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Growth responses of a green alga to multiple
environmental drivers
Georgina Brennan and Sinéad Collins*

One feature of global change is that biota must respond not to single, but to multiple environmental drivers. By growing a
model photosynthetic microbe in environments containing between one and eight di�erent drivers, including changes in CO2,
temperature, and pH, in di�erent combinations, we show that the number as well as the identities of drivers explain shifts
in population growth rates. This is because the biotic response to multiple environmental drivers depends on the response
to the single dominant driver, and the chance of a driver of large e�ect being present increases with the number of drivers.
Interactions between drivers slightly counteract the expected drop in growth. Our results demonstrate that population growth
declines in a predictable way with the number of environmental drivers, and provide an empirically supportedmodel for scaling
up from studies on organismal responses to single drivers to predict responses to large numbers of environmental drivers.

Amajor challenge facing freshwater and marine biologists is
to quantify how aquatic biota will respond to our changing
climate. One of the hallmarks of global change is that

it is complex; changes in temperature, pH, light levels, carbon
dioxide andoxygen concentrations, nutrient availability, salinity and
other environmental variables can occur together1,2. Predicting the
action of multiple environmental drivers (MEDs) on population
growth is required for understanding how aquatic biota, at all
levels from individual genotypes to communities, respond to
global change3. Studies in freshwater3,4 and marine systems5,6 have
historically focused on understanding organismal responses to key
environmental drivers alone, such as changing temperature, CO2
levels, or light levels, or investigated MEDs by using pairs or trios
of drivers1. This has shown that interactions between the effects of
environmental drivers varywith the drivers and the organisms being
tested6, but use a small number of environmental drivers relative to
the number of drivers in most natural environments2. This leaves
open the possibility that when the number of environmental drivers
is larger, the effects of interactions between individual drivers may
become less important in determining overall organismal responses.
The goal of our study is to determine if knowing the interactions
between specific environmental drivers at the organismal level
is necessary when the number of environmental drivers is large,
or whether patterns emerge that allow us to predict organismal
responses without knowing particular driver interactions.

Studies on MEDs until now are mainly concerned with
understanding interactions between the effects of individual drivers
(see ref. 3 for definitions).Driver effects can either be additive, where
the response to MEDs is equal to the sum of their individual effects,
or multiplicative, where the response exceeds the sum of their
individual effects. Interactions that are additive ormultiplicative can
be further synergistic (having a positive feedback) or antagonistic
(having a negative feedback). Antagonistic interactions can thus
lead to outcomes where responses to MEDs are less than the sum
or product of their individual effects. These definitions must be
contextualized in terms of the level of organization they affect, such
as cellular processes or community composition. Driver interactions
can be studied mechanistically, where the interactions are between

drivers themselves (for example, the chemistry that links pH and
CO2 levels), or be outcome-based and describe effects on organisms.
Here, we use an outcome-based definition of drivers and driver
interactions. We focus on the effects of drivers and interactions as
population-level organismal responses.

Building an outcome-based prediction of biotic responses to
MEDs by understanding specific interactions between key drivers
requires that key drivers be identified and the interactions between
them be measured. This approach is fruitful when the number
of drivers is small. For example, high CO2 and low pH enhance
the detrimental effects of ultraviolet irradiation on a key pelagic
calcifier,Emiliania huxleyi7, and althoughmany diatom assemblages
do not respond to CO2 enrichment alone, CO2 and high light levels
interact synergistically to reduce their growth rates8. These experi-
ments can investigate the interactions between drivers, but are diffi-
cult to scale up, because measuring interactions between all drivers
becomes impossible as the number of drivers increases. This is prob-
lematic, because these and similar studies on natural phytoplankton
assemblages4, E. huxleyi7,9–11, Phaeodactylum tricornutum12, and the
freshwater alga Chlamydomonas reinhardtii13, suggest that interac-
tions among drivers are not easily predicted even if they can be
explained once observed. If this is the case, then one cannot use
studies of pairs or trios of drivers to predict responses to those
same pairs when many other drivers are also present (for example,
if pH, CO2 and ultraviolet levels change alongside temperature,
oxygen levels, and micronutrient levels). One way to reduce the size
of experiments is to measure responses to groups of MEDs using
combinations of drivers that are likely to change in concert2. This
requires knowing how drivers group, and how these groups change
on relevant geographic and temporal scales.

