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Molecular processes of transgenerational
acclimation to a warming ocean
Heather D. Veilleux1,2†, Taewoo Ryu3†, Jennifer M. Donelson2,4, Lynne van Herwerden2,5,
Loqmane Seridi3, Yanal Ghosheh3, Michael L. Berumen6, William Leggat1,7, Timothy Ravasi3*
and Philip L. Munday1,2*
Someanimalshave the remarkable capacity toacclimateacross
generations to projected future climate change1–4; however, the
underlying molecular processes are unknown. We sequenced
and assembled de novo transcriptomes of adult tropical
reef fish exposed developmentally or transgenerationally
to projected future ocean temperatures and correlated the
resulting expression profiles with acclimated metabolic traits
from the same fish. We identified 69 contigs representing
53 key genes involved in thermal acclimation of aerobic
capacity. Metabolic genes were among the most upregulated
transgenerationally, suggesting shifts in energy production for
maintaining performance at elevated temperatures. Further-
more, immune- and stress-responsive genes were upregulated
transgenerationally, indicating a new complement of genes
allowing the second generation of fish to better cope with
elevated temperatures. Other di�erentially expressed genes
were involved with tissue development and transcriptional
regulation. Overall, we found a similar suite of di�erentially
expressed genes among developmental and transgenerational
treatments. Heat-shock protein genes were surprisingly un-
responsive, indicating that short-term heat-stress responses
may not be a good indicator of long-term acclimation capacity.
Our results are the first to reveal the molecular processes
that may enable marine fishes to adjust to a future warmer
environment over multiple generations.

Over the next century, rising ocean temperatures due to climate
change will pose a serious threat to the survival of many aquatic
species. To persist, populations will either need to shift their
geographic distributions5 or adapt through genetic evolution or
phenotypic plasticity6–8. Of particular concern for marine species
is that rising temperatures will reduce the capacity for oxygen
supply and delivery9,10, limiting activities essential to survival and
individual fitness. Reduced aerobic scope (the capacity for oxygen
uptake above resting metabolic rate) at higher temperatures can
affect vital functions such as growth, swimming performance,
reproduction and competitive ability10–14. In reef fishes, aerobic
scope declines at temperatures just a few degrees above the
summer average, well within the range projected to occur as a
result of climate change9,12,15. However, aerobic capacity can be

fully restored transgenerationally, when parents and their offspring
both experience the same elevated temperatures (transgenerational
acclimation)1. Understanding the molecular processes that make
this transgenerational plasticity possible is important for assessing
the performance of marine organisms and sustainability of their
populations in a rapidly warming ocean.

We used a multi-generational rearing experiment to identify
the molecular pathways associated with transgenerational
thermal acclimation of metabolic traits in a common reef fish,
Acanthochromis polyacanthus. Second-generation fish were
reared developmentally (from hatching to adulthood) and
transgenerationally (two generations) at two elevated temperatures
(+1.5 and +3.0 ◦C) and in control conditions (+0.0 ◦C; Fig. 1a
and Supplementary Methods). The full transcriptome of four
to five adult fish from each of the five treatments (Fig. 1a) was
sequenced and expression data were correlated to standardized
metabolic traits from the same fish: routine metabolic rate
(RMR), maximum metabolic rate (MMR), and net aerobic scope
(MMR−RMR; NAS; Supplementary Methods). As observed in
previous studies1, developmental exposure to elevated temperatures
from just after hatching into adulthood led to a reduction in aerobic
scope (Fig. 1b). However, when both parents and offspring were
exposed to elevated temperatures, complete restoration of aerobic
scope was achieved (Fig. 1b). Of 89,543 assembled contiguous
sequences (contigs), 165 had significant differential expression
(adjusted P < 0.05) in at least one of the treatment comparisons
(transgenerational and developmental treatments versus control;
transgenerational versus developmental treatments). One hundred
and sixty of the differentially expressed contigs had BLASTN
and/or BLASTP (ref. 16) sequence matches with E-values less than
10−10 (Supplementary Fig. 2), of which 69 had expression that was
significantly correlated to at least one of the standardized metabolic
measures (RMR,MMRandNAS; Fig. 2 and Supplementary Table 1).
Comparing transgenerational and developmental treatments at
the same temperatures enabled us to distinguish patterns of gene
expression due to transgenerational effects, compared with effects
of within-generation exposure to elevated temperatures.

