globalchange  > 气候减缓与适应
DOI: 10.1002/2017JE005404
Scopus记录号: 2-s2.0-85040677940
论文题名:
One-Dimensional Convective Thermal Evolution Calculation Using a Modified Mixing Length Theory: Application to Saturnian Icy Satellites
作者: Kamata S.
刊名: Journal of Geophysical Research: Planets
ISSN: 21699097
出版年: 2018
卷: 123, 期:1
起始页码: 93
结束页码: 112
语种: 英语
英文关键词: icy satellites ; subsurface ocean ; thermal convection ; thermal evolution
Scopus关键词: comparative study ; geophysical method ; global ocean ; mixing ; ocean ; one-dimensional modeling ; satellite imagery ; Saturn ; theoretical study ; thermal convection ; thermal evolution ; three-dimensional modeling ; two-dimensional modeling
英文摘要: Solid-state thermal convection plays a major role in the thermal evolution of solid planetary bodies. Solving the equation system for thermal evolution considering convection requires 2-D or 3-D modeling, resulting in large calculation costs. A 1-D calculation scheme based on mixing length theory (MLT) requires a much lower calculation cost and is suitable for parameter studies. A major concern for the MLT scheme is its accuracy due to a lack of detailed comparisons with higher dimensional schemes. In this study, I quantify its accuracy via comparisons of thermal profiles obtained by 1-D MLT and 3-D numerical schemes. To improve the accuracy, I propose a new definition of the mixing length (l), which is a parameter controlling the efficiency of heat transportation due to convection, for a bottom-heated convective layer. Adopting this new definition of l, I investigate the thermal evolution of Saturnian icy satellites, Dione and Enceladus, under a wide variety of parameter conditions. Calculation results indicate that each satellite requires several tens of GW of heat to possess a thick global subsurface ocean suggested from geophysical analyses. Dynamical tides may be able to account for such an amount of heat, though the reference viscosity of Dione's ice and the ammonia content of Dione's ocean need to be very high. Otherwise, a thick global ocean in Dione cannot be maintained, implying that its shell is not in a minimum stress state. ©2017. American Geophysical Union. All Rights Reserved.
Citation statistics:
资源类型: 期刊论文
标识符: http://119.78.100.158/handle/2HF3EXSE/114864
Appears in Collections:气候减缓与适应

Files in This Item:

There are no files associated with this item.


作者单位: Creative Research Institution, Hokkaido University, Sapporo, Japan

Recommended Citation:
Kamata S.. One-Dimensional Convective Thermal Evolution Calculation Using a Modified Mixing Length Theory: Application to Saturnian Icy Satellites[J]. Journal of Geophysical Research: Planets,2018-01-01,123(1)
Service
Recommend this item
Sava as my favorate item
Show this item's statistics
Export Endnote File
Google Scholar
Similar articles in Google Scholar
[Kamata S.]'s Articles
百度学术
Similar articles in Baidu Scholar
[Kamata S.]'s Articles
CSDL cross search
Similar articles in CSDL Cross Search
[Kamata S.]‘s Articles
Related Copyright Policies
Null
收藏/分享
所有评论 (0)
暂无评论
 

Items in IR are protected by copyright, with all rights reserved, unless otherwise indicated.