Alternatively, it may be possible to make reasonable outcome-
based predictions of responses to MEDs based on the number of
environmental drivers. Our general reasoning can be explained
using environmental tolerance curves (Fig. 1), which usually show
the relationship between some aspect of organismal function (for
example, growth) and an environmental value (for example, tem-
perature). Here, we consider a tolerance curve showing the rela-
tionship between organismal function and the total environment
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Figure 1 | Cartoon of the e�ects of multiple drivers on organismal function
using an environmental tolerance curve. Some aspect of organismal
function, such as growth, is plotted as a function of the environment
experienced by the organism, with the value of ‘Environment’ being
determined by multiple environmental drivers. Initially, organismal function
is high (solid black circle). When single drivers change, organismal function
changes (patterned filled circles). Although the e�ect of each driver may be
unknown, as an increasing number of drivers occur, the likelihood of at least
one driver or driver interaction having a large detrimental e�ect on
organismal function increases. This thought experiment does not require
that the population be in its optimal environment, just that, among the
environments sampled, the control environment be one where organismal
function is high. Figure 2a shows that this is the case here, as the control
environment is among the ‘best’ environments available in this experiment.
Note that this cartoon is meant to illustrate our thought process, and not to
indicate the quantitative e�ects of the specific environments used in this
experiment. Please refer to Fig. 2 for quantitative data.

experienced by the organism in a multidriver environment. We
assume that organismal function is initially somewhere on the
plateau. Changes to one ormore randomly chosen drivers will affect
organismal function in some unknown way, either as a direct result
of one driver, or as a result of interactions among drivers. If a
subset of drivers or their interactions have large enough effects to
push organismal function off the plateau, but the effects of most
drivers are unlikely to be severe (as organisms are generally tolerant
of some environmental variability), the chances of at least one of
these large-effect drivers occurring grows as the number of drivers
and interactions increases. This is analogous to altering organismal
function through genetic mutations, where most mutations have
small effects on organismal function, but mutations of large effect
will eventually occur if enough mutations are sampled14. Here, we
instead approach the idea that organismal phenotype is a result of in-
teractions between genotype and environment using environmental
‘mutations’ rather than genetic ones.

We carried out a large experiment to disentangle the effects of
the number of environmental drivers from the identities of the
drivers in determining population growth responses to MEDs. We
show that for small numbers of drivers, interactions between drivers
determine growth responses, but as the number of drivers increases,
growth responses can be predicted from the number of drivers (if the
composition of the environment is unknown), or the single driver
with the largest effect alone (if the composition of the environment
is known). Populations of the model microalga C. reinhardtii
were grown in 96 different test environments that differed from
a standard laboratory environment by between one and eight
of the following drivers: high CO2, low pH, high temperature,
low light, ultraviolet irradiation, phosphate starvation, general
nutrient depletion, and herbicide (Supplementary Table 1). These
drivers were chosen because they are generally studied as single
environmental changes15,16, occur inmany aquatic ecosystems17, and
are ‘drivers’ (sensu Boyd and Hutchins, 2012) in that they elicit a

response in C. reinhardtii and many other microbes13,18–39. Because
a laboratory strain of C. reinhardtii was used for this study, and our
hypothesis is based on how reactions to changes in the environment
affect organismal growth, drivers are environmental values that
differ from the usual laboratory environment of the particular
population used to start this experiment. The control environment
is thus not arbitrary, even though it may differ from the optimal
environment for other strains of C. reinhardtii that have been
maintained under different conditions. Whenever possible, control
and test environments reflect anticipated changes in the natural
world. For example, the control environment uses 430 ppm CO2,
whereas the test environments containing high CO2 use 2,000 ppm
CO2, in line with IPCC predictions40. In other cases, the usual
laboratory environment for this strain required that we choose the
test environment value using pilot studies. This experiment requires
that the test environments be different from the environment usually
experienced by this particular strain at the beginning of the study,
not that the control environment be the average or optimal one for
this species over many studies. See online methods for a detailed
discussion of each test environment. In each test environment, we
measured population growth, a trait commonly used to predict
how populations will fare under environmental change41, including
whether they are likely to persist42. SeeMethods and Supplementary
Information for test environments and experimental design.