The 69 differentially expressed and correlated contigs represent
53 genes that are associated with transgenerational thermal
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Figure 1 | Transgenerational experimental design and corresponding net
aerobic scope measures. a, Experimental design tree showing the three
temperature treatments (+0.0 ◦C,+1.5 ◦C and+3.0 ◦C) at which three
generations (F0, F1 and F2) of Acanthochromis polyacanthus were reared.
Temperature treatments are colour coded and experimental duration for
each generation is shown in the vertical grey bars to the right. Fish in the F2
generation representing control, developmental and transgenerational
temperature treatments are indicated by horizontal grey bars. b, Net
aerobic scope (NAS) of fish in control, developmental and transgenerational
F2 treatments (mean± s.e.m.). Lower case letters above bars indicate
significant di�erences (P<0.05) among treatments. Number of fish used
to measure NAS for each treatment is shown beneath the grey bars.

acclimation. These genes are involved in a variety of cellular
processes such as metabolism, transport, immune and stress
responses, growth and development, cell cycle, cell organization,
and transcriptional regulation (Fig. 2 and Supplementary Table 1).
The expression profiles of these contigs were separated into three
distinct groups, with the first and largest group (Fig. 2a; 46 contigs)
containing contigs with expression that primarily correlated to
the acclimating phenotypic trait, NAS (78%). Metabolism is the
main function associated with genes in this group (lipid, protein
and carbohydrate metabolism; nine, nine and five contigs each,
respectively), including 79% of the most highly upregulated contigs
transgenerationally relative to controls (≥1.5 log2 fold change;
Supplementary Table 1). During thermal stress, the composition of
lipid membranes is altered (homeoviscous adaptation)17 and there
are changes in lipid use18 and expression of the fatty acid pathway19.
Of the nine contigs associated with lipid metabolism, six were
strongly upregulated in transgenerational treatments (representing
four genes: acsl5, adtrp, apoEb and pdzk1). ApoE has a major
role in triglyceride and cholesterol homeostasis, suggesting that
transgenerational upregulation of lipid metabolism may be critical
for improved aerobic scope. apoE and other apolipoproteins are
also upregulated after short-term thermal challenge in fish20,21,

suggesting a link between short-term thermal stress and long-term
thermal acclimation of aerobic capacity. Many of the metabolic
genes in the first group (Fig. 2a) are involved in catabolism and
digestion (Supplementary Table 1), suggesting that their augmented
expression provides increased energy for aerobic performance in
transgenerational fish (Supplementary Table 1). Supporting this
hypothesis, 11 contigs are involved in the cellular transport of
ions, solutes, amino acids, lipids and carbohydrates, possibly as a
result of increased substrate digestion. Our results suggest that there
is transgenerational regulation of lipid, protein and carbohydrate
metabolism and that each may be critical for increased energy use
associated with acclimation of aerobic scope across generations.

In addition to metabolic responses, 16 contigs with putative
functions associated with immune responses and inflammation,
apoptosis, homeostasis and stress were significantly upregulated
during transgenerational thermal acclimation (Supplementary
Table 1). Immune responses can be maternally imprinted in fish22,
potentially by transferring maternal idiotypic networks to juveniles
at a critical stage23. Such imprinting, we propose, would then
be augmented throughout development to establish an immune
response better suited for survival under thermal stress. As chronic
stress can suppress immune function and lead to increased
susceptibility to disease and pathogens24, the transgenerational
augmentation of five putative immune-related contigs (gimap8,
xpnpep2, mep1b and natterin3) may represent new baseline levels
of immune-related genes to protect against elevated temperatures
experienced across generations.

The second main group of genes (Fig. 2b) is comprised of
12 contigs, all of which had expression that was negatively correlated
to standardized RMR. RMR was lower in fish exposed transgenera-
tionally to+3.0 ◦C compared with controls (Supplementary Fig. 1).
The high proportion of contigs in this group with putative function
in organ development (two contigs; ppdpfa and ptf1a) and endothe-
lial cell proliferation (four contigs; nlrp14 and timp2) suggests that
lower metabolic costs enabled these cellular processes to function
at a higher level in transgenerationally acclimated fish, which is
consistentwith acclimation of growth rates in fish exposed transgen-
erationally to elevated temperatures3,4. In addition, this group con-
tains five contigs related to transcriptional regulation (three genes:
rorb, ptf1a and rps27 ), two of which enhance expression of genes
involved in organogenesis (rorb and ptf1a). The third gene, rps27 ,
encodes a nuclear protein induced on DNA damage25. Therefore,
increased transgenerational expression and negative correlation to
standardized RMR suggest that rps27 plays a role in maintaining
DNA integrity after transgenerational exposure to elevated temper-
atures to restore routine metabolic function.

Although the first two groups in the heatmap (Fig. 2a,b)
contained contigs with expression that was significantly
elevated transgenerationally, the third group (Fig. 2c) contained
11 contigs (16% of total) with expression that was downregulated
transgenerationally. Most of these contigs had expression that
positively correlated to standardized RMR (64%; seven contigs)
and largely matched genes with functions related to stress,
homeostasis and immune responses (Supplementary Table 1). As
many other stress- and immune-related genes were upregulated
transgenerationally in the first two groups, the fact that genes with
these functions were downregulated in the final group suggests that
their expression was reduced in favour of other more beneficial
genes for transgenerational acclimation.

