONLY, thin lines are the ensemble members and thick line is
the ensemble mean. Dotted black line in b indicates the mean shift
in isotherms.

the highermean growth rate with elevated pCO2 (themeanGRR over
all observations was 1.06). In agreement with field manipulation
experiments23–27, primary production increased in high-nutrient
regions and remained relatively constant in oligotrophic regions
under ambient nutrient conditions (Supplementary Fig. 10c). The
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fractional increase in globally integrated primary production in
the full model (experiment ALL) resulted from the compensating
effect of one enhancing driver (pCO2 ) and one restrictive driver
(reduced nutrients).

In pCO2 -ONLY there were substantial alterations in phytoplank-
ton types’ biomass by 2100 (Fig. 3c and Supplementary Fig. 4b).
Here, differences in GRRs alone caused these changes and yet many
with GRR > 1 declined. Even slightly higher GRR relative to a
competitor would allow one phytoplankton to outcompete another.
Field studies measuring changes in functional group abundance
during pCO2 manipulations have shown that changing pCO2 alone can
have pronounced impacts on community structure23–27.

The response in the full model (ALL, Fig. 3a) was a combination
of the different drivers (Fig. 3b,c). However, OA was the greatest
driver of changes in biomass (Fig. 3) and functional diversity
(Fig. 4a) by mid-century, although the exact timing was sensitive
to the parameterization of growth to elevated pCO2 (see sensitivity
studies, Supplementary Figs 2 and 12). As some types were
regionally outcompeted, their range decreased, manifesting in an
equatorward shift in the mean ranges (as seen for pCO2 -ONLY,
Fig. 4b). Thus, when considering experiment ALL we found that the
meanhabitat change no longer followed the temperature predictions
seen in ALL-OTHERS and often assumed18,28.

In our model (and the real ocean17,18) the distribution of temper-
ature tolerances was similar between functional groups, and there-
fore functional diversity was largely preserved in ALL-OTHERS,
with individual types tracking their optimal temperatures polewards
(Fig. 4b and Supplementary Fig. 7a). In contrast, the distribution of
pCO2 GRRs was significantly different amongst types and functional
groups (Fig. 1). Moreover present-day variations in open ocean
pCO2 do not overlap those projected for 2100 (Supplementary Fig.
7c). This suggests why OA, rather than temperature, was ultimately
a stronger driver of functional diversity changes in our model—a
finding that contradicts several field experiments12,27 that manipu-
lated temperature and pCO2 . We acknowledge that field experiments
are crucial for providing benchmarks to understand complex com-
munity response under climate change. However, we suggest that
such experiments with the relatively sudden effects of temperature
stress and lack of transport in of new species may mask the more
subtle influence of OA on competition, which may require many
generations to produce major effects.

Our study highlights the need for experiments designed to map
phytoplankton growth responses over a full range of pCO2 and the
need for a better understanding of the physiological trade-offs gov-
erning adaptation of phototrophs to a high-pCO2 world. A number
of recent studies of long-term evolutionary responses to OA and
other climate change drivers11–14,29, as well as studies investigating
synergisms between OA, temperature and other metabolic and en-
vironmental stressors3,30, are beginning to address these questions.
Future models will need to incorporate their findings to make more
realistic predictions about the fate of phytoplankton communities in
an acidifying ocean.

Our model results, guided by a synthesis of disparate laboratory
studies, indicate that pCO2 -related differences in competitive fit-
ness are of sufficient magnitude to considerably alter phytoplankton
community function over the coming decades. Given the impor-
tance of competition shown here, detailed experimental observa-
tions of inter- and intra-group competitive interactions will be es-
sential for advancing our ability to predict future community shifts.
The effect of long timescales and the role of transport are important
determinants of changes in phytoplankton community structure
and highlight the importance ofmodelling alongside laboratory and
field experiments. Such multi-pronged research is critical as the
large turnover of community functionality suggested by our model
could carry profound consequences for all levels of the marine food
chain, as well as global biogeochemistry.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Compilation of acidification experiments. A search of the Web of Science was
conducted using the phrase ‘(coccolith∗ OR diatom∗ OR prochloroc∗ OR synechoc∗
OR trichodes∗ OR crocosphae∗ OR diazotroph∗) AND (CO2 or ‘carbon dioxide’ OR
‘ocean acidification’) AND (‘growth rate’)’. Each paper that mentioned a
comparison between ambient and elevated CO2 conditions in the abstract was
downloaded. Additional papers were selected based on reference lists from the
above papers and personal communications with researchers. We further curated
these papers by excluding any (Supplementary Table 3) that: did not actually
compare growth rates at different CO2 concentrations; did not specify the CO2