The number of drivers can explain population growth
Population growth rate declines as the number of drivers in
test environments increases (Fig. 2). We see that the number of
drivers is the strongest predictor of population growth, explaining
approximately 37% of the decrease in growth rate independently
of the particular combination of environmental drivers involved,
which is in line with our hypothesis that knowing the number
of environmental drivers alone is informative (F1,93=11.1766,
P=0.001, Fig. 2a; see Supplementary Methods). Regime (the
particular drivers in any unique test environment) explains
some (32%) of the decrease in population growth rate in test
environments, and the overlap in the environmental drivers between
regimes also explains some (about 10%) of the variation in growth
(F1,93= 3.877, P = 0.052, Fig. 2a). As expected, extinction is more
likely in test environments with a greater number of drivers
(F1,93=3.310, P=0.072, Supplementary Fig. 1).

Because regime explains some of the variation in population
growth, we further investigate whether this is due to interactions
between drivers, or to the actions of single drivers within regimes.
We find that the drop in population growth rate can be explained
by the single driver in a regime that has the largest effect on growth
when it is experienced alone (r 2= 0.43; P< 0.0001, Fig. 2b). This
is consistent with population growth rates being largely determined
by one overriding driver, rather than by interactions between them,
at least with the drivers investigated here. The relationship is thus
best described by a simple comparative model (Supplementary
Table 4). Antagonistic interactions occur, where the effect of the
most detrimental driver is often mitigated if other drivers are
present. Because of this, the realized average population growth
rate is higher than predicted by the comparative model. Here, high
CO2 (Fig. 3), which increases population growth in C. reinhardtii
and many other chlorophytes27,43–46, counteracts the growth effects
of detrimental drivers and gives rise to antagonistic interactions.
When CO2-enriched test environments are removed from our data
set, populations in the remaining test environments have lower
average growth rates, and fit the predictions of the comparative
model without antagonistic interactions (r 2 = 0.58; P<0.0001,
Supplementary Fig. 2).

Our key finding is that the number of environmental drivers can
be used to predict growth in the test environments even without
knowing which drivers make up each test environment.We propose
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Figure 2 | Population growth rate of C. reinhardtii under zero to eight environmental drivers. a, Black data points and bars represent means and standard
deviation between regimes for each NED. See Supplementary Table 3 for regimes. Di�erent shapes within each NED indicate individual regimes. Dashed
line in a indicates growth in the control environment. b–d, Population growth rates (mean and standard deviation) predicted by a model (white triangles)
alongside measured values (black circles), followed by goodness-of-fit, for three models: comparative model (r2=0.43, P<0.0001) (b), multiplicative
model (r2=0.33, P<0.0001) (c) and additive model (r2=0.25, P<0.0001) (d); extinction (indicated by dashed line in panels b–d) is predicted in
environments with>5 changes.

that this is because test environments with a greater number of
drivers are more likely to contain at least one severely detrimental
driver or driver interaction and that, once a severely detrimental
driver is present, the addition of other drivers is unlikely to depress
growth much more, barring extinction. This can be seen in Fig. 2a,
where the lowest fitness at NED= 2 is about 0.16 divisions/day
(regimes for the two lowest points are pH + phosphate starvation
and phosphate starvation + low light, both have the same average
growth rate), but at higher NED this minimum does not decrease,
indicating that once a very stressful driver or driver interaction is
present, further drivers or driver interactions do not, on average,
depress growthmore. However, interactions domatter for lowNED;
the populations with the lowest growth rates at NED 2 (lowest
average growth rate for a regime is 0.16 divisions/day) do far worse
than those with the lowest growth rates at NED 1 (lowest average
growth rate for a regime is 0.30 divisions/day). Interestingly, this
shows that if the goal of empirical studies is to predict population
responses to MEDs when many drivers are present, the most useful
course of action when only a limited number of populations can be
observed is to determine which single drivers affect growth most,
or even determining how many drivers are likely to co-occur. In
contrast, focusing on interactions between a few specific drivers
may produce results dominated by interactions that sum nearly

to zero when more realistic scenarios of environmental change
are considered.

