globalchange  > 科学计划与规划
项目编号: NE/I006656/1
项目名称:
Hydrological extremes and feedbacks in the changing water cycle
作者: Richard Chandler
承担单位: University College London
批准年: 2010
开始日期: 2011-14-02
结束日期: 2014-13-02
资助金额: GBP184252
资助来源: UK-NERC
项目类别: Research Grant
国家: UK
语种: 英语
特色学科分类: Atmospheric phys. & chemistry&nbsp ; (25%) ; Climate & Climate Change&nbsp ; (25%) ; Geosciences&nbsp ; (25%) ; Terrest. & freshwater environ.&nbsp ; (25%)
英文摘要: The prospect of significant climate change over the next decades means that society must urgently face up to the implications for the changing water cycle, in particular increasing risks from extreme floods and droughts. Guidance for policy-makers to support adaptation to these risks and to support mitigation strategies to combat climate change is urgently required. However, the ability of climate scientists and hydrologists to predict the possible magnitudes of floods and droughts, and the frequency with which they are expected to occur, is still limited. This is due largely to gaps in knowledge of how best to use available data and models; of particular concern is the limited ability of climate and hydrological models to produce realistic extremes and changing hydrological behaviour. For example, regional climate models produce data which often requires to be downscaled to finer resolutions, but questions arise about what properties of the downscaled data are critical and how the downscaling should be done. As another example, drought planning requires inter-annual and inter-regional rainfall and evaporation to be represented accurately, however there is little guidance about how this can best be achieved under future climate using available models. In addition, there are weaknesses in the simulation of hydrology (for example, groundwater storage, river flows and evaporation) which act as hurdles to development of next generation climate models; in particular models currently used to simulate feedbacks from the earth surface to the atmosphere neglect important hydrological processes. This proposal will produce the science and models needed to address these questions, integrating climate and hydrological science to take impact modelling beyond the current state of the art. Specifically, the proposal: 1. exploits current generation climate science and statistical methods to improve and enhance projections of potential change in hydrologically-relevant metrics over a time-scale of 10 to 60 years, in particular extremes of heavy precipitation and drought; 2. builds on the analysis of historical data to improve scientific understanding and develop innovative methods for the modelling of extremes and non-stationarity in the hydrological response to climate variability; 3. seeks to improve the representation of hydrological processes in land surface models, in particular, the enhanced modelling of surface and subsurface processes for simulation of land-atmosphere feedbacks. In addressing these gaps in knowledge, the proposed project will cross all four themes of NERC's Changing Water Cycle programme: land-atmosphere interactions; precipitation modelling; understanding of change; and innovative ways to assess consequences. Case studies will include the Thames catchment and the Eden catchment. These catchments are broadly representative of lowland and upland UK with substantial climate and hydrological datasets from NERC and DEFRA-EA experimental programmes. This project will consider local to catchment scales, with the view that the resulting science and models will ultimately be integrated into global scale models. The main project outputs will be: 1) improved quantification of future variability and extremes of precipitation and evaporation over hydrologically relevant scales in the UK; 2) improved models of the hydrological water cycle response to these extremes, with the explicit inclusion of non-stationary conditions; 3) the inclusion of earth-atmosphere feedback processes and their effects in climate models, in particular the recognition and inclusion of unsaturated zone and groundwater storage and discharge. In all cases, new modelling tools will be developed to test the ideas of meteo-hydrological functioning.
资源类型: 项目
标识符: http://119.78.100.158/handle/2HF3EXSE/103297
Appears in Collections:科学计划与规划
气候变化与战略

Files in This Item:

There are no files associated with this item.


作者单位: University College London

Recommended Citation:
Richard Chandler. Hydrological extremes and feedbacks in the changing water cycle. 2010-01-01.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Richard Chandler]'s Articles
百度学术
Similar articles in Baidu Scholar
[Richard Chandler]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Richard Chandler]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.