The heatmap indicates that many contigs had higher differential
expression in transgenerational compared with developmental
treatments (Fig. 2); however, only three were statistically significant:
cytochrome p450 2j2 (cyp2j2), ribosomal protein large P1 (rplp1),
and an uncharacterized gene (Supplementary Table 1). Cyp2j2 is
associated with epoxidation of arachidonic acid26, of which the
primary products formed, epoxyeicosatrienoic acids, are involved
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Figure 2 | Di�erentially expressed contigs, correlations to metabolic performance, and putative cellular function. a–c, Heatmap (left) of di�erentially
expressed contigs (adjusted P<0.05) from Acanthochromis polyacanthus, comparing+1.5 ◦C and+3.0 ◦C developmental (devel.) and transgenerational
(transgen.) treatments with control (+0.0 ◦C). On the basis of expression patterns, contigs were separated into three groups (a–c). The associated cellular
functions for each group are presented as pie charts (middle), with each contig represented by two functions with the exception of those that were
uncharacterized. Numbers within pie chart sections represent the total number of contigs that correspond to that function. Venn diagrams (right) indicate
the proportion of contigs with expression that positively (blue) or negatively (red) correlated to metabolic data (NAS: net aerobic scope, MMR: maximum
metabolic rate, and RMR: routine metabolic rate). Purple text indicates negative NAS and positive RMR.

in a variety of processes such as vasodilation, anti-inflammation and
cytoprotection. For example, cyp2j2 seems to play a cytoprotective
role in animals exposed to hypoxia27 and high-fat diets28. Thus,
we suggest that increased transgenerational cyp2j2 expression may
play an important cytoprotective role, allowing proper cellular
function after transgenerational but not developmental exposure

to elevated temperatures. The ribosomal protein rplp1 plays a
key role in the elongation step of protein synthesis. Therefore,
rplp1 may be required in developmental treatments to increase
protein translation owing to a higher rate of protein degradation
during thermal stress, but is no longer required transgenerationally
because of the aforementioned increases in cytoprotective gene
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Figure 3 | HSP contig expression pattern. Heatmap of HSP expression from
Acanthochromis polyacanthus, comparing+1.5 ◦C and+3.0 ◦C
developmental (devel.) and transgenerational (transgen.) treatments with
control (+0.0 ◦C). There were no significant di�erences in expression
(adjusted P<0.05). Expression values correspond to the contig with the
best match (E-value < 10−27) to HSP genes within our transcriptome.

expression. Importantly, there was only one contig (btn1a1) that
was significantly differentially expressed in developmental but
not transgenerational treatments (Supplementary Table 1). This
suggests that there is not a different suite of genes and cellular
processed engaged during developmental exposure to elevated
temperatures compared with transgenerational acclimation.

A commonly used molecular measure of thermal stress has been
to examinemolecular chaperone expression, specifically heat-shock
proteins (HSPs). Some HSPs are constitutively expressed and are
involved in nascent polypeptide folding and others are expressed
to help refold proteins that unfolded owing to various stressors29.

We found no HSP genes with significantly altered expression in
developmental or transgenerational A. polyacanthus. Of all 160 sig-
nificantly differentially expressed contigs identified in this study,
including contigs with expression that did and did not correlate to
metabolic traits (Supplementary Fig. 2), only one matched a gene
with putative chaperone function: eukaryotic translation elongation
factor 1a (eef1a). The protein encoded by this gene, eef1a, has
been shown to protect aminoacyl transfer RNA synthetases from
denaturation in mammals30, and may therefore have a more spe-
cific role in maintaining the integrity of transgenerational protein
synthesis in our study. Although contigs with matches for many
HSPs were found within the A. polyacanthus transcriptome, none
was significantly differentially expressed among the five treatments
(Fig. 3; adjusted P > 0.7). Therefore, the lack of differential HSP
gene expression and limited chaperone activity suggests that other
genes outlined in this study are better indicators of transgenera-
tional thermal acclimation, at least in A. polyacanthus. Although
HSPs may be good indicators of acute thermal stress29,31, our results
suggest that they may not be good indicators of the capacity for
long-term thermal acclimation to predicted temperatures under
climate change.

Acclimation of aerobic scope within two generations1 suggests
that epigenetic inheritance is involved. Future research into
epigenetic mechanisms and their effect on genes identified in this
study will be useful to improve our understanding of adaptive
responses to rapid environmental change. In this study we identified
key genes and processes involved in transgenerational thermal
acclimation, including genes involved in enhanced fatty acid
oxidation, protein and carbohydrate metabolism, and changes in
genes involved in cytoprotection, immunity, organogenesis and
cellular organization. The plasticity of these genes and their strong
correlation to known acclimating phenotypic traits suggests that
they may be critical in aiding reef fishes, and possibly other marine
organisms, to survive in a warmer future environment.
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