The goal of this study was to disentangle the role of the number
of environmental drivers from the specific drivers present in test
environments. Each driver is used only at a single intensity in our
study (see Methods for explanations of the choice of intensities
of particular drivers), and the rank order of the driver effects are
probably due to both intensity and identity. In our data set, the
most detrimental drivers are herbicide presence and phosphate
starvation. Presumably, neither would be as detrimental if we had
used lower concentrations of herbicide and higher concentrations
of phosphate, respectively. However, it is reasonable to suppose
that in most natural environments, drivers will vary in intensity
as well as identity. Our interpretation of our data hinges on the
growth effects of drivers, not their identities per se, and we expect
that if this experiment were repeated with different drivers, or a
different organism, the qualitative results would be the same—the
drivers with the largest effect on growth would determine responses
even when populations experienced them together with numerous
other drivers. Although the size of our study precluded multiplying
it to measure the relative contributions of identity and intensity
of drivers to organismal responses, this indicates a direction for
future experiments.
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Figure 3 | Population growth rates of C. reinhardtii in test environments containing high CO2, low pH, and high temperature. Each point shows mean and
standard deviation for three replicate populations. The identity of regimes is indicated by the shape of each point. The shape of each line shows the unique
patterns of increasing the number of drivers in test environments. In general, population growth drops when environmental changes of larger e�ect than
previously present (herbicide, nutrient depletion (ND) and phosphate starvation) are added.

Environmental similarity
In our experiment, test environments become more similar as the
number of drivers increases, although this similarity explains less
than 11% of the variation in growth. If increases in environmental
similarity were driving our results, we would expect that variation
among regimes drop as the number of drivers within regimes
increases, but this is not the case (correlation between the number
of drivers and variance among regimes with the same number of
drivers; post hoc fit r 2= 0.06, P= 0.53). Increasing environmental
similaritywith an increasing number of drivers per test environment
is a limit of performing an experiment with a finite number of
drivers. To understand how increasing environmental similarity
affects our data, we simulated the same experiment using infinite
environments with the same distribution of effects on growth for
single environmental changes as in our experiment. We found
that using a finite number of possible environmental changes in
our experiment slightly underestimates growth rates in regimes
with many drivers, but the effect is small (Supplementary Fig. 3),
confirming that the increase in similarity between regimes with an
increasing number of drivers does not explain the overall pattern of
our data.

Case study involving temperature, CO2 and pH
To understand how interactions between focal drivers change
when additional drivers are present, we measured the effects on
population growth of increased CO2, increased temperature and
decreased pH—either alone, in pairs, all together, or all together in
the presence of other drivers (Fig. 3).When these focal drivers occur
singly, populations grow fastest under CO2 enrichment, slower
under low pH, and slowest under high temperature. In pairs, the
effect of CO2 enrichment counteracts that of high temperature

so that these populations have higher growth rates than those
under high temperature alone, whereas the combined effects of CO2
enrichment and low pH reduces growth. Populations grown in low
pH and high temperature grow faster than those subjected to either
driver alone, and populations subjected to all three drivers together
grow faster than any of the paired or single cases. In these test
environments, containing between one and three drivers, specific
interactions between responses to drivers determine growth effects,
and the most informative way to explain changes in growth is by
investigating the physiological mechanisms involved47.

In contrast, when elevated CO2, low pH, or high temperature
co-occur with other drivers, changes in population growth are
predictable from the effects of single drivers. This prediction ismore
robust when a greater number of drivers are present in the test
environments. For example, if CO2, pH and temperature change,
decreasing light intensity does not affect growth further, as expected
from the small effect of light intensity on growth alone relative
to the effect of other drivers already present in the regime. In
contrast, the presence of herbicide, which has a drastic effect alone,
reduces growth when it is added to a test environment that already
contains several other drivers. The addition of nutrient depletion has
very little effect on growth and is masked by the dominant effects
of herbicide.

