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Adaptation potential of European agriculture in
response to climate change
Frances C. Moore1,2* and David B. Lobell2,3

Projecting the impacts of climate change on agriculture
requires knowing or assuming how farmers will adapt.
However, empirical estimates of the e�ectiveness of
this private adaptation are scarce and the sensitivity of
impact assessments to adaptation assumptions is not well
understood1,2. Here we assess the potential e�ectiveness of
private farmer adaptation in Europe by jointly estimating both
short-run and long-run response functions using time-series
and cross-sectional variation in subnational yield and profit
data. The di�erence between the impacts of climate change
projected using the short-run (limited adaptation) and
long-run (substantial adaptation) response curves can be
interpreted as the private adaptation potential. We find high
adaptation potential for maize to future warming but large
negative e�ects and only limited adaptation potential for
wheat and barley. Overall, agricultural profits could increase
slightly under climate change if farmers adapt but could
decrease inmany areas if there is no adaptation. Decomposing
the variance in 2040 projected yields and farm profits using
an ensemble of 13 climate model runs, we find that the rate
at which farmers will adapt to rising temperatures is an
important source of uncertainty.

Determining the overall effectiveness of adaptation solutions
in agriculture is challenging because it is impossible to accurately
enumerate andmodel all economically feasible options. Further, the
rate at which farmers will adopt these options in response to climate
change remains uncertain1–3. As a result, the sensitivity of existing
impact projections to assumptions of private farmer adaptation is
not well understood.

One promising approach to assess the potential of private
adaptation in agriculture is to use past observations to
simultaneously estimate two relationships between farm profits or
yields and climate variables. The first is the long-term, equilibrium
relationship based on cross-sectional variation in climate. Under
the assumption that farmers have adjusted over the long-run to
take full advantage of the climate they face, this response function
captures the impacts from climate change if farmers are able to
fully adapt using the set of available technologies4. The other is a
short-term relationship based on interannual weather variation.
As these weather shocks are transient and partially unanticipated,
farmers can mitigate their effects only with a much more limited
set of management options. Therefore, this response function
gives the impacts from climate change if farmers are unable to
implement long-run adaptations and instead respond to climate
change as though it were simply unusual weather. Climate change
impact projections made using these two response functions can
be used to characterize the spread in impact projections resulting

from uncertainty over how quickly farmers will adopt adaptive
technologies and management practices already in use elsewhere5,6.

Here we apply this approach to data from Europe, and then
estimate the impact of future temperature and precipitation changes
on yields and farm profits with and without adaptation.We estimate
equation (1) separately for each dependent variable (farm profits
and the yields of five major crops) using balanced panel data sets
(Methods). Figure 1 shows the results graphically.

The long-run relationship between profits or yields and
temperature is estimated using cross-sectional variation. We find a
moderate relationship between farm profits and mean temperature,
with maximum profits at growing season temperatures of 16.4 ◦C
corresponding to parts of northern Spain or Italy. Wheat and barley
show strong negative responses to warming across almost the entire
range of climates in the study region whereas maize shows a much
flatter response curve. Oilseed and sugarbeet yields both decline
with higher temperatures over most of the study region, although
the parameters of the oilseed yield regression are not accurately
estimated. Precipitation response curves as well as the regression
coefficients and standard errors for the preferred specification
and a number of alternative robustness checks are presented and
discussed in the Supplementary Information.

In all cases, the coefficient on the temperature deviation term
((Temp–Mean Temp)2) is negative, indicating that there is a penalty
associated with having a growing season that is cooler or warmer
than the expected temperature. In other words, when the weather is
different from expectation in a particular season, it imposes a cost
in terms of profitability or yields lost as a result of management
practices that turn out to be, ex post , imperfectly adjusted to the
actual weather. The value of this coefficient is fairly large: a year that
is one standard deviation (2.7 ◦C) warmer or cooler than average
causes a decline in profitability of 9.7% and yield declines of between
6.1% (wheat yield) and 10.9% (maize yield) compared with what
would have occurred if those temperatures were anticipated ex ante.

