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Weaker soil carbon–climate feedbacks resulting
frommicrobial and abiotic interactions
Jinyun Tang* andWilliam J. Riley

The large uncertainty in soil carbon–climate feedback
predictions has been attributed to the incorrect parameteriza-
tion of decomposition temperature sensitivity (Q10; ref. 1) and
microbial carbon use e�ciency2. Empirical experiments have
found that these parameters vary spatiotemporally3–6, but
such variability is not included in current ecosystemmodels7–13.
Here we use a thermodynamically based decomposition model
to test the hypothesis that this observed variability arises from
interactions between temperature, microbial biogeochemistry,
and mineral surface sorptive reactions. We show that because
mineral surfaces interact with substrates, enzymes and
microbes, both Q10 and microbial carbon use e�ciency are
hysteretic (so that neither can be represented by a single
static function) and the conventional labile and recalcitrant
substrate characterization with static temperature sensitivity
is flawed. In a 4-K temperature perturbation experiment, our
fully dynamic model predicted more variable but weaker soil
carbon–climate feedbacks than did the static Q10 and static
carbon use e�ciency model when forced with yearly, daily and
hourly variable temperatures. These results imply that current
Earth system models probably overestimate the response of
soil carbon stocks to globalwarming. Future ecosystemmodels
should therefore consider the dynamic interactions between
sorptive mineral surfaces, substrates andmicrobial processes.

Most ecosystem models used for soil carbon–climate feedback
predictions use the turnover pool based structure and static
Q10 for soil carbon dynamics7,8, but these models underestimate
soil carbon variability14 and predict very uncertain soil carbon
stocks15. Some recent microbe-explicit models, aiming to improve
soil carbonmodelling, explicitly considermicrobe–mineral–surface
interactions9–13. These models have shown that microbial carbon
use efficiency (CUE) is an important controller of carbon
decomposition in response to temperature change11,12, but dynamic
interaction ofCUEwith temperature-dependent adsorption is rarely
investigated (except see ref. 9). Further, in representing respiration
and its response to temperature change, many of these microbe-
explicit models impose static CUE (refs 9–12), and some even
characterize carbon substrates using the conventional ‘labile’ and
‘recalcitrant’ paradigm13, but empirical experiments5,6,16 and our
results described below challenge each of these concepts.

In addition to binding to polymeric soil organic matter
(SOM), extracellular enzymes can adsorb to mineral surfaces and
temporarily lose their capacity to degrade SOM (ref. 17). Ourmodel
(Supplementary Fig. 1) therefore allows SOM and mineral surfaces
to compete for extracellular enzyme binding, such that increasing
mineral surface area inhibits SOM degradation into dissolvable
organic matter (DOM), all else equal. Simultaneously, DOM
competes with extracellular enzymes for mineral surface adsorption

and mineral surface adsorption competes with microbes for DOM.
The model forms a network of SOM, DOM, microbes, extracellular
enzymes and mineral surfaces, and models their competitive
interactions using equilibrium chemistry approximation kinetics18.

We predicted CUE using the dynamic energy budget (DEB)
theory19, which allows for a thermodynamically consistent
treatment of the balance between structural maintenance,
structural growth and extracellular enzyme production in
microbial metabolism. Our DEBmodel includes an internal reserve
pool, which buffers between environmental substrate uptake and
microbial cell metabolism. A reserve pool could increase microbes’
plasticity under environmental stress20. We illustrate the role of
microbial plasticity by analysing a second model, identical except
that it has no reserve pool (called a ‘rigid’ microbe).

To resolve the variability of the soil carbon decomposition
temperature sensitivity, in contrast to using a static Q10
(or Arrhenius activation energy) and CUE, we explicitly modelled
the temperature dependencies (Methods) of enzymatic SOM
degradation, microbial DOM uptake, microbial reserve pool
turnover, mineral surface sorption and microbial maintenance,
and implicitly for microbial cell growth and enzyme production
(see Supplementary Methods). We calibrated (Methods) and
evaluated the model (Supplementary Table 1) to be qualitatively
consistent with 14 emergent empirical metrics (Supplementary
Table 2) and addressed parameterization uncertainty through
perturbation simulations.

We identified three salient emergent responses fromour transient
simulations (Fig. 1). First, higher mineral surface adsorption
capacity leads to lower respiration per total soil carbon mass
(see contrast between Fig. 1a–c). Second, temperature sensitivity has
large variability, depending, to various degrees, on many properties
of the system. Third, the daily averaged respiration (red and green
solid lines in Fig. 1) has lower temperature sensitivity and smaller
range than does the original hourly respiration (blue and grey dots
in Fig. 1), implying that models derived from coarse temporal
resolution (daily) data will lead to error when applied at fine
temporal resolution (hourly scales).