These interactions are all expected under the simple comparative
model. Interestingly, at high NED, phosphate limitation has
an antagonistic interaction when herbicide is present. This
is surprising, as both herbicide and phosphate are dominant
environmental drivers. The herbicide used here is atrazine, which
directly blocks the photosynthetic electron transport chain,
reducing photosynthetic efficiency13. Phosphate is a limiting
factor in many natural environments, yet it is a necessary
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macronutrient that photosynthetic organisms such as C. reinhardtii
require in large amounts35. Previous work13 suggests protection
mechanisms such as nonphotochemical quenching of excess
light energy and adjustment of the photosystem stoichiometry to
explain the antagonistic interaction observed between atrazine
and very high light in C. reinhardtii and arrested growth with
no loss in viability in low light conditions. Similar protection
mechanisms may be in place here to protect populations from
the lethal effects of atrazine under limited resources at high NED.
Antagonistic interactions between phosphate depletion and other
environmental changes have also been found in a nitrogen-fixing
species (Trichodesmium48), where phosphate-limited populations
are also CO2-limited, so that high CO2 can increase population
growth rate when phosphate is limiting. Our case study broadly
supports the observation that elevated CO2 can partly mitigate
the drop in growth in test environments with MEDs, including
phosphate-limited environments. However, we also find some
exceptions where growth is not increased by high CO2, such as
when nutrients and phosphate are co-limiting.

Although interactions between drivers increase variation in
the reduced data set that excludes high-CO2 test environments
(Supplementary Fig. 2) relative to the full data set shown in Fig. 2,
the overall relationship between population growth and the number
of drivers is the same. When many drivers co-occur, the effects of
individual drivers, in particular of the driver with the single largest
effect alone, are reasonable predictors of population growth. Our
data also show that even if the individual effects of drivers on growth
are unknown, the number of drivers offers a good estimate of the
expected growth rate when large numbers of drivers co-occur. As
with the full data set, this is due to test environments with a greater
number of drivers having a higher chance of containing at least one
severely detrimental driver so that, generally, growth decreases as
the number of drivers increases.

Conclusions
Global change involves many environmental drivers, but biotic
responses are often studied using few environmental drivers,
so it is vital that we explore if and how studies using few
environmental changes inform predictions of biotic responses
to higher numbers of drivers. Mechanistically understanding all
interactions between the relevant drivers in aquatic systems47 cannot
be tackled experimentally—with current methods, full factorial
experiments are simply too large to carry out. That being said,
we can make a tradeoff between a mechanistic understanding of
interactions between specific drivers and predicting overall biotic
reactions to MEDs. One well-established way to do this is by using
scenarios2 where suites of environmental variables are changed
in concert and organismal responses measured. Here, we propose
a complementary method suitable for situations where a larger
number of drivers is considered, based on data showing that average
changes in population growth in a model microalga are largely
predictable from either the number of environmental drivers, or the
effect of the single most detrimental driver, in cases where a large
number of environmental drivers occur together. As with scenarios,
our approach trades mechanistic understanding for predictive
power. Although the ideal solution to understanding organismal
responses toMEDsmay be to replace ‘black box’ approaches such as
ours with amechanism-based understanding that allows prediction,
this may not be realistic given current knowledge. Our approach is
appropriate when constructing scenarios of environmental change
carries significant uncertainty, because of uncertainty in predicting
the intensities of individual drivers, of correlations between changes
in drivers, or even in the identity of the particular drivers involved
at the relevant geographical and temporal scales for focal organisms.
It is also useful when data on responses to drivers or scenarios
cannot be gathered for all organisms where it is needed. Another use

of our method is in making between-species or between-genotype
comparisons by uncovering differences in sensitivities to particular
drivers. If the effect of many individual drivers is measured on
different species or genotypes, then studies can be used to both
understand differences in responses between species or genotypes,
and to predict the likely range of responses to MEDs within
communities containing many species or genotypes.

We show that specific interactions between drivers determine
growth responses when only a few drivers change, but these
interactions do not need to be taken into account to predict
average growth responses whenmany drivers change. This provides
hopeful evidence that continuing to build our understanding of how
single drivers affect population growth is indeed informative for
understanding population-level responses to MEDs.

Methods
Methods and any associated references are available in the online
version of the paper.
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Methods
Experimental design. All populations were founded from a single cell of
C. reinhardtii (CC-2931, mt-; Chlamydomonas Resource Center, University of
Minnesota), grown in sterile Sueoka’s high salt medium, buffered with Tris-HCl
(HSMT; ref. 39), under continuous rotation (50 r.p.m.) at 25 ◦C and constant light
at 32 µmolm−2 s−1 photon flux density (Fisher Scientific Traceable Dual-range
Light Meter), at 420 ppm CO2 (Supplementary Tables 1 and 2). These variables
were controlled using incubators (Infors AG CH-4103). This strain of C. reinhardtii
is from a culture collection, and has been grown in our lab for over seven
years—this medium, temperature and light levels represent the usual benign
growth conditions for this strain.

