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clouds and precipitation, their coupling 
to the circulation and their role in climate 
sensitivity (http://www.wcrp-climate.org/
index.php/gc-clouds).

The quasi-operational use of climate 
models in regular rounds of climate 
projections has strongly affected 
community behaviour regarding model 
development. Modern climate models 
are equivalent to well-tuned car engines. 
Over time, their parts have been built to 
neatly fit and operate well together. As a 
result the risk of initially degrading model 
performance by making substantial changes 
to key components is high, the time to 
implement ideas is long and the reward 
often not guaranteed. We must overcome 
the natural conservatism in making 
decisions around developing and applying 
new model components that has emerged 
through ‘operational’ climate models.

Ultimately though, solving what are 
clearly challenging but also very exciting 
scientific problems will require us to 
attract many new creative minds to work 
on them. This has proved difficult and 
people working on the fundamental issues 
in model development have become 

somewhat akin to an endangered species. 
It is timely then to think about dedicated 
activities that both improve their habitat 
and ‘breed’ the next generation. Improving 
the recognition of solving old model 
problems as a vital activity throughout the 
community and increasing the engagement 
of model developers in the broader climate 
science agenda are crucial. How many 
of the papers published in this journal 
alone would exist without the efforts of 
the modelling community? This increased 
recognition must go hand-in-hand with 
educational programmes ranging from 
short courses to the deeper engagement 
of academia in the model development 
enterprise, conceivably driven by an 
increased number of appointments of 
model developers in academic institutions 
so that the skills and excitement of being a 
model developer can be transferred to the 
next generation.

Both the climate science community 
and society rely on high-quality model 
representations of the climate system. 
Making climate models the best they can be 
at any given time should go without saying. 
The time to make it so is now.� ❐
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COMMENTARY:

Uncertainty in projecting GHG 
emissions from bioenergy
Thomas Buchholz, Stephen Prisley, Gregg Marland, Charles Canham and Neil Sampson

The definition of baselines is a major step in determining the greenhouse-gas emissions of bioenergy 
systems. Accounting frameworks with a planning objective might require different baseline attributes 
and designs than those with a monitoring objective.

To evaluate the impact of any proposed 
greenhouse-gas (GHG) mitigation 
we have to be able to compare GHG 

emissions expected under the mitigation 
activity with some alternative future  — 
typically a counterfactual baseline that 
reflects emissions under a ‘business-as-usual’ 
(BAU) scenario1,2. Defining an alternative 
future has been at the heart of recent 
controversy over the assessment of net GHG 
emissions associated with development 
and expansion of forest-based bioenergy3–5. 
Major uncertainties in the quantification 

of the net GHG emissions associated with 
forest biomass energy lie in the prediction 
of the baseline. The challenges inherent 
in predicting net GHG emissions under 
BAU conditions can be illustrated using the 
periodic assessments of the United States’ 
forest carbon stocks from the Forest and 
Rangeland Renewable Resources Planning 
Act (RPA) assessments.

Gillenwater6 defined a baseline as “a 
prediction of the quantified amount of an 
input to or output from an activity resulting 
from the expected future behaviour of the 

actors proposing, and affected by, a proposed 
activity in the absence of one or more policy 
interventions, holding all other factors 
constant (ceteris paribus)”. Accounting 
strictures consider both what information 
would be useful to decision-makers 
(relevance) and the ability of experts to make 
meaningful measurements (reliability)7. To 
make useful decisions we must be able to 
compare the path travelled with an alternate 
path not travelled (the baseline). If wood is 
not harvested for energy it will be left in the 
forest or harvested for some other purpose. 
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But at what point does a level of uncertainty 
rule out a baseline’s usefulness? Usefulness 
is dictated by the question being asked, 
therefore emissions monitoring requires 
different baselines from planning efforts.

There are two fundamental approaches 
to baseline development: one based on the 
current situation or constant reference and 
one based on a vision of an anticipated 
future under BAU conditions. While 
the constant reference intrigues by its 
simplicity, it is not able to account for the 
‘opportunity cost’ of carbon sequestration. 
If a forest region would have increased 
carbon storage over time in the absence 
of a new harvest, but it shows no such 
carbon storage increase under the project 
scenario, no biogenic CO2 emissions would 
be reported with respect to a constant 
reference baseline so long as carbon storage 
did not decrease. This approach has been 
adopted by the Kyoto Protocol8 where “the 
net changes in greenhouse-gas emissions 
measured as verifiable changes in C stocks 
in each commitment period, shall be used 
to meet the commitments…”. In contrast, 
an anticipated future baseline would 
represent the expected BAU changes in 
carbon pools and compare actual versus 
expected changes. 