In natural soils, the ratio of carbon input rate to available mineral
surface adsorption sites generally decreases with depth. Therefore,
the first response implies lower decomposition rates at depth, a
feature that has proved critical for the turnover pool basedmodels to
represent observed vertical radiocarbon profiles14,21. The second and
third responses are well supported by field measurements3,4,22, that
is, that the inferred Q10 varies spatiotemporally and that temporal
data averaging can reduce temperature sensitivity and variability.
Although empirical measurements have often found that Q10 varies
from small positive (<1) to large (>100) values23, turnover pool
based models have exclusively used static values in the range [1, 10]
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Figure 1 | Relationships between total-SOM-weighted respiration (rCO2 ) and temperature under parameter perturbations. a, Simulation with lower
adsorption capacity. b, Reference simulation. c, Simulation with higher adsorption capacity. d, Simulation with higher sorption activation energy.
e, Simulation with lower substrate activation energy. f, Simulation with seasonal carbon input. Parameters for the reference simulation are in
Supplementary Table 1. The daily data are averages from the corresponding hourly data. All outputs are from the last year of the 100-year simulations.
The red arrow in a indicates the transition from winter through spring to summer; the blue arrow indicates the transition from summer through autumn
to winter. rCO2 , total SOM stock weighted respiration; M, mineral surface sites; Ceqv, carbon equivalent; G, Gibbs energy; kMC, a�nity parameter for
mineral surface adsorption of DOM; kME, a�nity parameter for mineral surface adsorption of enzymes; VEmax, maximum processing rate of enzymatic
SOM degradation; VBmax, maximum processing rate of DOM assimilation.

(refs 7,14,21). By including the temperature dependence of enzyme
activation, our model predicted this large observed Q10 variability
(Supplementary Fig. 4). In addition, our model predicted higher
temperature sensitivity in winter than in summer (Supplementary
Fig. 4), consistent with empirical measurements3,23.

With perturbation experiments, we found that increasing
the activation energies of mineral adsorption (Fig. 1d versus b
and Supplementary Fig. 4d versus b) and enzyme catalysis of
SOM degradation and DOM assimilation (Fig. 1e versus b and
Supplementary Fig. 4e versus b) all independently increased
respiration temperature sensitivities, particularly in winter.
Increasing mineral surface sites from 0 to 1,000 g C eqv generally
increased temperature sensitivity (more persistently for the
rigid microbe, see Fig. 1a versus b and Supplementary Fig. 5),
but additional increases had smaller impacts (Supplementary
Fig. 5). Applying a seasonally varying carbon input changed
the temporal relationship between respiration and temperature
slightly (Fig. 1f).

Analyses using conventional Q10 or Arrhenius-equation-based
theory have argued that higher respiration temperature sensitivity
is due to higher substrate activation energy24. Our results partly
support this argument, but also demonstrate that this effect
manifests most strongly at low respiration rates (Supplementary
Fig. 4), which could occur in winter when decomposition is both
kinetically and physiologically stressed (because lower temperature
induces stronger enzyme deactivation and lower catalysis rate), or
in peak summer when decomposition is physiologically stressed
(because higher temperature induces stronger enzyme deactivation,
although catalysis rate is higher).

In addition to rejecting a static Q10 parameterization, our model
also predicts a highly variable and hysteretic CUE under realistic
temperature variability (Fig. 2b,c), indicating that neither a constant
CUE nor a CUE that decreases linearly with temperature12 (Fig. 2a)
is sufficient for model applications. In particular, in simulations
with realistic diurnal temperature variability (Fig. 2c), CUE could
increase with temperature, be insensitive to temperature, decrease
with temperature, or even be negative. These highly variable
emergent CUE responses explain why empirical experiments often
find highly variable CUE (refs 5,6,25).

Further, our model indicates that the temporal variability of
temperature forcing leads to different total soil carbon stock
predictions through impacts on the emergent CUE (Fig. 2d). In
our experiments, the simulation forced with diurnal and seasonal
temperature cycles predicted a total carbon stock 34% and 97%
higher than when the diurnal cycle is removed and temperature is
held constant, respectively (mean annual temperatures= 290K and
identical carbon input for all three simulations).