Experimental environments. Experimental populations were grown for
approximately three generations in replicate test environments that differed from
the benign control environment (430 ppm CO2, pH 7.2, temperature 25 ◦C, full
light and nutrients, no herbicide and no ultraviolet), by between one to eight of the
following parameters: increased CO2 to 2,000 ppm, temperature to 26 ◦C, decreased
pH to 6.5, light levels to 18 µmolm−2 s−1, reduced phosphate to 1.69mM, general
nutrient depletion by 75%, and added 0.5 µM of the herbicide atrazine. In addition,
test environments with ultraviolet were exposed to a dose 8.1 kJm−2 ultraviolet
radiation once a week as part of the batch culture protocol (Supplementary Tables 1
and 2). There are 96 test environments in total in this study and 288 populations
(3 independent replicate populations per test environment×96 test environments,
Supplementary Table 3). The large size of this experiment motivates using
C. reinhardtii as the model alga, as it grows easily in small volumes in media that it
is already adapted to that have sufficient buffering capacity to control pH when
CO2 is varied, has a wealth of information available on responses to the individual
drivers used in our study, and is a common model system in algal physiology and
evolution. Cultures were grown in 48-well plates containing 1.6ml of culture
media. Each population was acclimated to its test environment for seven days
(three generations), and then transferred to fresh test environment medium for
each regime.

Details of how individual drivers were manipulated and our reasoning behind
specific manipulations are below. In general, driver intensities were kept in line
with future climate change scenarios where possible17,49,50, but modified to
accommodate logistics, the starting point of the benign lab environment, the need
that each driver affect growth, and avoiding rapid extinction in environments that
contained only one driver. Although extinction is one possible outcome of
populations being exposed to changes in environments, the goal of our study was to
learn how responses to one environmental driver predicted responses to multiple
environmental drivers; this requires meaningful measures of growth in the
single-driver environments. With the exception of CO2/pH, we did not attempt to
control chemical interactions between drivers; these interactions may contribute to
organismal responses and to subsequent patterns of how response scales with the
number of drivers. Because this study aimed to understand average biotic
responses with increasing numbers of drivers, we had more power to detect a
pattern by including a greater number of drivers rather than focusing on specific
chemical interactions among drivers.

Temperature. A conductive heat mat (Exo Terra Heat Wave substrate heat mat)
was placed under experimental plates to increase the temperature of the culture
media to 26 ◦C. This did not affect the control temperature set within the incubator
and was controlled using a thermostat (Rootit Heat Mat Thermostat). Our
reasoning is that a 1 ◦C rise in temperature could be produced without affecting the
overall temperature of the incubator or causing condensation on the culture vessel
lid, falls within the range of predicted temperature rises for aquatic ecosystems49
and produces a change in growth rate in C. reinhardtii—and can thus act as a
driver—but does not cause mortality (we wanted to avoid large numbers of
extinctions during the experiment).

CO2. Sterile breathable films (AeraSeal breathable sealing film) were used instead
of the of the 48-well plate lids that came with the plates. This allows increased CO2

diffusion into the media. Although we did not quantify the precise level of CO2 in
the media, growth in the high-CO2 conditions was stimulated, indicating that it
was acting as a driver, which is all that was needed for the purpose of this study.
CO2 levels in the test environments were chosen based on projected CO2 levels,
and are in line with other experiments investigating microalgal responses to
CO2 enrichment.

pH. The pH of the culture media was altered by adding 2% HCl. This required one
to two drops per litre of HSMT, so the concentration of nutrients was not altered by
changes in volume. The pH was measure with a pH meter (Thermo Orion Star
A121 pH Portable Meter) and buffered by adding Tris-HCl. Even though this drop
in pH (0.7 units) is large relative to changes expected in marine ecosystems49 it is
well within those experienced in freshwater systems39. On the basis of pilot work,
this drop reliably affects growth in the C. reinhardtii in our laboratory cultures.