Anticipated future baselines have been 
widely used in modelling approaches 
for measuring GHG emissions of forest 

management alternatives (for example, 
bioenergy systems, carbon offset markets). 
But an anticipated future baseline has one 
major caveat: being a forward-looking 
tool relying on additional assumptions 
beyond measureable data points (as applied 
with a constant reference baseline), the 
uncertainty associated with an anticipated 
future baseline increases over time. 
Relevant but highly uncertain variables 
include behavioural economics (market 
trends, anticipated future revenues, and 
so on.) or ecological factors (soil quality, 
rainfall patterns, natural disturbances, 
climate change).

Most importantly, baselines depend on 
the framework and policy question they 
are designed for9. Policy planning efforts 
might call for the development of multiple 
scenarios to explore different pathways and 
to gauge sensitivities of future pathways 
to a range of input variables. Meanwhile, 
program-monitoring efforts might depend 
on a different set of criteria to define 
useful baselines, and data accuracy might 
become more important than completeness. 
Accuracy might be essential to ensure 
stakeholder consensus and support as 
well as a legally defensible foundation that 
centres on a scientific consensus.

The US Environmental Protection 
Agency is currently developing an 
‘Accounting Framework for Biogenic CO2 

Emissions from Stationary Sources’5. This 
framework, if adopted as a basis for a legally 
binding rule, would set an example by 
accounting for biogenic emissions rather 
than assuming GHG neutrality for biomass. 
The choice of a baseline has been at the core 
of this challenge.

Recent high-impact studies on GHG 
implications of bioenergy derived from 
existing forests apply one of several 
baselines while at the same time refraining 
from discussing baseline alternatives for 
biogenic GHG emissions. A multitude 
of studies apply forest growth models to 
compare a BAU scenario with a scenario 
considering additional harvests for 
energy3,4,10–13, while others use forest growth 
projections plus a demand-side-driven 
increase in supply14. All of the studies cited 
above ask “How do we evaluate whether a 
mitigation activity is worth undertaking”15 
as part of a planning effort. Studies that 
assess the consequences of alternate 
baselines, however, are rare, and there is 
only a very limited literature devoted to the 
development of general principles to guide 
selection of suitable baselines6,16–18.

Case study
Since 1965, the US Forest Service is required 
approximately every decade to report 
projections of trends in growth, harvests, 
and inventory of forests nationwide. 
These timber trend assessments (labelled 
RPA assessments since 1973) involve 
a wide range of disciplines, including 
resource specialists, biometricians and 
economists, and rely heavily on nationwide 
forest inventory data from the US Forest 
Inventory and Analysis (FIA) program. It 
is instructive to compare the projections 
generated for each assessment with the 
actual data, as a way of assessing the 
strengths and limitations of both constant 
reference and anticipated future baselines.

Each RPA assessment usually begins 
with a point in time for which FIA has 
assembled the most current data. If the 
assessments were made using a constant 
reference, this starting point would be 
the baseline. From there, scientists use 
projections of economic conditions, land-
use changes, resource trends, growth 
models and so on, to model forest harvests 
and inventory. Their projections usually 
span 40 to 50 years. If the RPA evaluations 
used an anticipated future approach, this 
projection would be the baseline.

Of perhaps the most interest to 
determining whether bioenergy systems 
would result in declining forest carbon 
stocks would be the ‘surplus’ of net forest 
growth, that is, gross growth minus natural 
mortality over harvests, land clearings 
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Figure 1 | Suitability of baselines in US timber trend projections. a–d, Comparing projected and measured 
baselines for roundwood surplus (growth minus mortality and removals) for the US Resources Planning 
Act and precursory timber trend assessments in 1965 (a), 1973 (b), 1982 (c) and 1995 (d). A constant 
reference baseline approach assuming constant levels of annual growth and removals would have been 
closer to observed actual data for every assessment since 1965 compared with an anticipated future or 
BAU baseline approach.
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and so on. Past RPA projections can be 
compared with what the FIA actually 
measured after the fact, thereby finding 
which baseline approach tended to best 
anticipate reality.