levels examined; used CO2 concentrations outside the range 250–1,100 µatm;
attempted to separately manipulate CO2 concentration and pH using organic
buffers; manipulated CO2/pH in such a way as to radically change alkalinity;
presented data in such a way that it was impossible to calculate a ratio of
elevated:ambient growth rates; included only freshwater species; or had been
retracted. Results were divided into single species short-term laboratory studies,
long-term (evolutionary) laboratory studies, and field experiments with mixed
communities (Fig. 1). Values were collected from tabulated data in papers where
possible; otherwise values were estimated visually from figures. No attempt was
made to extract information about replication level, variance, or significance level
of data; only experimental means were collected. Many papers examined the
response to CO2 enrichment under a variety of environmental conditions (for
example, different light or nutrient levels). In this study, each environment was
considered as a unique experiment, and no attempt was made to examine
covariance or synergy between any other parameter and response to CO2. Such
synergy is probably important, but as yet there is too little data to make
these distinctions.

To compare laboratory studies to field studies, we considered a number of
field CO2-enrichment experiments. Unfortunately, only one of these papers,
Lomas et al.15, provided sufficient data to allow calculation of GRR for specific
functional groups. Supplementary Table 2 summarizes our re-analysis of the data
set in Table 3 of Lomas and colleagues15. In four out of five paired experiments,
Prochlorococcus cell density decreased during multi-day incubations at elevated
pCO2 . We note that growth rate reponses to elevated pCO2 (GRR) values are
meaningless when the test organism’s numbers do not increase under one or both
CO2 treatments, and represent this case with no number in Supplementary Table 2.
In contrast, Synechococcus cell density always increased, with GRR> 1 in three out
of five experiments. We note that the authors of the original paper15 concluded,
owing to the large variability and apparent contradictions between their
treatments, that there were ‘small or nonsignificant effects of pH’ on the two
genera. However, we nevertheless include these data in Fig. 1 for three reasons: the
overall lack of relevant field observations in our meta-analysis; the overall lack of
observations of Synechococcus and Prochlorococcus responses to elevated pCO2 ; and
the fact that none of our other data points from the meta-analysis considered either
the authors’ intent or the statistical significance of their conclusions. Our study
shows that any change, even small, can be important, especially relative to
competitors (see Fig. 3). We suggest that further experiments are needed on the
competition between these two species at elevated pCO2 .

Finally, we considered a number of evolution experiments with phytoplankton
cultures11–14 to determine whether long-term adaptation to elevated pCO2 could
push strains outside of the range observed in short-term studies. We considered
only experiments where single strains of marine phytoplankton belonging to one of
the six functional groups considered in our simulation were adapted to high pCO2

for at least 100 generations.
The full data set compiled from our meta-analysis, including many more

observations than the growth rates reported here, is available for download via
BCO-DMO: http://www.bco-dmo.org/dataset/554221.

Climate model. The MIT Integrated Global Systems Model (IGSM) framework5,16

was used in this study. In this earth system model of intermediate complexity, the
three-dimensional ocean circulation31 had a horizontal resolution of 2◦×2.5◦ and
22 vertical levels ranging from 10m in the surface to 500m at depth. Ocean
boundary layer physics and the effects of mesoscale eddies not captured at this
coarse resolution are parameterized32,33. The ocean is coupled to a two-dimensional
(latitude and height) atmospheric physical34 and chemical module, and a terrestrial
component35 with hydrology36, vegetation37 and natural emissions38. The coupled
system was spun up for 2000 years (using 1860 conditions) before simulating 1860
to 2100 changes. Atmospheric greenhouse gas and volcanic observations were
specified from 1860 to 2000; for the twenty-first century, human emissions for a
‘business as usual’ scenario were predicted from an economics module16 (similar to
the IPCC AR5 RCP8.5 scenario7). In both the spin-up, historical and future
simulation phases, the three-dimensional ocean was forced with prescribed wind
fields. These fields had variability as provided by NCEP (ref. 39) re-analysis
(de-trended winds over the period 1948 to 2007 were employed; these winds were
‘recycled’ for years outside this period), which produced interannual variability in
the ocean model. An El Niño Southern Oscillation (ENSO)-type signal was
apparent. For simplicity, we did not allow changes to the wind patterns and

intensity in the future period. Although some clear patterns of changes in wind
stress emerged from analysis of the archived results from coupled runs40,
considerable model uncertainty remained41,42. This aspect of physical changes to
the system is beyond the scope of this work.