Ultraviolet. A ultraviolet lamp (UVM-57) was used to provide a dose of ultraviolet
radiation at acclimation and at T0 (Supplementary Fig. 5). The breathable films
were removed from the culture plates under sterile conditions during ultraviolet
irradiation. The lamp was mounted 5.1 cm from the surface of the culture plates,
providing an irradiative exposure of 33.75Wcm−2. Populations were irradiated for
4min, which corresponds to a ultraviolet dose of 8.1 kJm−2.

Light intensity. Overall light intensity was reduced by approximately 40% using a
neutral density light filter (0.15 optical density), designed to reduce the light
intensity across all wavelengths equally and attenuate light by absorption with
minimal reflection. The filter was secured to the top of the experimental plates,
allowing sufficient room for CO2 to circulate. Our rationale for decreasing light was
pragmatic; it is possible to put a filter on some of the culture vessels, but difficult to
selectively increase light levels reliably for only a few populations during an
experiment of this size. Furthermore, increasing light levels for C. reinhardtii often
lead to bleaching and mortality51,52. We found that with this strain the light
intensity used was high enough for growth, but limited the amount of bleaching
in populations.

The strain we used (CC-2391) has been used by other experiments where light
levels were 60 µEm−2 s−1, equivalent to 60 µmolm−2 s−1 (ref. 53), and
50 µmolm−2 s−1 (ref. 54). These light intensities are lower than the ‘low light’
intensity reported in ref. 13, although a different strain of C. reinhardtii (CC-125)
was used. However, previous experiments used cultures that differed from ours in
terms of volume, as well as other details, and so should not be directly compared.
We have been growing this strain in the laboratory for several years under the light
levels used in this experiment (32 µmolm−2 s−1), and as the experiment depends on
using environmental change (that is, change relative to a control environment that
the organism usually experiences), deviation from the light levels usually
experienced is needed. We verified that the light levels in the control environment
allow faster growth than the light levels in the test environments (see
Supplementary Fig. 9). Neutral density filters were used to decrease light levels, and
we show that the filter used in our test environments (0.15 optical intensity)
significantly reduced growth relative to the control light levels, and that the control
light levels are not low down on the growth curve.

Herbicide. Atrazine was used at a concentration of 0.5 µM in HSMT. Atrazine was
then added to the culture media used for this treatment freshly whenever
populations were transferred into fresh media. On the basis of pilot work, this
concentration of atrazine reliably affects growth in the C. reinhardtii genotype used.

Nutrients. All nutrients within Hutner’s trace elements (HTE) were reduced
equally to a concentration factor of 0.25 relative to the control concentration (see
Supplementary Table 2 for concentration of each nutrient within HTE). As
laboratory strains are used to growing in rich media such as HSMT, increasing trace
nutrients has no measurable effect on growth. The reduction in nutrients needed to
act as a driver in this experiment was determined empirically during pilot studies.

Phosphate. Phosphate was reduced to a concentration factor of 0.125, relative to
the control concentration39. Salts lost by the removal of dipotassium phosphate
(K2HPO4) and monopotassium phosphate (KH2PO4) were replaced with
potassium chloride (KCl). The level of phosphate needed to act as a driver was
based on pilot work and previous studies55.

Population growth. Cells were counted by flow cytometry every 24 h for a total of
120 h using a BD FACSCanto II (BD Biosciences) flow cytometer calibrated with
Cytometer Setup and Tracking (CS&T) beads. The data were acquired with the BD
FACSDiva v6 software. Each culture was counted twice. The cell counts were
transformed into cells per millimetre and the number of divisions per day per
starting cell was calculated using equation (1):

Rate of division
(
day−1

)
=
(log2(Nt/No))