Figure 1 shows data derived from the 
1965 to 1995 timber trend assessments and 
from FIA measurements 8 to 13 years later. 
A constant reference baseline is indicated 
by the black dashed line. For example, in 
Fig. 1b the constant reference shows the 
1970 surplus level of about 128 million 
cubic metres of roundwood, that is, wood 
from logs. Next, the nearest-term RPA 
projection is for 1980; a ten-year projection. 
The change in projected surplus is indicated 
by the grey dashed line. Finally, the solid 
black line shows the actual surplus as 
measured by FIA after 1980. The difference 
between what RPA projected the surplus 
to be in 1980 (79 million cubic metres) 
and what it actually was (311 million 
cubic metres) amounted to 232 million 
cubic metres.

Results for all other timber trend 
assessments (1965, 1982, 1995; Fig. 1a,c,d, 
respectively) show similar trends: never 
in 30 years of timber trend assessments 
have the near-term anticipated future 
projections of surplus roundwood been as 
accurate as the constant reference would 
have been. Reasons for this discrepancy 
vary and are the subject of ongoing 
study. But it is hard to have tremendous 
confidence in our ability as scientists to 
accurately project the complex dynamics 
of forest growth, wood use, harvest, land-
use change, management intensity, forest 
policy, disturbance, and other factors 
influencing surplus growth, even at 
relatively short (<10 years) time periods 
and even on a national basis. Longer 
projections and smaller regions should be 
expected to lead to even higher variability. 
Summarizing Fig. 1 from a decision-
maker’s perspective: (1) in every case the 
projection was that the surplus would 
decline, (2) in every case the surplus at the 
end was larger than anticipated, (3) in two 
of the four time periods the roundwood 
surplus at the end was larger than at the 
beginning, and (4) in all time periods the 
anticipated future projections were a poor 
indication of the ensuing reality.

The RPA assessments are not free 
of policy influence or intentional bias. 
Over-projection of biomass supply could 
have more negative socioeconomic 
consequences than under-projecting 
supply, therefore incentivizing assumptions 
and parameters towards over-projecting 
removals and under-projecting growth. 
Nevertheless, the sheer magnitude of the 
mismatch between predicted and measured 

surplus is a reminder of the bounds of 
science-based forecasts — even over 
relatively short time horizons.

Attributes
Given the poor record of projecting a 
BAU trend for growth of US forests, it is 
paramount to consider the context and 
the uncertainty when baselines are being 
developed. Gustavsson et al.18 identify 
four principles that suggest that baselines 
should be accurate, comprehensive and 
conservative, as well as balanced against 
practicability. Accuracy refers to capturing 
data uncertainty in a spatial and temporal 
context. Comprehensiveness refers to data 
completeness (“Are all carbon pools and 
fluxes accounted for?”) and completeness 
of GHG emission drivers (socio-economic 
and ecological), while conservativeness 
captures a framework’s ability to not 
overestimate the deviation of a given 
GHG emission pathway from the baseline. 
Practicability refers to being simple enough 
to be widely implemented.

These attributes might receive 
different weightings depending on the 
accounting framework’s purpose. If a 
planning framework is being developed, 
comprehensiveness and conservativeness 
might be paramount. If a monitoring 
framework is being developed, accuracy 
and practicability might receive increased 
scrutiny. An anticipated future baseline 
might be warranted if there is confidence in 
predicting future pathways and identifying 
all relevant carbon pools and drivers. 
However, effects of bounded rationality 
prevail during predictions, where 
modellers use simplified heuristics to reach 
satisfactory, rather than optimal solutions 
due to time, information and cognitive 
constraints6. A constant reference approach 
might be preferable if uncertainty in GHG 
emission drivers, carbon pools and fluxes 
prevails and practicability is considered 
crucial. Considering conservativeness, both 
baseline approaches might require frequent 
updates when applied in a monitoring 
framework (for example, Kyoto Protocol). 
For an anticipated future-based framework, 
it might be preferable to consider several 
rather than one baseline. Independent of 
baseline choices, compliance periods for 
monitoring frameworks might need to 
be short enough to reflect reality while 
at the same time long enough to fully 
capture trends.

Implications
Ultimately, baseline choice is pivotal when 
designing GHG emission frameworks 
and when evaluating GHG emissions 
trends. Selecting appropriate baselines 

depends on the policy or program 
goal, in particular whether the baseline 
will be used as a planning/scenario 
evaluation tool or whether it will be 
implemented in a regulatory scheme 
with potential legal implications. Given 
the challenges in predicting the future 
status of forest resources, anticipated 
future baselines might be best suited for 
planning and policy development, while 
constant reference baselines might be 
more appropriate for monitoring and 
regulatory frameworks.� ❐
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