Ecosystemmodel. The ocean physical fields (velocities, mixing and
temperature) from the climate model were used to drive a modified version of
the marine ecosystem model5. Inorganic and organic forms of carbon, nitrogen,
phosphorus, iron and silica, as well as 96 phytoplankton types and two grazers were
transported in the three-dimensional ocean. The biogeochemical and biological
tracers interacted through the formation, transformation and remineralization of
organic matter. Iron chemistry included explicit complexation with an organic
ligand, scavenging by particles43 and representation of aeolian44 and
sedimentary45 sources.

Phytoplankton growth rates were parameterized as functions of the maximum
photosynthesis rate, local light, nutrients temperature, as in previous studies5, as
well as pCO2 .

Nutrient limitation of growth was determined by the most limiting resource,

γ N
j =min(N lim

1 ,N lim
2 , . . .)

where the nutrients (Ni) considered were phosphate, iron, silicic acid and dissolved
inorganic nitrogen, and j represents phytoplankton type j (j=1–96). The effect on
growth rate of ambient phosphate, iron or silicic acid concentrations was
represented by a Michaelis–Menten function:

N lim
i =

Ni

Ni+kij

where the kij were half-saturation constants for phytoplankton type j with respect to
the ambient concentration of nutrient i. We resolved three potential sources of
inorganic nitrogen (ammonia, nitrite and nitrate). Phytoplankton preferentially
used ammonia.

Each functional group had different values of maximum photosynthesis rate,
nutrient half-saturation constant, and potentially had different nutrient needs, as in
our previous studies5,46,47. For instance, diatoms were parameterized to have the
highest maximum photosynthesis, but also a high nutrient half-saturation and
silicate requirements. Prochlorococcus had the lowest growth rate, but also the
lowest half-saturation. These differences allowed each functional group to have a
distinct and plausible spatial and temporal niche within our model5,46,47
(Supplementary Fig. 4).

Temperature modulation of growth was represented by a non-dimensional
factor (Supplementary Fig. 1a). This factor48 was a function of ambient
temperature, T (K ):

γ T
j =τT exp

(
AT

(
1
T
−

1
TN

))
exp(−BT |T−Toj|

b) (1)

Coefficient τT normalized the maximum value, whereas AT ,BT ,TN and b regulated
the sensitivity envelope. Toj sets the optimum temperature specific to each of the 16
types in each functional group. There was an increase in maximum growth rate for
types with higher optimum temperature, as suggested by observations19,49, and a
specific temperature range over which each type could grow, as suggested by
observations17,18. We test other assumptions on the temperature growth function
(Supplementary Figs 1b,c and 13; discussed later).

The unique feature of this model was the inclusion of a modification to growth
rate by the ambient pCO2 (Fig. 2 and Supplementary Fig. 2a):

γ
pCO2
j = 1 if pCO2 <400

γ
pCO2
j = 1+δj

(pCO2 −400)
600

if 400<pCO2 <1,000 (2)

γ
pCO2
j = 1+δj if pCO2 >1,000

where δj was a randomly assigned coefficient from the range of responses seen in
each functional group from the meta-analysis (that is, GRR, Fig. 1, Table 1). If
δj=0, then there was no change in growth rate with increased pCO2 , if δj=0.2 then
the phytoplankton grew 20% faster when pCO2 reached 1,000 µatm.

Because the meta-analysis focused on elevated pCO2 and not the effects of
pre-industrial low pCO2 , we assumed that pCO2 had no effect on growth rate until
400 µatm, and that there was a linear change from 400 to 1,000 µatm (Fig. 2). This
simplest linear description was chosen as the majority of laboratory experiments
conducted only present day and ‘elevated’ pCO2 . Experiments conducted over a
wider range of pCO2 values suggested a hyperbolic Michaelis–Menten response for
nitrogen fixation rates for Trichodesmium and Crocosphaera8, but the GRR in that
study (and others) appeared more complex. We do test how more complex pCO2

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nclimate2722
http://www.bco-dmo.org/dataset/554221
www.nature.com/natureclimatechange


LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2722

growth functions (Supplementary Fig. 2b,c) alter the results (Supplementary
Section 4, Supplementary Fig. 12,) finding that the function does affect the speed of
response, but not the final 2100 results.