(tf − t0)
(1)

where Nt is the cell density (cellsml−1) at time tf (hours) and No is the cell density
at time t0 (hours). This calculation was used because different environments
produced different shaped growth curves (Supplementary Fig. 6), and the usual
metric of maximum growth rate was not useful, whereas this measures the average
number of divisions per day per founder cell in a transfer cycle, and allows
comparison of populations with different growth strategies41. In particular, this
measure gives the average number of divisions per day that have taken place per
founder cell in the population, where cells divide by binary fission, as is the case
here. It is also a metric that is not affected by N0, which is required because the
population size reached during the acclimation period differs between
environments—this is to be expected given that the environments were chosen to
have a range of effects on growth. Here, even though many of the curves seen in
Supplementary Fig. 6 do not appear exponential, an exponential process (binary
fission) underlies them, and thus justifies the use of equation (1). There are several
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reasons why an exponential process may fail to produce a full exponential growth
curve, such as the rate of cell division not being constant over the entire time period
measured, or a low number of division events occurring within the time window of
interest. In different environments, maximum cell division rates, the tempo of cell
division events over the transfer cycle, the presence and length of lag phases, and
carrying capacities, in any combination, may differ. The metric of the average
number of reproductive events per unit time over the time window of interest is a
general one, although a different equation would have to be used in the case where
the organism being studied did not reproduce by binary fission. In our experiment,
populations in the control environment were never nutrient-limited (cultures never
reached carrying capacity). For comparison, we also used a more conventional
measure of population growth (see Supplementary Methods) that simply measures
the slope of the growth curve, which is the average number of cell divisions per day
in the entire culture, rather than per cell in the starting population. In this case, it is
possible to have a larger number of cell divisions simply by having a higher
population density at the end of the acclimation period, leading to a larger value of
No, so the measure of slope is sensitive to small differences in the initial population
size. The two methods reach the same conclusions, probably because starting
population sizes were similar over different populations in our experiment.

Statistical analysis. The effect of the identity and NED on growth was analysed
using a mixed model in R (ref. 56), using the packages lme4 and lmerTest. Number
of environmental drivers (0–8; referred to as NED) is a fixed factor, as is overlap
between regimes within each level of NED (measured as the average number of
shared drivers between different test environments for a given NED—see below).
Regime and replicates within each regime are random factors. To directly compare
the contributions of fixed and random factors to variance, the percentage
contribution of fixed factors (Supplementary Table 5) was estimated by using
equation (2).

Percentage of fixed effect variance=
(
σ 2
F ×(b2− se2)

σ 2
X

)
×100 (2)

where σ 2
F is the variance of the fixed effect, b is the slope of the fixed effect estimated

by the mixed effects model, se is the standard error of the fixed effect as estimated
by the mixed effects model and σ 2

X is the variance of the response variable.

Post hoc analysis. A post hoc mixed model was used to detect effects of particular
drivers (for example, of CO2 or pH) where the identities of each driver were nested
within NED were added to the random part of the model in place of regime and
overlap, as described above.

Overlap of NED between regimes. Each regime is unique—however, because
regimes become more similar as the number of environmental drivers increases,
overlap between regimes for a given NED was calculated as an average pairwise
difference between regimes, where each environmental driver is coded as a binary

variable (present or absent). Average overlap for each NED is calculated as
1−(average pairwise distance). The overlap for test environments with 0, 8 and
1 environmental drivers is zero as there is only one control regime, one regime with
all eight environmental drivers and in test environments with 1 driver, all eight
changes were assayed alone. The analysis was performed the same way for each
subset of the presented data (including the case study and full data set less CO2).
The effect of sampling from a finite number of possible environmental drivers was
explored using a simulation written in R (Supplementary Information).

Models. Expected numbers of division (Nexp) for each regime were calculated
for each of three models (simple comparative, multiplicative and additive),
using the observed number of divisions (Nobs) measured for NED= 1, where each
driver is experienced alone. For the simple comparative model, Nexp is equal to the
most dominant individual environmental driver relative to the control (1−Nobs).
For example, if herbicide is found to elicit the largest change in population growth,
any other driver present within that regime would have no additional effect. For the
additive model, Nexp is calculated as the sum effects of all individual drivers present
in the regime when experienced alone (at NED= 1). For the multiplicative model,
Nexp is the product ofNobs for each of the drivers present in the regime when they are
experienced alone (at NED= 1). Model fits were compared using the r 2 values. The
expected number of divisions for each model (simple comparative, multiplicative
and additive) was fitted against the observed fitness using a linear model.
This was completed in R using the lm function within the R basic stats package.

Data. All data and R scripts are available from Datadryad
(http://dx.doi.org/10.5061/dryad.jt1fb).
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