We estimate the impacts of climate change with and without
adaptation by combining the long-run (excluding the penalty
term) and short-run (including the penalty term) response curves
respectively with an ensemble of 13 climate model runs7 (Methods,
Supplementary Fig. 2). These projections are conditional on
assuming that land continues to be used in agriculture if profits
are the dependent variable or in a particular crop if yields are the
dependent variable (Supplementary Table 1). In general, projected
temperature effects on yields for 2040 (2030–2049 average) relative
to the 1975 (1960–1989 average) baseline are negative (Fig. 2a).
Wheat and barley are highly sensitive to temperature, with
the average 2 ◦C warming projected for 2040 resulting in yield
reductions of 15–30% relative to what they would otherwise be.
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Figure 1 | Short- and long-run temperature response curves. Graphical depiction of the long-run (red solid lines) and short-run (black dotted lines)
relationship between farm profits or yields and growing season temperature (◦C) estimated using equation (1) (first specification, column one in
Supplementary Table 3). The range of the x axis corresponds to the range of growing season temperature in each panel data set. The three examples of
short-run relationships are plotted centred at the 25th, 50th and 75th percentiles of growing-season temperature. Curves are shifted along the y axis so
that the maximum value over the plotting range is 1. As the dependent variable is logged, movement along the y axis represents a percentage change in the
outcome variable.

Maize, sugarbeet and oilseed yields are more moderately impacted,
primarily as a result of smaller estimated sensitivity to temperature
over the range of growing season conditions in Europe. These
long-run impact estimates are based on cross-sectional variation
and so may be particularly vulnerable to omitted-variable bias. We
believe equation (1) controls for major sources of bias but also
note that a previous study reported very similar maize- and wheat-
yield response curves using cross-sectional variation in a higher-
resolution version of the same data set8. As they were able to include
subnational fixed effects, the similarity between our results suggests
that omitted variables are not substantially influencing our results,
at least for wheat and maize yields.

The difference between the light and dark bars measures the
potential for private farmer adaptation to reduce the negative effects
of climate change. This potential is moderate but still important.
For instance, barley yields are projected to decline by 22% but this
loss could be cut to 15% with adaptation. The largest potential for
adaptation relative to the size of overall impact is for maize yields.
Without adaptation, losses fromwarming are projected to be 9% but
adaptation has the potential to cut this to just over 1%.

Under climate change, average farm profits across Europe would
increase modestly (1.5%) with adaptation but could decline by
2.3% without adaptation. (The impacts on profits differ from the
yield impacts because the five crops studied here constitute only
25% of farm production value.) The long-run profit response curve
is nonlinear, meaning the effect of warming varies with baseline
climate and is geographically heterogeneous. Figure 2b shows the
projected change in farm profits both with and without adaptation
(right and left panels, respectively). If farmers are able to adapt

effectively, then much of Europe should see small gains in profits.
However, warmer regions in southern France, Spain, Italy, Greece
and Portugal already beyond the temperature optimum of 16 ◦C
could see substantial residual damages from climate change of
over 10% even after adaptation. Adaptation is clearly important for
moderating the effect of climate change on agricultural production.
Without it, even cooler regions in central France andGermany could
see declines in profitability due to warming by 2040.

The variance in our projections of the impacts of climate change
on farm profits and yields are decomposed into three types of un-
certainty: climate, response and adaptation uncertainty (Methods).
Climate uncertainty results from uncertainty in future temperature
and precipitation changes and is captured by the spread of climate
model projections in the ensemble. Response uncertainty arises
because we are unsure exactly how profits and yields will respond
to a given change in temperature or precipitation and it depends on
the precision of the estimates of the response function parameter.
Adaptation uncertainty results from the fact that the rate of private
farmer adaptation is uncertain and depends on the difference in
projections made using the long- and short-run response functions.