Furthermore, many studies factorially (for example, many in Supplementary
Table 1) manipulated pCO2 in addition to other environmental parameters, such as
temperature and nutrient concentration. Often these experiments suggested some
form of synergy between CO2 and other factors, but there was no cross-system
consensus as to how any of these factors interacted.

Primary production was calculated as a function of photosynthesis rate (a
function of nutrients, light, pCO2 and temperature) and phytoplankton biomass (Bj)
summed across all phytoplankton types (j=1–96).

Simulation design. Nutrient distributions were initialized from results from
previous simulations, although the results presented here were not sensitive to
these initial conditions. The 96 phytoplankton types were all initialized with the
same low initial condition. The ecosystem was forced with the physical fields from
the earth system model for the pre-industrial control and run for 50 years to allow
the phytoplankton community and the upper ocean biogeochemistry to establish a
quasi-equilibrium. A repeating seasonal cycle was quickly reached and there was
only a small biogeochemical drift associated with upwelling of deep water. The
several thousand years of integration needed to adjust the deep ocean was
computationally unfeasible. The surface photosynthetically available radiation was
provided by monthly mean SeaWiFS products, and the monthly surface iron dust
was from a model44. These latter two fields were climatological means and did not
change in the simulations described here. Although the impact of changes in light
and dust are likely to be important in the future, they are beyond the scope of
this paper.

From the quasi-equilibrium state we conducted a range of different
experiments (only experiments 2, 3 and 4 are discussed in the main text), where the
system then adjusted under (some combination of) anthropogenic-induced drivers
from 1860 to 2100.

Experiment 1 CONTROL. For another 240 years, the pre-industrial fields were
used. This experiment provided a measure of the biogeochemical/ecological drift,
and a baseline from which to compare the climate change experiments.

Experiment 2 ALL. The temperature, circulation, mixing and sea-ice fields and
pCO2 changed as predicted by the earth system model from 1860 to 2100. An
ensemble of simulations were conducted with different randomization of the pCO2

response function.
Experiment 3 pCO2 -ONLY. The pCO2 fields that affect biological rates were

allowed to change from 1860 to 2100, but the circulation, mixing and sea-ice fields
remained as for pre-industrial. An ensemble of simulations were conducted with
different randomization of the pCO2 response function.

Experiment 4 ALL-OTHER. pCO2 fields were kept at pre-industrial conditions,
while all other fields (temperature that affect biological rates, circulation, mixing
and sea-ice) changed as though for 1860–2100.

Experiment 5 TEMP-ONLY. Temperature fields that affect biological rates
changed from 1860–2100, but the circulation, mixing, sea-ice and pCO2 fields
remained as for pre-industrial conditions.

Experiment 6 PHYS-ONLY. Temperature fields remained as for pre-industrial
conditions, but circulation, mixing fields, sea-ice and pCO2 fields were allowed to
change as for 1860–2100 conditions.

Note that these are independent experiments, with their own internal
feedbacks. Thus it is not a priori given that, for instance, results from ALL-OTHER
and pCO2 -ONLY should add up to produce the results of ALL. When they do, it is
useful to be able to see the independent effects of different environmental
change drivers.

We also conduct several further sets of experiments to test the sensitivity of the
results to different assumptions of the growth functions. In each of the below we
performed the analogous experiments to one member of the ensemble of
pCO2 -ONLY and ALL:

Experiment a pCO2 -MICHAELISMENTEN. In this experiment a more complex
Michaelis–Menten pCO2 growth function was assumed (Supplementary Fig. 2b):

γ
pCO2
j = 1 if pCO2 <400

γ
pCO2
j = min

(
1+ε1δj

(pCO2 −400)
(pCO2 −400)+kpCO2

, 1+δj

)
if pCO2 >400,δj>0 (3)

γ
pCO2
j = max

(
1+ε1δj

(pCO2 −400)
(pCO2 −400)+kpCO2

, 1+δj

)
if pCO2 >400,δj<0

This Michaelis–Menten type function requires two additional parameters (ε1 and
kpCO2 ), which were set to 1.3 (unitless) and 150 µatm respectively.