This dependence of SOM dynamics on temperature variability
also leads to different inferred respiration temperature sensitivities
between transient simulations and simulations mimicking
incubations. We applied the ‘equal-carbon’ method (to be argued
faulty) to disaggregate our simulations, as is often done with
laboratory incubation data26. Our results indicate asymmetric
respiration temperature sensitivities (Fig. 2e,f and Supplementary
Fig. 6c,d) and that what would be interpreted as ‘recalcitrant’
carbon (Fig. 2f) has higher temperature sensitivity than ‘labile’
carbon26 (Fig. 2e). As our prognostic CUE model includes only
one polymeric (SOM) and one dissolved (DOM) compound
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Figure 2 | Predicted emergent responses as a function of temperature forcing of di�erent temporal variability. a, Steady-state models forced with
constant temperature. b, Transient models forced with seasonally varying, but daily constant, temperature. c, Transient models forced with seasonally
varying, but hourly constant, temperature. d, Total SOM (TOTSOM) stock predictions from simulations forced with di�erent temperature temporal
variability. e,f, ‘Labile’ (e) and ‘recalcitrant’ (f) carbon decomposition versus temperature derived using the equal-carbon method26 from numerical
incubation experiments (Methods); their intrinsic decomposition rates, including those for rigid microbe, are compared in Supplementary Fig. 6.

(with the same activation energy; Supplementary Table 1), the
dependence of temperature sensitivity on decomposition stage does
not indicate a change in substrate but an emergent manifestation of
mineral surfaces, enzymes, substrates and microbial interactions.
The asymmetric temperature sensitivity has been observed in
laboratory incubations27 and is parameterized in the CENTURY
model8. Taken together with the highly variable inferred intrinsic
decomposition rates of ‘labile’ and ‘recalcitrant’ substrates
(Supplementary Fig. 6b), we conclude that models using this type of
parameterization are unlikely to accurately predict decomposition
temperature sensitivity.

Finallywe investigate the effect of imposing a static CUE function
(Methods) on simulated soil carbon–climate feedbacks (Fig. 3).
Under constant temperature forcing, the CUE-prognostic model
(that is, the nonlinear DEB model) predicted almost identical
relative changes in carbon stocks compared to the CUE-staticmodel
(Fig. 3a,d). When the seasonal cycle is included in the temperature
forcing (Fig. 3b,e), the CUE-prognostic model predicted increased
soil carbon stocks under the 4-K warming (red lines), opposite
to that predicted by the CUE-static model (blue lines). Although
both models predicted increased carbon stocks under the 4-K
cooling, the CUE-static model predicted much higher temperature
sensitivity (black lines versus purple lines). When the diurnal cycle
was included in the temperature forcing (Fig. 3c,f), the two models
predicted relatively similar reduction in total soil carbon stocks
under the 4-K warming, but the CUE-static model again predicted
larger increase in carbon stocks under the 4-K cooling. Interestingly,
we found that including the diurnal temperature cycle reduced
the relative change in carbon storage in response to a temperature
perturbation. We found, by doubling the mineral surface area
(Fig. 3d–f) compared with the reference simulations (Fig. 3a–c),
that the amplitude of the temperature sensitivity was reduced,
and the peak changes in soil carbon stocks due to temperature
perturbations were delayed at all temperature forcings. Overall, the

temperature perturbation experiments indicate that the CUE-static
model (and the static-Q10 model, Supplementary Discussion) will
over-predict the magnitude of soil carbon–climate feedback but
underestimate its temporal variability.

Our results indicate that many statically used concepts in
current soil carbon models, such as Q10 and CUE, and the
empirically defined ‘labile’ and ‘recalcitrant’ carbon pools, are
dynamic system responses emerging from interactions between
abiotic factors, microbial metabolism and enzymes. Therefore, soil
carbon models that have statically parameterized these emergent
responses on the basis of laboratory incubations or temporally
averaged field data are mechanistically incorrect and probably
inaccurately predicting long-term SOM dynamics. For instance,
static Q10 models calibrated with daily respiration data cannot
resolve the higher temperature sensitivity (at low temperature)
present in the original hourly respiration data (Supplementary
Fig. 4), nor can they account for respiratory thermal acclimation. In
addition, our results indicate that incubation experimental protocol
strongly impacts inferred temperature response functions and
intrinsic decomposition rates for ‘labile’ and ‘recalcitrant’ carbon
(Fig. 2e,f and Supplementary Fig. 6). Further, even the method
to quantify ‘labile’ and ‘recalcitrant’ carbon pools is ambiguous
and probably flawed (Supplementary Fig. 6b). These problems
imply substantial uncertainty in the associated predicted soil
carbon–climate feedbacks.

Most existing ecosystem models are not dynamically resolving
the many complexities involved in soil carbon decomposition and
are therefore probably propagating large uncertainties into coupled
soil carbon–climate predictions. Although it is simple, our new
model structure is an important step towards ameliorating this
problem. Our model predicted emergent temperature responses
that are consistent with many empirical studies (Supplementary
Table 2), avoiding static parameterizations that most existing
models have used. Adding even more mechanistic realism, such
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Figure 3 | Predicted relative changes in TOTSOM stocks subject to 50-year 4-K temperature perturbations as a�ected by the static versus
prognostic CUE parameterizations and di�erent mineral surface areas. a,d, Simulations driven by yearly constant temperature. b,e, Simulations driven by
daily constant temperature. c,f, Simulations driven by hourly constant temperature. Only the first 20-year data are shown for better visualization.

as substrate diversity, stoichiometric constraint, moisture effects
and even trophic dynamics, would enable our model to predict
carbon decomposition at hierarchically different levels of model
complexities. Although calibrating such amodel will be challenging,
such a process-rich approach will predict state variables and fluxes
that aremore relevant to empirical measurements and providemore
specific guidance towards designing new empirical studies, which
in turn will improve models and thereby future soil carbon–climate
feedback predictions.