Uncertainty around how well farmers will adapt to temperature
impacts is an important source of variability (Fig. 3). For maize
and sugarbeet yields it is the dominant uncertainty component.
Moreover, for all variables except wheat and barley yields, the
combination of adaptation and response uncertainty is larger than
that from climate model projections. This means that ensembles
of climate model output alone are inadequate to fully characterize
the uncertainty in projections of the impact of climate change on
agricultural production. Uncertainty resulting from an imperfectly
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Figure 2 | E�ects of warming on profits and yields. a, The impacts of temperature change by 2040 (2030–2049 mean) under the A1B scenario on farm
profits and yields in Europe (production-weighted mean) relative to the 1961–1990 baseline. Dark colours show impacts including long-run adaptations;
light colours show short-run impacts without adaptation. The di�erence between these can be interpreted as the potential for long-run adaptations to
reduce the impacts of climate change. Error bars show the 95% confidence interval based on parameter (response) uncertainty (Methods). b, Maps of
projected changes in farm profit by 2040 (2030–2049 mean) under the A1B scenario for growing regions included in the statistical model. The left map
shows projections made using the short-run response function without adaptation and the right shows projections made using the long-run response
function that includes private farm-level adaptation.

known response function and an uncertain autonomous adaptive
response by farmers are, in most cases, a larger driver of projection
uncertainty than variability in the climate forcing alone, at least as
captured by the spread in climate model ensembles.

Our results contribute to a growing literature on the impacts of
climate change on crop yields in Europe that uses both process-
based models and statistical techniques. In agreement with several
previous studies, we find that projected temperature changes are
more important than precipitation changes in determining the
impacts of climate change over the next few decades9,10. We
find that the impact of mean temperature change on yield is
around 5–10 times larger than the impact of precipitation by
2040. This is not because crop yields are insensitive to changes in
precipitation, but because projected precipitation changes tend to
be small whereas projected temperature changes are large relative
to inter-annual variability. However, this analysis does not explicitly
examine the effect of intra-seasonal precipitation variability or
extreme events, which may be more significant than mean changes
in impacting yields, particularly if variability increases under a
warming climate11.

Our statistical model implies that warming from climate change
will have large negative impacts on wheat and barley yields
throughout Europe, a finding consistent with previous work12–14.
We project a large negative impact of future warming of 0.5% and
0.3% per year for wheat and barley yields, respectively. Our steep
response functions for these crops and the fact that Europe has

warmed substantially since 1980 are consistent with the observed
levelling-off of these crop yields in the region, although other policy
and economic factors may have also influenced this trend12,13,15–17.
It should be noted that this projection does not include a number
of moderating influences that may limit climate change impacts
such as potential yield gains in southern Scandinavia or the
CO2 fertilization effect. CO2 concentrations over this time period
increase by approximately 50% in the A1B scenario, implying a
fertilization effect of between 6% and 14% for C3 crops18,19.

We find negative but more moderate long-run impacts of
warming on maize, sugarbeet and oilseed yield. Our very shallow
long-run maize response curve is consistent with previous findings
considering the growing season temperatures in our sample
are consistently below 23 ◦C, a range where other studies have
demonstrated relatively small temperature effects5,9,20,21. Moreover,
maize grown in warmer parts of Europe is frequently irrigated,
which may reduce sensitivity to extreme temperatures22.

Relatively few studies have compared climate change impacts in
Europe with and without adaptation and we believe none has done
so empirically. The difference in projections made using the long-
run and short-run response curves estimated here can be interpreted
as the potential benefits of long-run adaptations. We find a fairly
important role for adaptation in moderating the adverse impacts
of warmer temperature on yields, although adaptation remains
imperfect and there will be negative residual impacts of warming
even if all adaptation options are adopted. The relative importance
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Figure 3 | Contribution of di�erent factors to total uncertainty.
Decomposition of the sources of uncertainty in projections of profits per
hectare and yields under the A1B scenario for an ensemble of 13 model runs
due to temperature change (dark colours) and precipitation change (light
colours). Total uncertainty is scaled to 100 for each outcome to highlight
the proportional contribution from each factor.

of adaptation differs between crops: adaptation has the potential to
reduce adverse impacts onmaize yields by 87%but the same fraction
for wheat and barley yields are 7% and 31%, respectively. Although
this analysis cannot identify the reasons for this difference, it could
result from a number of factors including more extensive irrigation
of maize or a wider range of cultivars in use across the study region.

Previous studies have compared either response and climate
uncertainties23 or present the spread of yield projections under
different climate and adaptation scenarios24,25. However, the latter
typically include only a limited number of possible adaptive
responses (often changing planting date or crop variety) and
therefore may underestimate the potential of the full suite of
adaptation options available to farmers that are captured by our
empirical approach2. We find that adaptation uncertainty is large
for several crops (particularly maize, barley and sugarbeet), and the
combination of adaptation and response uncertainty is, except for
wheat yield, larger or comparable to uncertainty from climatemodel
projections. Studies that attempt to quantify uncertainty using an
ensemble of climate models but only a single adaptation scenario or
yield response model may be significantly underestimating the true
uncertainty in climate change impacts.

