globalchange  > 全球变化的国际研究计划
DOI: 10.1016/j.gloplacha.2014.05.001
论文题名:
Estimation of greenhouse gases (N2O, CH4 and CO2) from no-till cropland under increased temperature and altered precipitation regime: A DAYCENT model approach
作者: Rafique R.; Kumar S.; Luo Y.; Xu X.; Li D.; Zhang W.; Asam Z.-U.-Z.
ISSN: 0921-8501
出版年: 2014
卷: 118
起始页码: 106
结束页码: 114
语种: 英语
英文关键词: Altered precipitation ; Climate warming ; DayCent model ; GHG ; ParameterESTimation (PEST) ; Scenario analysis
Scopus关键词: Atmospheric temperature ; C (programming language) ; Calibration ; Carbon dioxide ; Climate change ; Climate models ; Computer simulation ; Drought ; Rain ; Soil moisture ; Climate change scenarios ; Climate warming ; DAYCENT ; Earth surface temperature ; General circulation model ; GHG ; Land management practices ; Scenario analysis ; Greenhouse gases ; agricultural land ; calibration ; carbon dioxide ; carbon emission ; climate modeling ; drought ; experimental study ; general circulation model ; global warming ; greenhouse gas ; land management ; management practice ; methane ; pore space ; precipitation (climatology) ; software ; soil moisture ; surface temperature ; zero tillage
英文摘要: Greenhouse gas (GHG) emissions play an important role in regulating the Earth surface temperature. GHG emissions from soils are sensitive to climate change and land management practices. According to general circulation model (GCM) predictions, the Earth will experience a combination of increased temperature and altered precipitation regimes which may result in an increase or a decrease of GHG exchange. The effect of climate change on GHG emissions can be examined through both experiments and by applying process-based models, which have become more popular. The performance of those models can be improved significantly by appropriate calibration procedures. The objectives of this study are to: (i) calibrate the DAYCENT model using advance parameter estimation (PEST) software and to (ii) examine simulated GHG dynamics at daily and seasonal time-scales under a climate change scenario of increased temperature (2°C) and a precipitation regime change where 40% of precipitation during the dry season was redistributed to the wet season. The algorithmic calibration improved the model performance by reducing the sum of weighted squared residual differences by up to 223% (decreased from 1635 to 505g N2O-Nha-1 d-1) for N2O and 22% (decreased from 623 to 507% WFPS) for water filled pore space (WFPS) simulation results. In the altered climate scenario, total N2O and CO2 fluxes decreased by 9% (from 2.31 to 2.10kg N2O-Nha-1yr-1) and 38% (from 1134.08 to 699.56kg CO2 ha-1yr-1) respectively, whereas CH4 fluxes increased by 10% (from 1.62 to 1.80kg CH4 ha-1yr-1). Our results show a larger impact of altered climate on CO2 as compared to N2O and CH4 emissions. The main difference in all GHG emissions was observed in summer period due to drought conditions created by reduced precipitation and increased temperatures. However, the GHG dynamics can also be attributed to no-till practices which play an important role in changing the soil moisture conditions for aerobic and anaerobic microsites. These results are based on a process-based model, therefore, we suggest performing experimental studies to examine the GHG emissions under increased temperature and especially under altered precipitation regimes. © 2014 Elsevier B.V.
URL: https://www.scopus.com/inward/record.uri?eid=2-s2.0-84900798285&doi=10.1016%2fj.gloplacha.2014.05.001&partnerID=40&md5=84cfa44ce9712a7cc1502c48a60f31c5
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/11407
Appears in Collections:全球变化的国际研究计划

Files in This Item:

There are no files associated with this item.


作者单位: Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, United States

Recommended Citation:
Rafique R.,Kumar S.,Luo Y.,et al. Estimation of greenhouse gases (N2O, CH4 and CO2) from no-till cropland under increased temperature and altered precipitation regime: A DAYCENT model approach[J],2014-01-01,118.
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Rafique R.]'s Articles
[Kumar S.]'s Articles
[Luo Y.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Rafique R.]'s Articles
[Kumar S.]'s Articles
[Luo Y.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Rafique R.]‘s Articles
[Kumar S.]‘s Articles
[Luo Y.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.