Experiment b pCO2 -HILL. In contrast to pCO2 -MICHAELISMENTEN we
assume a pCO2 growth function that has slower response at lower pCO2 and faster at
high pCO2 (Supplementary Fig. 2c):

γ
pCO2
j = 1 if pCO2 <400

γ
pCO2
j = min

(
1+ε2δj

(pCO2 −400)2

(pCO2 −400)2+kpCO2
2 , 1+δj

)
if pCO2 >400, δj>0 (4)

γ
pCO2
j = max

(
1+ε2δj

(pCO2 −400)2

(pCO2 −400)2+kpCO2
2 , 1+δj

)
if pCO2 >400, δj<0

Again this function requires two additional parameters (ε2 and kpCO2 ), which were
set to 450 (unitless) and 12.25 µatm respectively.

These two functions (equations (3) and (4)) are the same as the original
function (equation (2)) below 400 µatm and above 1,000 µatm, but differ in the
speed of response to pCO2 . Note that these function are not based on observations,
but merely chosen to explore the sensitivity of the linear assumption in
equation (2). Results suggest that the specific function alters the timing of, but not
the final response (Supplementary Fig. 12).

Experiment c SPECIES48. Here only eight types were assumed within each
functional group. Each type had the same temperature range as in the previous
experiments (equation (1); Supplementary Fig. 1b). The original linear pCO2

function (equation (2), Supplementary Fig. 2a) was assumed. We also conducted a
CONTROL simulation for this series of experiments.

Experiment d SPECIES6. To explore the role of the genetic diversity that was
imposed with the 16 (or 8) types within each functional group, here there was only
one ‘type’ in each functional group. The types were no longer assumed to have
temperature ranges, but instead to have a temperature growth function that spans
the full range at the maximum value, as in the previous experiments
(Supplementary Fig. 1c):

γ T
j =τT exp

(
AT

(
1
T
−

1
TN

))
The pCO2 function for each was assumed to be linear as in equation (2) with δ set by
the mean GRR of the functional group. We also conducted a CONTROL
experiment for this series of experiments.

Results from the experiments 5, 6 and a–d are not discussed in the main text,
but are discussed in Supplementary Section S4 (Supplementary Figs 11–13).

Diagnostics. For describing the biogeography we calculated the region for each
phytoplankton type where biomass was above a threshold value. We then defined
the poleward (leading) edge and equatorward (trailing) edge of that region for each
longitude for each hemisphere. Where a habitat spanned the equator there was no
trailing edge. We also calculated the maximum of the biomass of each
phytoplankton type for each longitude and each hemisphere. The results presented
in Fig. 4b and Supplementary Figs 11c, 12c and 13c show the movement of the
leading edge relative to pre-industrial averaged across longitude, types and
hemispheres. We found similar changes to both the leading and trailing edges, as
well as the maximum.

Two metrics of community structure were considered: ‘genetic diversity’ refers
to the local assemblage of all 96 phytoplankton types, and ‘functional diversity’
refers to the local assemblage of the summed biomass of members of the six
functional groups. We discuss only the latter in the main text. We calculated the
genetic community structure (‘genetic diversity’) changes following
Dutkiewicz et al.5 as:

Cgr (t)=
J∑
j

min

(
Bj(t)∑J
j Bj(to)

,
Bj(to)∑J
j Bj(to)

)

where Bj was the biomass of each phytoplankton type, J=96 and to indicated
pre-industrial biomass. If the community had not changed at all at time t , then
Cgr (t)=1. If any (or all) phytoplankton types increased and none decreased, then
Cgr (t) was still 1: the original community was still there, but there was additional
biomass. But if any phytoplankton types had decreased biomass, then Cgr (t)<1.
We similarly defined functional community changes (fraction remaining) as:

Cfr (t)=
K∑
k

min

(
Fk(t)∑K
k Fk(to)

,
Fk(to)∑K
k Fk(to)

)

where Fk was the biomass of each functional group (that is, summation of biomass
of all 16 types within each functional group), K =6.

NATURE CLIMATE CHANGE | www.nature.com/natureclimatechange

© 2015 Macmillan Publishers Limited. All rights reserved

http://dx.doi.org/10.1038/nclimate2722
www.nature.com/natureclimatechange


NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE2722 LETTERS
We also calculated the amount of new community coming into a location:

Cgn(t)=
J∑
j

min

(
Bj(to)∑J
j Bj(t)

,
Bj(t)∑J
j Bj(t)

)

and similarly for Cfn(t).
We note the genetic diversity changes are dependent on the

parameterization of the genetic differences (see Supplementary Section 4).
However, we find this metric useful to indicate how functional diversity can
be maintained even while the genetic types can be significantly altered, and
show this metric in the Supplementary Methods (Supplementary Figs 11b,
12b and 13b).
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