Methods
We use equation (1) to jointly estimate both the long-run effect of different
climates and the short-run effect of annual deviations from this climate6. The
economic model and relevant assumptions are described in the Supplementary
Information. Equation (1) is used for each of six dependent variables: farm profits
and the yields of five major crops. The farm profits/yields (V ) for subnational
region i, in country j in year t are estimated in the preferred model as:

Vijt=β0+β1W̄ijt+β2W̄ 2
ijt+β3(Wijt−W̄ijt )

2

+β4,jCountryj ∗Yeart+β5,jCountryj ∗Year
2
t

+β6,jCountryj+β7Controlsijt+εijt (1)

where W̄ijt is a vector that includes growing season temperature and precipitation
and is the 30-year climatological average for the years preceding year t . Bold
denotes vectors of coefficients. We control for unobserved, possibly nonlinear
time trends at the country level using a country-by-year linear and quadratic time

trend, unobserved time-constant variation between countries using a country
fixed effect, and other observed within-country variation using a suite of controls.
These controls include a vector of soil-quality variables (organic carbon content,
water-holding capacity, erodibility, and soil type), altitude and altitude squared,
subsidies received per hectare, irrigated area per hectare and a crop-price index.

Our source of economic and yield data is the EU Farm Accountancy Data
Network (FADN) survey between 1989 and 2009 (ref. 26). The data we use are
aggregated from the farm to the regional (subnational) level using weights based
on the three-way stratified sampling methodology used by FADN. Therefore, the
representativeness of these aggregated values depends on the soundness of the
sampling and weighting schemes used by the EU (ref. 26). Farm profits are
defined as the total value of farm production minus all costs plus subsidies
received minus taxes paid. They are normalized by the total agricultural area used
in the year to give farm profits per hectare. Yields are calculated as the crop
produced in the year divided by the area of crop planted. The five crops
considered in this paper constitute around 25% of the value produced by
European farms, with the remainder coming from meat and dairy production
and other grain, fruit and vegetable crops. Weather data are monthly averages
averaged over a growing season defined by the observed planting and harvest
date for each region using the SAGE crop calendar data set27–29. For the profits
per hectare regression we use a standard March–September growing season
definition. We create balanced data sets by retaining only those observations with
data for the whole period 1989–2009. This prevents possible confounding of the
estimation by gradual entry of eastern European countries into the data set after
the mid-1990s. Additional details on the construction of the data set and control
variables are given in the Supplementary Information.

We estimate equation (1) using ordinary least-squares regression, weighting
by the square root of farm area to reduce heteroskedasticity and to make results
more representative of the average growing area. Standard errors were estimated
using 500 block-bootstraps, blocking at the country by 2-year level to account for
heteroskedasticity, within-country spatial autocorrelation, and temporal
autocorrelation at one-year lag. The estimated response functions can be used to
calculate the expected damages from climate change with (equation (2)) and
without (equation (3)) adaptation. These responses are shown diagrammatically
in Supplementary Fig. 1 and, given a shift in climate from W̄0 to W̄1 can be
estimated for each observation as:

1V̂LRi= β̂1(W̄1i−W̄0i)+ β̂2(W̄ 2
1i−W̄

2
0i) (2)

1V̂SRi= β̂1(W̄1i−W̄0i)+ β̂2(W̄ 2
1i−W̄

2
0i)+ β̂3(W̄1i−W̄0i)

2 (3)

where the βs are the parameter estimates obtained from the equation (1)
regression. These response curves are combined with climate model projections
for the period 2030–2049 under the A1B scenario using a 13-member ensemble
from the ENSEMBLES project7. The projections from this ensemble and the
equations for decomposing ensemble projection uncertainty are described in the
Supplementary Information. The ensemble we use pertains to a single emission
scenario but scenario uncertainty constitutes only a small fraction of total
uncertainty in climate projections at regional levels by 2040 and therefore is
unlikely to affect our conclusions30.
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