Methods
We explicitly modelled the different temperature-dependent processes
by grouping them into three categories: equilibrium processes, non-equilibrium
forward reactions, and enzyme activation, which are, respectively,
represented by the Arrhenius equation1, Eyring’s transition state theory28,
and the equation in ref. 29. We described their relevant equations in
Supplementary Methods.

Our analyses in this paper focused solely on carbon, although we are
designing a model to resolve soil carbon dynamics with multiple chemical
elements and a range of different substrates. As in other studies, we excluded
trophic dynamics, and we discuss the implication of this decision in
Supplementary Methods. As we were not able to identify a single observational
data set to constrain every aspect of our model, we calibrated the parameter
qualitatively (Supplementary Table 2). Specifically, we collected or inferred
model parameters from existing literature whenever possible. Some
parameters, such as maximum production rate, enzyme decay rate and cell
mortality, were numerically inferred to ensure the steady-state solutions
predict microbial biomass to carbon storage ratios within the range derived
by empirical studies (see Supplementary Methods). The maximum cell
growth rate was inverted from the steady-state solution, with all other
parameters assigned.

Initial conditions for the transient spinup simulations were taken from the
corresponding steady-state constant forcing analytical solution. The numerical
solutions were obtained using adaptive time step integration and were verified
with steady-state solutions (Supplementary Fig. 3).

The temperature forcing used for transient simulations is

T=290−δ110cos
(
2π
365

t
)
+δ18sin(2π t)

where T is temperature (K), t is time (day), and δ1 and δ2 are indices for seasonal
and diurnal cycles, respectively. To remove the diurnal cycle, δ2 is set to 0, and to
remove the seasonal cycle, δ1 is set to 0.

Numerical incubation experiments were conducted by first running the
model to equilibrium, then setting the carbon input rate to zero, and then
continuing the simulation for three years at 11 different temperatures (274–314K
with increments of 4 K). Initial conditions for different incubation experiments
were sampled from the equilibrium period when the transient temperature was at
290K, that is, the reference temperature where the enzymes and microbes have
their peak activity. This approach produces two different initial conditions for
each transient simulation with seasonally varying temperature forcing, one from
the first half-year (that is daily-1 and hourly-1 in Fig. 2e,f) and the other from
the second half-year (that is daily-2 and hourly-2 in Fig. 2e,f; also see
Supplementary Fig. 6a for further information). As such, each of the plastic and
rigid microbial models has five simulations with different initial conditions for
the incubation experiments (Fig. 2e,f and Supplementary Fig. 6b).

We described the methods to determine the emergent temperature sensitivity
in Supplementary Methods. We reported all temperature sensitivities in terms of
relative sensitivity of decomposition rates and respiration rates, such that in the
conventional Q10 or Arrhenius-equation-based theory, higher substrate activation
energy corresponds to higher temperature sensitivity24.

We described the CUE-static model in the Supplementary Methods.
Essentially, it replaces the dynamic CUE using the CUE predicted from the
model’s steady-state solution (Fig. 2a), all else equal. The CUE-static model
predicts identical equilibrium carbon stocks to that by the CUE-prognostic
model under constant temperature forcing (Fig. 3a,d and Supplementary
Fig. 7). A discussion on the static-Q10 model is also provided in the
Supplementary Methods.

To analyse the change in total soil carbon stocks in response to temperature
perturbations, we ran the models for 100 years to equilibrium and then abruptly
changed the temperature by ±4K and continued the simulations for another 50
years to new equilibrium. However, in all simulations, the first equilibrium was
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reached approximately in 40 years and the second equilibrium (after
perturbation) was reached approximately in 20 years (except the cooling
experiment for the CUE-static model at daily constant temperature, which
took slightly longer; see Fig. 2e). The simulations were conducted for
temperature forcings of three different types of temporal variability, including
constant temperature, seasonally varying temperature at daily time steps, and
both seasonally and diurnally varying temperature at hourly time steps. We
reported the spinup simulations (corresponding to Fig. 3) in the Supplementary
Methods (Supplementary Fig. 7).

Received 16 May 2014; accepted 13 October 2014;
published online 17 November 2014
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