globalchange  > 科学计划与规划
项目编号: BB/N020146/1
项目名称:
Architects of genomic change: the evolutionary dynamics of transposable elements
作者: Alexander Hayward
承担单位: University of Exeter
批准年: 2016
开始日期: 2017-01-03
结束日期: 2022-28-02
资助金额: GBP873578
资助来源: UK-BBSRC
项目类别: Fellowship
国家: UK
语种: 英语
特色学科分类: Ecol, biodivers. & systematics ; Genetics & development ; Omic sciences & technologies ; Tools, technologies & methods
英文摘要: Recently there have been great breakthroughs in computing and molecular biology. In combination, these have led to a vastly improved ability to generate and analyse large volumes of genetic data. Consequently, near-complete genome sequences are now available for a large variety of organisms. This genomic revolution has revealed many fascinating insights, but one of the most unexpected relates to the abundance of transposable elements (TEs) discovered within the genome.

TEs are short DNA sequences with the ability to move around in the genome via a process called transposition. Because of this property, TEs are sometimes referred to as jumping genes. Other names applied to TEs are selfish DNA, parasitic DNA, or even junk DNA, reflecting their perceived lack of contribution to host fitness. To become fixed in the hosts evolutionary lineage, TEs must invade the host germline (i.e. reproductive cells). This has been occurring over great evolutionary periods, leading to the abundance of TE sequences observable in sequenced genomes, the majority of which exist as genomic fossils that have become inactivated due to an accumulation of mutations.

Recently, it has emerged that TE sequences have been repeatedly utilised by host genomes for their own purposes during evolution. Indeed, it appears that TEs have played a significant role in the evolution of host genomic complexity via various mechanisms, including direct acquisition of coding sequence, genomic rearrangement, and gene regulatory modification.

Despite the widespread abundance of TEs and their important evolutionary contributions across the diversity of life, many questions concerning TE biology remain unanswered. However, the wealth in recently sequenced genomes now provides an exciting opportunity to perform novel large-scale systematic analyses of TE evolution to elucidate on poorly understood aspects of TE biology. In this proposal I will undertake such an analysis to examine the following four important aims:

1 Evolution of the LTR retrotransposons. A particularly diverse and abundant group of TEs with significant impacts on the genomes of a great diversity of organisms are the Long Terminal Repeat (LTR) retrotransposons. Until recently, it was very difficult to estimate evolutionary relationships in this group for methodological reasons, constraining advances. However, I have developed a new method to overcome this problem, offering the possibility to estimate evolutionary history and address questions of key significance in the group, which also includes highly important vertebrate viruses such as HIV.

2 Persistence of TEs in the genome. A major question is how active selfish elements persist in host genomes, while having no direct selective benefit to the host. I will quantify patterns in the proliferation of TEs and their spread across host diversity to elucidate on this long-standing problem.

3 Transposable elements and the evolution of host genomic complexity. I will explore the features that predispose TEs to being harnessed for host purposes, and examine how TEs interact to contribute to host genomic complexity.

4 Role of transposable elements in speciation. Hosts can evolve resistance mechanisms against TEs, but recently invading TEs are typically able to replicate more freely. Consequently, poor-repression of TEs is predicted to result in hybrids between two diverging lineages suffering negative fitness consequences due to increased TE activity, which consequently reinforces reduced gene flow. I will test these ideas to explore the role of TEs as promoters of speciation.

Study of the LTR retrotranspsons offers an opportunity to provide insights of relevance to combat disease, since the group contains infectious viruses such as HIV. Meanwhile, given the widespread utilisation of TE sequences for diverse host purposes during evolution, greater knowledge of TE biology will provide insights of potential applied and medical benefit more widely.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/100267
Appears in Collections:科学计划与规划
气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: University of Exeter

Recommended Citation:
Alexander Hayward. Architects of genomic change: the evolutionary dynamics of transposable elements. 2016-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Alexander Hayward]'s Articles
百度学术
Similar articles in Baidu Scholar
[Alexander Hayward]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Alexander Hayward]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.